//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements sparse conditional constant propagation and merging: // // Specifically, this: // * Assumes values are constant unless proven otherwise // * Assumes BasicBlocks are dead unless proven otherwise // * Proves values to be constant, and replaces them with constants // * Proves conditional branches to be unconditional // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/SCCP.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueLattice.h" #include "llvm/Analysis/ValueLatticeUtils.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PredicateInfo.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "sccp" STATISTIC(NumInstRemoved, "Number of instructions removed"); STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); STATISTIC(NumInstReplaced, "Number of instructions replaced with (simpler) instruction"); STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); STATISTIC( IPNumInstReplaced, "Number of instructions replaced with (simpler) instruction by IPSCCP"); // The maximum number of range extensions allowed for operations requiring // widening. static const unsigned MaxNumRangeExtensions = 10; /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions. static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() { return ValueLatticeElement::MergeOptions().setMaxWidenSteps( MaxNumRangeExtensions); } namespace { // Helper to check if \p LV is either a constant or a constant // range with a single element. This should cover exactly the same cases as the // old ValueLatticeElement::isConstant() and is intended to be used in the // transition to ValueLatticeElement. bool isConstant(const ValueLatticeElement &LV) { return LV.isConstant() || (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); } // Helper to check if \p LV is either overdefined or a constant range with more // than a single element. This should cover exactly the same cases as the old // ValueLatticeElement::isOverdefined() and is intended to be used in the // transition to ValueLatticeElement. bool isOverdefined(const ValueLatticeElement &LV) { return !LV.isUnknownOrUndef() && !isConstant(LV); } //===----------------------------------------------------------------------===// // /// SCCPSolver - This class is a general purpose solver for Sparse Conditional /// Constant Propagation. /// class SCCPSolver : public InstVisitor { const DataLayout &DL; std::function GetTLI; SmallPtrSet BBExecutable; // The BBs that are executable. DenseMap ValueState; // The state each value is in. /// StructValueState - This maintains ValueState for values that have /// StructType, for example for formal arguments, calls, insertelement, etc. DenseMap, ValueLatticeElement> StructValueState; /// GlobalValue - If we are tracking any values for the contents of a global /// variable, we keep a mapping from the constant accessor to the element of /// the global, to the currently known value. If the value becomes /// overdefined, it's entry is simply removed from this map. DenseMap TrackedGlobals; /// TrackedRetVals - If we are tracking arguments into and the return /// value out of a function, it will have an entry in this map, indicating /// what the known return value for the function is. MapVector TrackedRetVals; /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions /// that return multiple values. MapVector, ValueLatticeElement> TrackedMultipleRetVals; /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is /// represented here for efficient lookup. SmallPtrSet MRVFunctionsTracked; /// MustTailFunctions - Each function here is a callee of non-removable /// musttail call site. SmallPtrSet MustTailCallees; /// TrackingIncomingArguments - This is the set of functions for whose /// arguments we make optimistic assumptions about and try to prove as /// constants. SmallPtrSet TrackingIncomingArguments; /// The reason for two worklists is that overdefined is the lowest state /// on the lattice, and moving things to overdefined as fast as possible /// makes SCCP converge much faster. /// /// By having a separate worklist, we accomplish this because everything /// possibly overdefined will become overdefined at the soonest possible /// point. SmallVector OverdefinedInstWorkList; SmallVector InstWorkList; // The BasicBlock work list SmallVector BBWorkList; /// KnownFeasibleEdges - Entries in this set are edges which have already had /// PHI nodes retriggered. using Edge = std::pair; DenseSet KnownFeasibleEdges; DenseMap AnalysisResults; DenseMap> AdditionalUsers; LLVMContext &Ctx; public: void addAnalysis(Function &F, AnalysisResultsForFn A) { AnalysisResults.insert({&F, std::move(A)}); } const PredicateBase *getPredicateInfoFor(Instruction *I) { auto A = AnalysisResults.find(I->getParent()->getParent()); if (A == AnalysisResults.end()) return nullptr; return A->second.PredInfo->getPredicateInfoFor(I); } DomTreeUpdater getDTU(Function &F) { auto A = AnalysisResults.find(&F); assert(A != AnalysisResults.end() && "Need analysis results for function."); return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy}; } SCCPSolver(const DataLayout &DL, std::function GetTLI, LLVMContext &Ctx) : DL(DL), GetTLI(std::move(GetTLI)), Ctx(Ctx) {} /// MarkBlockExecutable - This method can be used by clients to mark all of /// the blocks that are known to be intrinsically live in the processed unit. /// /// This returns true if the block was not considered live before. bool MarkBlockExecutable(BasicBlock *BB) { if (!BBExecutable.insert(BB).second) return false; LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); BBWorkList.push_back(BB); // Add the block to the work list! return true; } /// TrackValueOfGlobalVariable - Clients can use this method to /// inform the SCCPSolver that it should track loads and stores to the /// specified global variable if it can. This is only legal to call if /// performing Interprocedural SCCP. void TrackValueOfGlobalVariable(GlobalVariable *GV) { // We only track the contents of scalar globals. if (GV->getValueType()->isSingleValueType()) { ValueLatticeElement &IV = TrackedGlobals[GV]; if (!isa(GV->getInitializer())) IV.markConstant(GV->getInitializer()); } } /// AddTrackedFunction - If the SCCP solver is supposed to track calls into /// and out of the specified function (which cannot have its address taken), /// this method must be called. void AddTrackedFunction(Function *F) { // Add an entry, F -> undef. if (auto *STy = dyn_cast(F->getReturnType())) { MRVFunctionsTracked.insert(F); for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) TrackedMultipleRetVals.insert( std::make_pair(std::make_pair(F, i), ValueLatticeElement())); } else if (!F->getReturnType()->isVoidTy()) TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement())); } /// AddMustTailCallee - If the SCCP solver finds that this function is called /// from non-removable musttail call site. void AddMustTailCallee(Function *F) { MustTailCallees.insert(F); } /// Returns true if the given function is called from non-removable musttail /// call site. bool isMustTailCallee(Function *F) { return MustTailCallees.count(F); } void AddArgumentTrackedFunction(Function *F) { TrackingIncomingArguments.insert(F); } /// Returns true if the given function is in the solver's set of /// argument-tracked functions. bool isArgumentTrackedFunction(Function *F) { return TrackingIncomingArguments.count(F); } /// Solve - Solve for constants and executable blocks. void Solve(); /// ResolvedUndefsIn - While solving the dataflow for a function, we assume /// that branches on undef values cannot reach any of their successors. /// However, this is not a safe assumption. After we solve dataflow, this /// method should be use to handle this. If this returns true, the solver /// should be rerun. bool ResolvedUndefsIn(Function &F); bool isBlockExecutable(BasicBlock *BB) const { return BBExecutable.count(BB); } // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible. bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const; std::vector getStructLatticeValueFor(Value *V) const { std::vector StructValues; auto *STy = dyn_cast(V->getType()); assert(STy && "getStructLatticeValueFor() can be called only on structs"); for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { auto I = StructValueState.find(std::make_pair(V, i)); assert(I != StructValueState.end() && "Value not in valuemap!"); StructValues.push_back(I->second); } return StructValues; } void removeLatticeValueFor(Value *V) { ValueState.erase(V); } const ValueLatticeElement &getLatticeValueFor(Value *V) const { assert(!V->getType()->isStructTy() && "Should use getStructLatticeValueFor"); DenseMap::const_iterator I = ValueState.find(V); assert(I != ValueState.end() && "V not found in ValueState nor Paramstate map!"); return I->second; } /// getTrackedRetVals - Get the inferred return value map. const MapVector &getTrackedRetVals() { return TrackedRetVals; } /// getTrackedGlobals - Get and return the set of inferred initializers for /// global variables. const DenseMap &getTrackedGlobals() { return TrackedGlobals; } /// getMRVFunctionsTracked - Get the set of functions which return multiple /// values tracked by the pass. const SmallPtrSet getMRVFunctionsTracked() { return MRVFunctionsTracked; } /// getMustTailCallees - Get the set of functions which are called /// from non-removable musttail call sites. const SmallPtrSet getMustTailCallees() { return MustTailCallees; } /// markOverdefined - Mark the specified value overdefined. This /// works with both scalars and structs. void markOverdefined(Value *V) { if (auto *STy = dyn_cast(V->getType())) for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) markOverdefined(getStructValueState(V, i), V); else markOverdefined(ValueState[V], V); } // isStructLatticeConstant - Return true if all the lattice values // corresponding to elements of the structure are constants, // false otherwise. bool isStructLatticeConstant(Function *F, StructType *STy) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); assert(It != TrackedMultipleRetVals.end()); ValueLatticeElement LV = It->second; if (!isConstant(LV)) return false; } return true; } /// Helper to return a Constant if \p LV is either a constant or a constant /// range with a single element. Constant *getConstant(const ValueLatticeElement &LV) const { if (LV.isConstant()) return LV.getConstant(); if (LV.isConstantRange()) { auto &CR = LV.getConstantRange(); if (CR.getSingleElement()) return ConstantInt::get(Ctx, *CR.getSingleElement()); } return nullptr; } private: ConstantInt *getConstantInt(const ValueLatticeElement &IV) const { return dyn_cast_or_null(getConstant(IV)); } // pushToWorkList - Helper for markConstant/markOverdefined void pushToWorkList(ValueLatticeElement &IV, Value *V) { if (IV.isOverdefined()) return OverdefinedInstWorkList.push_back(V); InstWorkList.push_back(V); } // Helper to push \p V to the worklist, after updating it to \p IV. Also // prints a debug message with the updated value. void pushToWorkListMsg(ValueLatticeElement &IV, Value *V) { LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n'); pushToWorkList(IV, V); } // markConstant - Make a value be marked as "constant". If the value // is not already a constant, add it to the instruction work list so that // the users of the instruction are updated later. bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C, bool MayIncludeUndef = false) { if (!IV.markConstant(C, MayIncludeUndef)) return false; LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); pushToWorkList(IV, V); return true; } bool markConstant(Value *V, Constant *C) { assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); return markConstant(ValueState[V], V, C); } // markOverdefined - Make a value be marked as "overdefined". If the // value is not already overdefined, add it to the overdefined instruction // work list so that the users of the instruction are updated later. bool markOverdefined(ValueLatticeElement &IV, Value *V) { if (!IV.markOverdefined()) return false; LLVM_DEBUG(dbgs() << "markOverdefined: "; if (auto *F = dyn_cast(V)) dbgs() << "Function '" << F->getName() << "'\n"; else dbgs() << *V << '\n'); // Only instructions go on the work list pushToWorkList(IV, V); return true; } /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV /// changes. bool mergeInValue(ValueLatticeElement &IV, Value *V, ValueLatticeElement MergeWithV, ValueLatticeElement::MergeOptions Opts = { /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) { if (IV.mergeIn(MergeWithV, Opts)) { pushToWorkList(IV, V); LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : " << IV << "\n"); return true; } return false; } bool mergeInValue(Value *V, ValueLatticeElement MergeWithV, ValueLatticeElement::MergeOptions Opts = { /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) { assert(!V->getType()->isStructTy() && "non-structs should use markConstant"); return mergeInValue(ValueState[V], V, MergeWithV, Opts); } /// getValueState - Return the ValueLatticeElement object that corresponds to /// the value. This function handles the case when the value hasn't been seen /// yet by properly seeding constants etc. ValueLatticeElement &getValueState(Value *V) { assert(!V->getType()->isStructTy() && "Should use getStructValueState"); auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement())); ValueLatticeElement &LV = I.first->second; if (!I.second) return LV; // Common case, already in the map. if (auto *C = dyn_cast(V)) LV.markConstant(C); // Constants are constant // All others are unknown by default. return LV; } /// getStructValueState - Return the ValueLatticeElement object that /// corresponds to the value/field pair. This function handles the case when /// the value hasn't been seen yet by properly seeding constants etc. ValueLatticeElement &getStructValueState(Value *V, unsigned i) { assert(V->getType()->isStructTy() && "Should use getValueState"); assert(i < cast(V->getType())->getNumElements() && "Invalid element #"); auto I = StructValueState.insert( std::make_pair(std::make_pair(V, i), ValueLatticeElement())); ValueLatticeElement &LV = I.first->second; if (!I.second) return LV; // Common case, already in the map. if (auto *C = dyn_cast(V)) { Constant *Elt = C->getAggregateElement(i); if (!Elt) LV.markOverdefined(); // Unknown sort of constant. else if (isa(Elt)) ; // Undef values remain unknown. else LV.markConstant(Elt); // Constants are constant. } // All others are underdefined by default. return LV; } /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB /// work list if it is not already executable. bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) return false; // This edge is already known to be executable! if (!MarkBlockExecutable(Dest)) { // If the destination is already executable, we just made an *edge* // feasible that wasn't before. Revisit the PHI nodes in the block // because they have potentially new operands. LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() << " -> " << Dest->getName() << '\n'); for (PHINode &PN : Dest->phis()) visitPHINode(PN); } return true; } // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl &Succs); // OperandChangedState - This method is invoked on all of the users of an // instruction that was just changed state somehow. Based on this // information, we need to update the specified user of this instruction. void OperandChangedState(Instruction *I) { if (BBExecutable.count(I->getParent())) // Inst is executable? visit(*I); } // Add U as additional user of V. void addAdditionalUser(Value *V, User *U) { auto Iter = AdditionalUsers.insert({V, {}}); Iter.first->second.insert(U); } // Mark I's users as changed, including AdditionalUsers. void markUsersAsChanged(Value *I) { // Functions include their arguments in the use-list. Changed function // values mean that the result of the function changed. We only need to // update the call sites with the new function result and do not have to // propagate the call arguments. if (isa(I)) { for (User *U : I->users()) { if (auto *CB = dyn_cast(U)) handleCallResult(*CB); } } else { for (User *U : I->users()) if (auto *UI = dyn_cast(U)) OperandChangedState(UI); } auto Iter = AdditionalUsers.find(I); if (Iter != AdditionalUsers.end()) { for (User *U : Iter->second) if (auto *UI = dyn_cast(U)) OperandChangedState(UI); } } void handleCallOverdefined(CallBase &CB); void handleCallResult(CallBase &CB); void handleCallArguments(CallBase &CB); private: friend class InstVisitor; // visit implementations - Something changed in this instruction. Either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. void visitPHINode(PHINode &I); // Terminators void visitReturnInst(ReturnInst &I); void visitTerminator(Instruction &TI); void visitCastInst(CastInst &I); void visitSelectInst(SelectInst &I); void visitUnaryOperator(Instruction &I); void visitBinaryOperator(Instruction &I); void visitCmpInst(CmpInst &I); void visitExtractValueInst(ExtractValueInst &EVI); void visitInsertValueInst(InsertValueInst &IVI); void visitCatchSwitchInst(CatchSwitchInst &CPI) { markOverdefined(&CPI); visitTerminator(CPI); } // Instructions that cannot be folded away. void visitStoreInst (StoreInst &I); void visitLoadInst (LoadInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitCallInst (CallInst &I) { visitCallBase(I); } void visitInvokeInst (InvokeInst &II) { visitCallBase(II); visitTerminator(II); } void visitCallBrInst (CallBrInst &CBI) { visitCallBase(CBI); visitTerminator(CBI); } void visitCallBase (CallBase &CB); void visitResumeInst (ResumeInst &I) { /*returns void*/ } void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ } void visitFenceInst (FenceInst &I) { /*returns void*/ } void visitInstruction(Instruction &I) { // All the instructions we don't do any special handling for just // go to overdefined. LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); markOverdefined(&I); } }; } // end anonymous namespace // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. void SCCPSolver::getFeasibleSuccessors(Instruction &TI, SmallVectorImpl &Succs) { Succs.resize(TI.getNumSuccessors()); if (auto *BI = dyn_cast(&TI)) { if (BI->isUnconditional()) { Succs[0] = true; return; } ValueLatticeElement BCValue = getValueState(BI->getCondition()); ConstantInt *CI = getConstantInt(BCValue); if (!CI) { // Overdefined condition variables, and branches on unfoldable constant // conditions, mean the branch could go either way. if (!BCValue.isUnknownOrUndef()) Succs[0] = Succs[1] = true; return; } // Constant condition variables mean the branch can only go a single way. Succs[CI->isZero()] = true; return; } // Unwinding instructions successors are always executable. if (TI.isExceptionalTerminator()) { Succs.assign(TI.getNumSuccessors(), true); return; } if (auto *SI = dyn_cast(&TI)) { if (!SI->getNumCases()) { Succs[0] = true; return; } const ValueLatticeElement &SCValue = getValueState(SI->getCondition()); if (ConstantInt *CI = getConstantInt(SCValue)) { Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; return; } // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM // is ready. if (SCValue.isConstantRange(/*UndefAllowed=*/false)) { const ConstantRange &Range = SCValue.getConstantRange(); for (const auto &Case : SI->cases()) { const APInt &CaseValue = Case.getCaseValue()->getValue(); if (Range.contains(CaseValue)) Succs[Case.getSuccessorIndex()] = true; } // TODO: Determine whether default case is reachable. Succs[SI->case_default()->getSuccessorIndex()] = true; return; } // Overdefined or unknown condition? All destinations are executable! if (!SCValue.isUnknownOrUndef()) Succs.assign(TI.getNumSuccessors(), true); return; } // In case of indirect branch and its address is a blockaddress, we mark // the target as executable. if (auto *IBR = dyn_cast(&TI)) { // Casts are folded by visitCastInst. ValueLatticeElement IBRValue = getValueState(IBR->getAddress()); BlockAddress *Addr = dyn_cast_or_null(getConstant(IBRValue)); if (!Addr) { // Overdefined or unknown condition? // All destinations are executable! if (!IBRValue.isUnknownOrUndef()) Succs.assign(TI.getNumSuccessors(), true); return; } BasicBlock* T = Addr->getBasicBlock(); assert(Addr->getFunction() == T->getParent() && "Block address of a different function ?"); for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { // This is the target. if (IBR->getDestination(i) == T) { Succs[i] = true; return; } } // If we didn't find our destination in the IBR successor list, then we // have undefined behavior. Its ok to assume no successor is executable. return; } // In case of callbr, we pessimistically assume that all successors are // feasible. if (isa(&TI)) { Succs.assign(TI.getNumSuccessors(), true); return; } LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); llvm_unreachable("SCCP: Don't know how to handle this terminator!"); } // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible. bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const { // Check if we've called markEdgeExecutable on the edge yet. (We could // be more aggressive and try to consider edges which haven't been marked // yet, but there isn't any need.) return KnownFeasibleEdges.count(Edge(From, To)); } // visit Implementations - Something changed in this instruction, either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. This method // makes sure to do the following actions: // // 1. If a phi node merges two constants in, and has conflicting value coming // from different branches, or if the PHI node merges in an overdefined // value, then the PHI node becomes overdefined. // 2. If a phi node merges only constants in, and they all agree on value, the // PHI node becomes a constant value equal to that. // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined // 6. If a conditional branch has a value that is constant, make the selected // destination executable // 7. If a conditional branch has a value that is overdefined, make all // successors executable. void SCCPSolver::visitPHINode(PHINode &PN) { // If this PN returns a struct, just mark the result overdefined. // TODO: We could do a lot better than this if code actually uses this. if (PN.getType()->isStructTy()) return (void)markOverdefined(&PN); if (getValueState(&PN).isOverdefined()) return; // Quick exit // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, // and slow us down a lot. Just mark them overdefined. if (PN.getNumIncomingValues() > 64) return (void)markOverdefined(&PN); unsigned NumActiveIncoming = 0; // Look at all of the executable operands of the PHI node. If any of them // are overdefined, the PHI becomes overdefined as well. If they are all // constant, and they agree with each other, the PHI becomes the identical // constant. If they are constant and don't agree, the PHI is a constant // range. If there are no executable operands, the PHI remains unknown. ValueLatticeElement PhiState = getValueState(&PN); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) continue; ValueLatticeElement IV = getValueState(PN.getIncomingValue(i)); PhiState.mergeIn(IV); NumActiveIncoming++; if (PhiState.isOverdefined()) break; } // We allow up to 1 range extension per active incoming value and one // additional extension. Note that we manually adjust the number of range // extensions to match the number of active incoming values. This helps to // limit multiple extensions caused by the same incoming value, if other // incoming values are equal. mergeInValue(&PN, PhiState, ValueLatticeElement::MergeOptions().setMaxWidenSteps( NumActiveIncoming + 1)); ValueLatticeElement &PhiStateRef = getValueState(&PN); PhiStateRef.setNumRangeExtensions( std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions())); } void SCCPSolver::visitReturnInst(ReturnInst &I) { if (I.getNumOperands() == 0) return; // ret void Function *F = I.getParent()->getParent(); Value *ResultOp = I.getOperand(0); // If we are tracking the return value of this function, merge it in. if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { auto TFRVI = TrackedRetVals.find(F); if (TFRVI != TrackedRetVals.end()) { mergeInValue(TFRVI->second, F, getValueState(ResultOp)); return; } } // Handle functions that return multiple values. if (!TrackedMultipleRetVals.empty()) { if (auto *STy = dyn_cast(ResultOp->getType())) if (MRVFunctionsTracked.count(F)) for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, getStructValueState(ResultOp, i)); } } void SCCPSolver::visitTerminator(Instruction &TI) { SmallVector SuccFeasible; getFeasibleSuccessors(TI, SuccFeasible); BasicBlock *BB = TI.getParent(); // Mark all feasible successors executable. for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) if (SuccFeasible[i]) markEdgeExecutable(BB, TI.getSuccessor(i)); } void SCCPSolver::visitCastInst(CastInst &I) { // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (ValueState[&I].isOverdefined()) return; ValueLatticeElement OpSt = getValueState(I.getOperand(0)); if (Constant *OpC = getConstant(OpSt)) { // Fold the constant as we build. Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL); if (isa(C)) return; // Propagate constant value markConstant(&I, C); } else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) { auto &LV = getValueState(&I); ConstantRange OpRange = OpSt.getConstantRange(); Type *DestTy = I.getDestTy(); // Vectors where all elements have the same known constant range are treated // as a single constant range in the lattice. When bitcasting such vectors, // there is a mis-match between the width of the lattice value (single // constant range) and the original operands (vector). Go to overdefined in // that case. if (I.getOpcode() == Instruction::BitCast && I.getOperand(0)->getType()->isVectorTy() && OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy)) return (void)markOverdefined(&I); ConstantRange Res = OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy)); mergeInValue(LV, &I, ValueLatticeElement::getRange(Res)); } else if (!OpSt.isUnknownOrUndef()) markOverdefined(&I); } void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { // If this returns a struct, mark all elements over defined, we don't track // structs in structs. if (EVI.getType()->isStructTy()) return (void)markOverdefined(&EVI); // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (ValueState[&EVI].isOverdefined()) return (void)markOverdefined(&EVI); // If this is extracting from more than one level of struct, we don't know. if (EVI.getNumIndices() != 1) return (void)markOverdefined(&EVI); Value *AggVal = EVI.getAggregateOperand(); if (AggVal->getType()->isStructTy()) { unsigned i = *EVI.idx_begin(); ValueLatticeElement EltVal = getStructValueState(AggVal, i); mergeInValue(getValueState(&EVI), &EVI, EltVal); } else { // Otherwise, must be extracting from an array. return (void)markOverdefined(&EVI); } } void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { auto *STy = dyn_cast(IVI.getType()); if (!STy) return (void)markOverdefined(&IVI); // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (isOverdefined(ValueState[&IVI])) return (void)markOverdefined(&IVI); // If this has more than one index, we can't handle it, drive all results to // undef. if (IVI.getNumIndices() != 1) return (void)markOverdefined(&IVI); Value *Aggr = IVI.getAggregateOperand(); unsigned Idx = *IVI.idx_begin(); // Compute the result based on what we're inserting. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { // This passes through all values that aren't the inserted element. if (i != Idx) { ValueLatticeElement EltVal = getStructValueState(Aggr, i); mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); continue; } Value *Val = IVI.getInsertedValueOperand(); if (Val->getType()->isStructTy()) // We don't track structs in structs. markOverdefined(getStructValueState(&IVI, i), &IVI); else { ValueLatticeElement InVal = getValueState(Val); mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); } } } void SCCPSolver::visitSelectInst(SelectInst &I) { // If this select returns a struct, just mark the result overdefined. // TODO: We could do a lot better than this if code actually uses this. if (I.getType()->isStructTy()) return (void)markOverdefined(&I); // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (ValueState[&I].isOverdefined()) return (void)markOverdefined(&I); ValueLatticeElement CondValue = getValueState(I.getCondition()); if (CondValue.isUnknownOrUndef()) return; if (ConstantInt *CondCB = getConstantInt(CondValue)) { Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); mergeInValue(&I, getValueState(OpVal)); return; } // Otherwise, the condition is overdefined or a constant we can't evaluate. // See if we can produce something better than overdefined based on the T/F // value. ValueLatticeElement TVal = getValueState(I.getTrueValue()); ValueLatticeElement FVal = getValueState(I.getFalseValue()); bool Changed = ValueState[&I].mergeIn(TVal); Changed |= ValueState[&I].mergeIn(FVal); if (Changed) pushToWorkListMsg(ValueState[&I], &I); } // Handle Unary Operators. void SCCPSolver::visitUnaryOperator(Instruction &I) { ValueLatticeElement V0State = getValueState(I.getOperand(0)); ValueLatticeElement &IV = ValueState[&I]; // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (isOverdefined(IV)) return (void)markOverdefined(&I); if (isConstant(V0State)) { Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State)); // op Y -> undef. if (isa(C)) return; return (void)markConstant(IV, &I, C); } // If something is undef, wait for it to resolve. if (!isOverdefined(V0State)) return; markOverdefined(&I); } // Handle Binary Operators. void SCCPSolver::visitBinaryOperator(Instruction &I) { ValueLatticeElement V1State = getValueState(I.getOperand(0)); ValueLatticeElement V2State = getValueState(I.getOperand(1)); ValueLatticeElement &IV = ValueState[&I]; if (IV.isOverdefined()) return; // If something is undef, wait for it to resolve. if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) return; if (V1State.isOverdefined() && V2State.isOverdefined()) return (void)markOverdefined(&I); // If either of the operands is a constant, try to fold it to a constant. // TODO: Use information from notconstant better. if ((V1State.isConstant() || V2State.isConstant())) { Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0); Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1); Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL)); auto *C = dyn_cast_or_null(R); if (C) { // X op Y -> undef. if (isa(C)) return; // Conservatively assume that the result may be based on operands that may // be undef. Note that we use mergeInValue to combine the constant with // the existing lattice value for I, as different constants might be found // after one of the operands go to overdefined, e.g. due to one operand // being a special floating value. ValueLatticeElement NewV; NewV.markConstant(C, /*MayIncludeUndef=*/true); return (void)mergeInValue(&I, NewV); } } // Only use ranges for binary operators on integers. if (!I.getType()->isIntegerTy()) return markOverdefined(&I); // Try to simplify to a constant range. ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits()); ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits()); if (V1State.isConstantRange()) A = V1State.getConstantRange(); if (V2State.isConstantRange()) B = V2State.getConstantRange(); ConstantRange R = A.binaryOp(cast(&I)->getOpcode(), B); mergeInValue(&I, ValueLatticeElement::getRange(R)); // TODO: Currently we do not exploit special values that produce something // better than overdefined with an overdefined operand for vector or floating // point types, like and <4 x i32> overdefined, zeroinitializer. } // Handle ICmpInst instruction. void SCCPSolver::visitCmpInst(CmpInst &I) { // Do not cache this lookup, getValueState calls later in the function might // invalidate the reference. if (isOverdefined(ValueState[&I])) return (void)markOverdefined(&I); Value *Op1 = I.getOperand(0); Value *Op2 = I.getOperand(1); // For parameters, use ParamState which includes constant range info if // available. auto V1State = getValueState(Op1); auto V2State = getValueState(Op2); Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State); if (C) { if (isa(C)) return; ValueLatticeElement CV; CV.markConstant(C); mergeInValue(&I, CV); return; } // If operands are still unknown, wait for it to resolve. if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) && !isConstant(ValueState[&I])) return; markOverdefined(&I); } // Handle getelementptr instructions. If all operands are constants then we // can turn this into a getelementptr ConstantExpr. void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { if (isOverdefined(ValueState[&I])) return (void)markOverdefined(&I); SmallVector Operands; Operands.reserve(I.getNumOperands()); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { ValueLatticeElement State = getValueState(I.getOperand(i)); if (State.isUnknownOrUndef()) return; // Operands are not resolved yet. if (isOverdefined(State)) return (void)markOverdefined(&I); if (Constant *C = getConstant(State)) { Operands.push_back(C); continue; } return (void)markOverdefined(&I); } Constant *Ptr = Operands[0]; auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); Constant *C = ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); if (isa(C)) return; markConstant(&I, C); } void SCCPSolver::visitStoreInst(StoreInst &SI) { // If this store is of a struct, ignore it. if (SI.getOperand(0)->getType()->isStructTy()) return; if (TrackedGlobals.empty() || !isa(SI.getOperand(1))) return; GlobalVariable *GV = cast(SI.getOperand(1)); auto I = TrackedGlobals.find(GV); if (I == TrackedGlobals.end()) return; // Get the value we are storing into the global, then merge it. mergeInValue(I->second, GV, getValueState(SI.getOperand(0)), ValueLatticeElement::MergeOptions().setCheckWiden(false)); if (I->second.isOverdefined()) TrackedGlobals.erase(I); // No need to keep tracking this! } static ValueLatticeElement getValueFromMetadata(const Instruction *I) { if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) if (I->getType()->isIntegerTy()) return ValueLatticeElement::getRange( getConstantRangeFromMetadata(*Ranges)); if (I->hasMetadata(LLVMContext::MD_nonnull)) return ValueLatticeElement::getNot( ConstantPointerNull::get(cast(I->getType()))); return ValueLatticeElement::getOverdefined(); } // Handle load instructions. If the operand is a constant pointer to a constant // global, we can replace the load with the loaded constant value! void SCCPSolver::visitLoadInst(LoadInst &I) { // If this load is of a struct or the load is volatile, just mark the result // as overdefined. if (I.getType()->isStructTy() || I.isVolatile()) return (void)markOverdefined(&I); // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would // discover a concrete value later. if (ValueState[&I].isOverdefined()) return (void)markOverdefined(&I); ValueLatticeElement PtrVal = getValueState(I.getOperand(0)); if (PtrVal.isUnknownOrUndef()) return; // The pointer is not resolved yet! ValueLatticeElement &IV = ValueState[&I]; if (isConstant(PtrVal)) { Constant *Ptr = getConstant(PtrVal); // load null is undefined. if (isa(Ptr)) { if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) return (void)markOverdefined(IV, &I); else return; } // Transform load (constant global) into the value loaded. if (auto *GV = dyn_cast(Ptr)) { if (!TrackedGlobals.empty()) { // If we are tracking this global, merge in the known value for it. auto It = TrackedGlobals.find(GV); if (It != TrackedGlobals.end()) { mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts()); return; } } } // Transform load from a constant into a constant if possible. if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { if (isa(C)) return; return (void)markConstant(IV, &I, C); } } // Fall back to metadata. mergeInValue(&I, getValueFromMetadata(&I)); } void SCCPSolver::visitCallBase(CallBase &CB) { handleCallResult(CB); handleCallArguments(CB); } void SCCPSolver::handleCallOverdefined(CallBase &CB) { Function *F = CB.getCalledFunction(); // Void return and not tracking callee, just bail. if (CB.getType()->isVoidTy()) return; // Always mark struct return as overdefined. if (CB.getType()->isStructTy()) return (void)markOverdefined(&CB); // Otherwise, if we have a single return value case, and if the function is // a declaration, maybe we can constant fold it. if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) { SmallVector Operands; for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) { if (AI->get()->getType()->isStructTy()) return markOverdefined(&CB); // Can't handle struct args. ValueLatticeElement State = getValueState(*AI); if (State.isUnknownOrUndef()) return; // Operands are not resolved yet. if (isOverdefined(State)) return (void)markOverdefined(&CB); assert(isConstant(State) && "Unknown state!"); Operands.push_back(getConstant(State)); } if (isOverdefined(getValueState(&CB))) return (void)markOverdefined(&CB); // If we can constant fold this, mark the result of the call as a // constant. if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) { // call -> undef. if (isa(C)) return; return (void)markConstant(&CB, C); } } // Fall back to metadata. mergeInValue(&CB, getValueFromMetadata(&CB)); } void SCCPSolver::handleCallArguments(CallBase &CB) { Function *F = CB.getCalledFunction(); // If this is a local function that doesn't have its address taken, mark its // entry block executable and merge in the actual arguments to the call into // the formal arguments of the function. if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)) { MarkBlockExecutable(&F->front()); // Propagate information from this call site into the callee. auto CAI = CB.arg_begin(); for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++CAI) { // If this argument is byval, and if the function is not readonly, there // will be an implicit copy formed of the input aggregate. if (AI->hasByValAttr() && !F->onlyReadsMemory()) { markOverdefined(&*AI); continue; } if (auto *STy = dyn_cast(AI->getType())) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { ValueLatticeElement CallArg = getStructValueState(*CAI, i); mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg, getMaxWidenStepsOpts()); } } else mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts()); } } } void SCCPSolver::handleCallResult(CallBase &CB) { Function *F = CB.getCalledFunction(); if (auto *II = dyn_cast(&CB)) { if (II->getIntrinsicID() == Intrinsic::ssa_copy) { if (ValueState[&CB].isOverdefined()) return; Value *CopyOf = CB.getOperand(0); ValueLatticeElement CopyOfVal = getValueState(CopyOf); auto *PI = getPredicateInfoFor(&CB); assert(PI && "Missing predicate info for ssa.copy"); const Optional &Constraint = PI->getConstraint(); if (!Constraint) { mergeInValue(ValueState[&CB], &CB, CopyOfVal); return; } CmpInst::Predicate Pred = Constraint->Predicate; Value *OtherOp = Constraint->OtherOp; // Wait until OtherOp is resolved. if (getValueState(OtherOp).isUnknown()) { addAdditionalUser(OtherOp, &CB); return; } // TODO: Actually filp MayIncludeUndef for the created range to false, // once most places in the optimizer respect the branches on // undef/poison are UB rule. The reason why the new range cannot be // undef is as follows below: // The new range is based on a branch condition. That guarantees that // neither of the compare operands can be undef in the branch targets, // unless we have conditions that are always true/false (e.g. icmp ule // i32, %a, i32_max). For the latter overdefined/empty range will be // inferred, but the branch will get folded accordingly anyways. bool MayIncludeUndef = !isa(PI); ValueLatticeElement CondVal = getValueState(OtherOp); ValueLatticeElement &IV = ValueState[&CB]; if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) { auto ImposedCR = ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType())); // Get the range imposed by the condition. if (CondVal.isConstantRange()) ImposedCR = ConstantRange::makeAllowedICmpRegion( Pred, CondVal.getConstantRange()); // Combine range info for the original value with the new range from the // condition. auto CopyOfCR = CopyOfVal.isConstantRange() ? CopyOfVal.getConstantRange() : ConstantRange::getFull( DL.getTypeSizeInBits(CopyOf->getType())); auto NewCR = ImposedCR.intersectWith(CopyOfCR); // If the existing information is != x, do not use the information from // a chained predicate, as the != x information is more likely to be // helpful in practice. if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement()) NewCR = CopyOfCR; addAdditionalUser(OtherOp, &CB); mergeInValue( IV, &CB, ValueLatticeElement::getRange(NewCR, MayIncludeUndef)); return; } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) { // For non-integer values or integer constant expressions, only // propagate equal constants. addAdditionalUser(OtherOp, &CB); mergeInValue(IV, &CB, CondVal); return; } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() && !MayIncludeUndef) { // Propagate inequalities. addAdditionalUser(OtherOp, &CB); mergeInValue(IV, &CB, ValueLatticeElement::getNot(CondVal.getConstant())); return; } return (void)mergeInValue(IV, &CB, CopyOfVal); } if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { // Compute result range for intrinsics supported by ConstantRange. // Do this even if we don't know a range for all operands, as we may // still know something about the result range, e.g. of abs(x). SmallVector OpRanges; for (Value *Op : II->args()) { const ValueLatticeElement &State = getValueState(Op); if (State.isConstantRange()) OpRanges.push_back(State.getConstantRange()); else OpRanges.push_back( ConstantRange::getFull(Op->getType()->getScalarSizeInBits())); } ConstantRange Result = ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges); return (void)mergeInValue(II, ValueLatticeElement::getRange(Result)); } } // The common case is that we aren't tracking the callee, either because we // are not doing interprocedural analysis or the callee is indirect, or is // external. Handle these cases first. if (!F || F->isDeclaration()) return handleCallOverdefined(CB); // If this is a single/zero retval case, see if we're tracking the function. if (auto *STy = dyn_cast(F->getReturnType())) { if (!MRVFunctionsTracked.count(F)) return handleCallOverdefined(CB); // Not tracking this callee. // If we are tracking this callee, propagate the result of the function // into this call site. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) mergeInValue(getStructValueState(&CB, i), &CB, TrackedMultipleRetVals[std::make_pair(F, i)], getMaxWidenStepsOpts()); } else { auto TFRVI = TrackedRetVals.find(F); if (TFRVI == TrackedRetVals.end()) return handleCallOverdefined(CB); // Not tracking this callee. // If so, propagate the return value of the callee into this call result. mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts()); } } void SCCPSolver::Solve() { // Process the work lists until they are empty! while (!BBWorkList.empty() || !InstWorkList.empty() || !OverdefinedInstWorkList.empty()) { // Process the overdefined instruction's work list first, which drives other // things to overdefined more quickly. while (!OverdefinedInstWorkList.empty()) { Value *I = OverdefinedInstWorkList.pop_back_val(); LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); // "I" got into the work list because it either made the transition from // bottom to constant, or to overdefined. // // Anything on this worklist that is overdefined need not be visited // since all of its users will have already been marked as overdefined // Update all of the users of this instruction's value. // markUsersAsChanged(I); } // Process the instruction work list. while (!InstWorkList.empty()) { Value *I = InstWorkList.pop_back_val(); LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); // "I" got into the work list because it made the transition from undef to // constant. // // Anything on this worklist that is overdefined need not be visited // since all of its users will have already been marked as overdefined. // Update all of the users of this instruction's value. // if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) markUsersAsChanged(I); } // Process the basic block work list. while (!BBWorkList.empty()) { BasicBlock *BB = BBWorkList.pop_back_val(); LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); // Notify all instructions in this basic block that they are newly // executable. visit(BB); } } } /// ResolvedUndefsIn - While solving the dataflow for a function, we assume /// that branches on undef values cannot reach any of their successors. /// However, this is not a safe assumption. After we solve dataflow, this /// method should be use to handle this. If this returns true, the solver /// should be rerun. /// /// This method handles this by finding an unresolved branch and marking it one /// of the edges from the block as being feasible, even though the condition /// doesn't say it would otherwise be. This allows SCCP to find the rest of the /// CFG and only slightly pessimizes the analysis results (by marking one, /// potentially infeasible, edge feasible). This cannot usefully modify the /// constraints on the condition of the branch, as that would impact other users /// of the value. /// /// This scan also checks for values that use undefs. It conservatively marks /// them as overdefined. bool SCCPSolver::ResolvedUndefsIn(Function &F) { bool MadeChange = false; for (BasicBlock &BB : F) { if (!BBExecutable.count(&BB)) continue; for (Instruction &I : BB) { // Look for instructions which produce undef values. if (I.getType()->isVoidTy()) continue; if (auto *STy = dyn_cast(I.getType())) { // Only a few things that can be structs matter for undef. // Tracked calls must never be marked overdefined in ResolvedUndefsIn. if (auto *CB = dyn_cast(&I)) if (Function *F = CB->getCalledFunction()) if (MRVFunctionsTracked.count(F)) continue; // extractvalue and insertvalue don't need to be marked; they are // tracked as precisely as their operands. if (isa(I) || isa(I)) continue; // Send the results of everything else to overdefined. We could be // more precise than this but it isn't worth bothering. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { ValueLatticeElement &LV = getStructValueState(&I, i); if (LV.isUnknownOrUndef()) { markOverdefined(LV, &I); MadeChange = true; } } continue; } ValueLatticeElement &LV = getValueState(&I); if (!LV.isUnknownOrUndef()) continue; // There are two reasons a call can have an undef result // 1. It could be tracked. // 2. It could be constant-foldable. // Because of the way we solve return values, tracked calls must // never be marked overdefined in ResolvedUndefsIn. if (auto *CB = dyn_cast(&I)) if (Function *F = CB->getCalledFunction()) if (TrackedRetVals.count(F)) continue; if (isa(I)) { // A load here means one of two things: a load of undef from a global, // a load from an unknown pointer. Either way, having it return undef // is okay. continue; } markOverdefined(&I); MadeChange = true; } // Check to see if we have a branch or switch on an undefined value. If so // we force the branch to go one way or the other to make the successor // values live. It doesn't really matter which way we force it. Instruction *TI = BB.getTerminator(); if (auto *BI = dyn_cast(TI)) { if (!BI->isConditional()) continue; if (!getValueState(BI->getCondition()).isUnknownOrUndef()) continue; // If the input to SCCP is actually branch on undef, fix the undef to // false. if (isa(BI->getCondition())) { BI->setCondition(ConstantInt::getFalse(BI->getContext())); markEdgeExecutable(&BB, TI->getSuccessor(1)); MadeChange = true; continue; } // Otherwise, it is a branch on a symbolic value which is currently // considered to be undef. Make sure some edge is executable, so a // branch on "undef" always flows somewhere. // FIXME: Distinguish between dead code and an LLVM "undef" value. BasicBlock *DefaultSuccessor = TI->getSuccessor(1); if (markEdgeExecutable(&BB, DefaultSuccessor)) MadeChange = true; continue; } if (auto *IBR = dyn_cast(TI)) { // Indirect branch with no successor ?. Its ok to assume it branches // to no target. if (IBR->getNumSuccessors() < 1) continue; if (!getValueState(IBR->getAddress()).isUnknownOrUndef()) continue; // If the input to SCCP is actually branch on undef, fix the undef to // the first successor of the indirect branch. if (isa(IBR->getAddress())) { IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0))); markEdgeExecutable(&BB, IBR->getSuccessor(0)); MadeChange = true; continue; } // Otherwise, it is a branch on a symbolic value which is currently // considered to be undef. Make sure some edge is executable, so a // branch on "undef" always flows somewhere. // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere: // we can assume the branch has undefined behavior instead. BasicBlock *DefaultSuccessor = IBR->getSuccessor(0); if (markEdgeExecutable(&BB, DefaultSuccessor)) MadeChange = true; continue; } if (auto *SI = dyn_cast(TI)) { if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknownOrUndef()) continue; // If the input to SCCP is actually switch on undef, fix the undef to // the first constant. if (isa(SI->getCondition())) { SI->setCondition(SI->case_begin()->getCaseValue()); markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor()); MadeChange = true; continue; } // Otherwise, it is a branch on a symbolic value which is currently // considered to be undef. Make sure some edge is executable, so a // branch on "undef" always flows somewhere. // FIXME: Distinguish between dead code and an LLVM "undef" value. BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor(); if (markEdgeExecutable(&BB, DefaultSuccessor)) MadeChange = true; continue; } } return MadeChange; } static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) { Constant *Const = nullptr; if (V->getType()->isStructTy()) { std::vector IVs = Solver.getStructLatticeValueFor(V); if (any_of(IVs, [](const ValueLatticeElement &LV) { return isOverdefined(LV); })) return false; std::vector ConstVals; auto *ST = cast(V->getType()); for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { ValueLatticeElement V = IVs[i]; ConstVals.push_back(isConstant(V) ? Solver.getConstant(V) : UndefValue::get(ST->getElementType(i))); } Const = ConstantStruct::get(ST, ConstVals); } else { const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); if (isOverdefined(IV)) return false; Const = isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType()); } assert(Const && "Constant is nullptr here!"); // Replacing `musttail` instructions with constant breaks `musttail` invariant // unless the call itself can be removed CallInst *CI = dyn_cast(V); if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) { Function *F = CI->getCalledFunction(); // Don't zap returns of the callee if (F) Solver.AddMustTailCallee(F); LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI << " as a constant\n"); return false; } LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); // Replaces all of the uses of a variable with uses of the constant. V->replaceAllUsesWith(Const); return true; } static bool simplifyInstsInBlock(SCCPSolver &Solver, BasicBlock &BB, SmallPtrSetImpl &InsertedValues, Statistic &InstRemovedStat, Statistic &InstReplacedStat) { bool MadeChanges = false; for (Instruction &Inst : make_early_inc_range(BB)) { if (Inst.getType()->isVoidTy()) continue; if (tryToReplaceWithConstant(Solver, &Inst)) { if (Inst.isSafeToRemove()) Inst.eraseFromParent(); // Hey, we just changed something! MadeChanges = true; ++InstRemovedStat; } else if (isa(&Inst)) { Value *ExtOp = Inst.getOperand(0); if (isa(ExtOp) || InsertedValues.count(ExtOp)) continue; const ValueLatticeElement &IV = Solver.getLatticeValueFor(ExtOp); if (!IV.isConstantRange(/*UndefAllowed=*/false)) continue; if (IV.getConstantRange().isAllNonNegative()) { auto *ZExt = new ZExtInst(ExtOp, Inst.getType(), "", &Inst); InsertedValues.insert(ZExt); Inst.replaceAllUsesWith(ZExt); Solver.removeLatticeValueFor(&Inst); Inst.eraseFromParent(); InstReplacedStat++; MadeChanges = true; } } } return MadeChanges; } // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm, // and return true if the function was modified. static bool runSCCP(Function &F, const DataLayout &DL, const TargetLibraryInfo *TLI) { LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); SCCPSolver Solver( DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; }, F.getContext()); // Mark the first block of the function as being executable. Solver.MarkBlockExecutable(&F.front()); // Mark all arguments to the function as being overdefined. for (Argument &AI : F.args()) Solver.markOverdefined(&AI); // Solve for constants. bool ResolvedUndefs = true; while (ResolvedUndefs) { Solver.Solve(); LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n"); ResolvedUndefs = Solver.ResolvedUndefsIn(F); } bool MadeChanges = false; // If we decided that there are basic blocks that are dead in this function, // delete their contents now. Note that we cannot actually delete the blocks, // as we cannot modify the CFG of the function. SmallPtrSet InsertedValues; for (BasicBlock &BB : F) { if (!Solver.isBlockExecutable(&BB)) { LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB); ++NumDeadBlocks; NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB).first; MadeChanges = true; continue; } MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues, NumInstRemoved, NumInstReplaced); } return MadeChanges; } PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) { const DataLayout &DL = F.getParent()->getDataLayout(); auto &TLI = AM.getResult(F); if (!runSCCP(F, DL, &TLI)) return PreservedAnalyses::all(); auto PA = PreservedAnalyses(); PA.preserve(); PA.preserveSet(); return PA; } namespace { //===--------------------------------------------------------------------===// // /// SCCP Class - This class uses the SCCPSolver to implement a per-function /// Sparse Conditional Constant Propagator. /// class SCCPLegacyPass : public FunctionPass { public: // Pass identification, replacement for typeid static char ID; SCCPLegacyPass() : FunctionPass(ID) { initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); AU.setPreservesCFG(); } // runOnFunction - Run the Sparse Conditional Constant Propagation // algorithm, and return true if the function was modified. bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; const DataLayout &DL = F.getParent()->getDataLayout(); const TargetLibraryInfo *TLI = &getAnalysis().getTLI(F); return runSCCP(F, DL, TLI); } }; } // end anonymous namespace char SCCPLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp", "Sparse Conditional Constant Propagation", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(SCCPLegacyPass, "sccp", "Sparse Conditional Constant Propagation", false, false) // createSCCPPass - This is the public interface to this file. FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); } static void findReturnsToZap(Function &F, SmallVector &ReturnsToZap, SCCPSolver &Solver) { // We can only do this if we know that nothing else can call the function. if (!Solver.isArgumentTrackedFunction(&F)) return; // There is a non-removable musttail call site of this function. Zapping // returns is not allowed. if (Solver.isMustTailCallee(&F)) { LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail call of it\n"); return; } assert( all_of(F.users(), [&Solver](User *U) { if (isa(U) && !Solver.isBlockExecutable(cast(U)->getParent())) return true; // Non-callsite uses are not impacted by zapping. Also, constant // uses (like blockaddresses) could stuck around, without being // used in the underlying IR, meaning we do not have lattice // values for them. if (!isa(U)) return true; if (U->getType()->isStructTy()) { return all_of(Solver.getStructLatticeValueFor(U), [](const ValueLatticeElement &LV) { return !isOverdefined(LV); }); } return !isOverdefined(Solver.getLatticeValueFor(U)); }) && "We can only zap functions where all live users have a concrete value"); for (BasicBlock &BB : F) { if (CallInst *CI = BB.getTerminatingMustTailCall()) { LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present " << "musttail call : " << *CI << "\n"); (void)CI; return; } if (auto *RI = dyn_cast(BB.getTerminator())) if (!isa(RI->getOperand(0))) ReturnsToZap.push_back(RI); } } static bool removeNonFeasibleEdges(const SCCPSolver &Solver, BasicBlock *BB, DomTreeUpdater &DTU) { SmallPtrSet FeasibleSuccessors; bool HasNonFeasibleEdges = false; for (BasicBlock *Succ : successors(BB)) { if (Solver.isEdgeFeasible(BB, Succ)) FeasibleSuccessors.insert(Succ); else HasNonFeasibleEdges = true; } // All edges feasible, nothing to do. if (!HasNonFeasibleEdges) return false; // SCCP can only determine non-feasible edges for br, switch and indirectbr. Instruction *TI = BB->getTerminator(); assert((isa(TI) || isa(TI) || isa(TI)) && "Terminator must be a br, switch or indirectbr"); if (FeasibleSuccessors.size() == 1) { // Replace with an unconditional branch to the only feasible successor. BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin(); SmallVector Updates; bool HaveSeenOnlyFeasibleSuccessor = false; for (BasicBlock *Succ : successors(BB)) { if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) { // Don't remove the edge to the only feasible successor the first time // we see it. We still do need to remove any multi-edges to it though. HaveSeenOnlyFeasibleSuccessor = true; continue; } Succ->removePredecessor(BB); Updates.push_back({DominatorTree::Delete, BB, Succ}); } BranchInst::Create(OnlyFeasibleSuccessor, BB); TI->eraseFromParent(); DTU.applyUpdatesPermissive(Updates); } else if (FeasibleSuccessors.size() > 1) { SwitchInstProfUpdateWrapper SI(*cast(TI)); SmallVector Updates; for (auto CI = SI->case_begin(); CI != SI->case_end();) { if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) { ++CI; continue; } BasicBlock *Succ = CI->getCaseSuccessor(); Succ->removePredecessor(BB); Updates.push_back({DominatorTree::Delete, BB, Succ}); SI.removeCase(CI); // Don't increment CI, as we removed a case. } DTU.applyUpdatesPermissive(Updates); } else { llvm_unreachable("Must have at least one feasible successor"); } return true; } bool llvm::runIPSCCP( Module &M, const DataLayout &DL, std::function GetTLI, function_ref getAnalysis) { SCCPSolver Solver(DL, GetTLI, M.getContext()); // Loop over all functions, marking arguments to those with their addresses // taken or that are external as overdefined. for (Function &F : M) { if (F.isDeclaration()) continue; Solver.addAnalysis(F, getAnalysis(F)); // Determine if we can track the function's return values. If so, add the // function to the solver's set of return-tracked functions. if (canTrackReturnsInterprocedurally(&F)) Solver.AddTrackedFunction(&F); // Determine if we can track the function's arguments. If so, add the // function to the solver's set of argument-tracked functions. if (canTrackArgumentsInterprocedurally(&F)) { Solver.AddArgumentTrackedFunction(&F); continue; } // Assume the function is called. Solver.MarkBlockExecutable(&F.front()); // Assume nothing about the incoming arguments. for (Argument &AI : F.args()) Solver.markOverdefined(&AI); } // Determine if we can track any of the module's global variables. If so, add // the global variables we can track to the solver's set of tracked global // variables. for (GlobalVariable &G : M.globals()) { G.removeDeadConstantUsers(); if (canTrackGlobalVariableInterprocedurally(&G)) Solver.TrackValueOfGlobalVariable(&G); } // Solve for constants. bool ResolvedUndefs = true; Solver.Solve(); while (ResolvedUndefs) { LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n"); ResolvedUndefs = false; for (Function &F : M) { if (Solver.ResolvedUndefsIn(F)) ResolvedUndefs = true; } if (ResolvedUndefs) Solver.Solve(); } bool MadeChanges = false; // Iterate over all of the instructions in the module, replacing them with // constants if we have found them to be of constant values. for (Function &F : M) { if (F.isDeclaration()) continue; SmallVector BlocksToErase; if (Solver.isBlockExecutable(&F.front())) { bool ReplacedPointerArg = false; for (Argument &Arg : F.args()) { if (!Arg.use_empty() && tryToReplaceWithConstant(Solver, &Arg)) { ReplacedPointerArg |= Arg.getType()->isPointerTy(); ++IPNumArgsElimed; } } // If we replaced an argument, the argmemonly and // inaccessiblemem_or_argmemonly attributes do not hold any longer. Remove // them from both the function and callsites. if (ReplacedPointerArg) { AttrBuilder AttributesToRemove; AttributesToRemove.addAttribute(Attribute::ArgMemOnly); AttributesToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); F.removeAttributes(AttributeList::FunctionIndex, AttributesToRemove); for (User *U : F.users()) { auto *CB = dyn_cast(U); if (!CB || CB->getCalledFunction() != &F) continue; CB->removeAttributes(AttributeList::FunctionIndex, AttributesToRemove); } } } SmallPtrSet InsertedValues; for (BasicBlock &BB : F) { if (!Solver.isBlockExecutable(&BB)) { LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB); ++NumDeadBlocks; MadeChanges = true; if (&BB != &F.front()) BlocksToErase.push_back(&BB); continue; } MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues, IPNumInstRemoved, IPNumInstReplaced); } DomTreeUpdater DTU = Solver.getDTU(F); // Change dead blocks to unreachable. We do it after replacing constants // in all executable blocks, because changeToUnreachable may remove PHI // nodes in executable blocks we found values for. The function's entry // block is not part of BlocksToErase, so we have to handle it separately. for (BasicBlock *BB : BlocksToErase) { NumInstRemoved += changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false, /*PreserveLCSSA=*/false, &DTU); } if (!Solver.isBlockExecutable(&F.front())) NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(), /*UseLLVMTrap=*/false, /*PreserveLCSSA=*/false, &DTU); for (BasicBlock &BB : F) MadeChanges |= removeNonFeasibleEdges(Solver, &BB, DTU); for (BasicBlock *DeadBB : BlocksToErase) DTU.deleteBB(DeadBB); for (BasicBlock &BB : F) { for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { Instruction *Inst = &*BI++; if (Solver.getPredicateInfoFor(Inst)) { if (auto *II = dyn_cast(Inst)) { if (II->getIntrinsicID() == Intrinsic::ssa_copy) { Value *Op = II->getOperand(0); Inst->replaceAllUsesWith(Op); Inst->eraseFromParent(); } } } } } } // If we inferred constant or undef return values for a function, we replaced // all call uses with the inferred value. This means we don't need to bother // actually returning anything from the function. Replace all return // instructions with return undef. // // Do this in two stages: first identify the functions we should process, then // actually zap their returns. This is important because we can only do this // if the address of the function isn't taken. In cases where a return is the // last use of a function, the order of processing functions would affect // whether other functions are optimizable. SmallVector ReturnsToZap; for (const auto &I : Solver.getTrackedRetVals()) { Function *F = I.first; const ValueLatticeElement &ReturnValue = I.second; // If there is a known constant range for the return value, add !range // metadata to the function's call sites. if (ReturnValue.isConstantRange() && !ReturnValue.getConstantRange().isSingleElement()) { // Do not add range metadata if the return value may include undef. if (ReturnValue.isConstantRangeIncludingUndef()) continue; auto &CR = ReturnValue.getConstantRange(); for (User *User : F->users()) { auto *CB = dyn_cast(User); if (!CB || CB->getCalledFunction() != F) continue; // Limit to cases where the return value is guaranteed to be neither // poison nor undef. Poison will be outside any range and currently // values outside of the specified range cause immediate undefined // behavior. if (!isGuaranteedNotToBeUndefOrPoison(CB, nullptr, CB)) continue; // Do not touch existing metadata for now. // TODO: We should be able to take the intersection of the existing // metadata and the inferred range. if (CB->getMetadata(LLVMContext::MD_range)) continue; LLVMContext &Context = CB->getParent()->getContext(); Metadata *RangeMD[] = { ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())), ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))}; CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD)); } continue; } if (F->getReturnType()->isVoidTy()) continue; if (isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef()) findReturnsToZap(*F, ReturnsToZap, Solver); } for (auto F : Solver.getMRVFunctionsTracked()) { assert(F->getReturnType()->isStructTy() && "The return type should be a struct"); StructType *STy = cast(F->getReturnType()); if (Solver.isStructLatticeConstant(F, STy)) findReturnsToZap(*F, ReturnsToZap, Solver); } // Zap all returns which we've identified as zap to change. SmallSetVector FuncZappedReturn; for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { Function *F = ReturnsToZap[i]->getParent()->getParent(); ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); // Record all functions that are zapped. FuncZappedReturn.insert(F); } // Remove the returned attribute for zapped functions and the // corresponding call sites. for (Function *F : FuncZappedReturn) { for (Argument &A : F->args()) F->removeParamAttr(A.getArgNo(), Attribute::Returned); for (Use &U : F->uses()) { // Skip over blockaddr users. if (isa(U.getUser())) continue; CallBase *CB = cast(U.getUser()); for (Use &Arg : CB->args()) CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned); } } // If we inferred constant or undef values for globals variables, we can // delete the global and any stores that remain to it. for (auto &I : make_early_inc_range(Solver.getTrackedGlobals())) { GlobalVariable *GV = I.first; if (isOverdefined(I.second)) continue; LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); while (!GV->use_empty()) { StoreInst *SI = cast(GV->user_back()); SI->eraseFromParent(); MadeChanges = true; } M.getGlobalList().erase(GV); ++IPNumGlobalConst; } return MadeChanges; }