//===- InferAddressSpace.cpp - --------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // CUDA C/C++ includes memory space designation as variable type qualifers (such // as __global__ and __shared__). Knowing the space of a memory access allows // CUDA compilers to emit faster PTX loads and stores. For example, a load from // shared memory can be translated to `ld.shared` which is roughly 10% faster // than a generic `ld` on an NVIDIA Tesla K40c. // // Unfortunately, type qualifiers only apply to variable declarations, so CUDA // compilers must infer the memory space of an address expression from // type-qualified variables. // // LLVM IR uses non-zero (so-called) specific address spaces to represent memory // spaces (e.g. addrspace(3) means shared memory). The Clang frontend // places only type-qualified variables in specific address spaces, and then // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) // (so-called the generic address space) for other instructions to use. // // For example, the Clang translates the following CUDA code // __shared__ float a[10]; // float v = a[i]; // to // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i // %v = load float, float* %1 ; emits ld.f32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is // redirected to %0 (the generic version of @a). // // The optimization implemented in this file propagates specific address spaces // from type-qualified variable declarations to its users. For example, it // optimizes the above IR to // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX // codegen is able to emit ld.shared.f32 for %v. // // Address space inference works in two steps. First, it uses a data-flow // analysis to infer as many generic pointers as possible to point to only one // specific address space. In the above example, it can prove that %1 only // points to addrspace(3). This algorithm was published in // CUDA: Compiling and optimizing for a GPU platform // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang // ICCS 2012 // // Then, address space inference replaces all refinable generic pointers with // equivalent specific pointers. // // The major challenge of implementing this optimization is handling PHINodes, // which may create loops in the data flow graph. This brings two complications. // // First, the data flow analysis in Step 1 needs to be circular. For example, // %generic.input = addrspacecast float addrspace(3)* %input to float* // loop: // %y = phi [ %generic.input, %y2 ] // %y2 = getelementptr %y, 1 // %v = load %y2 // br ..., label %loop, ... // proving %y specific requires proving both %generic.input and %y2 specific, // but proving %y2 specific circles back to %y. To address this complication, // the data flow analysis operates on a lattice: // uninitialized > specific address spaces > generic. // All address expressions (our implementation only considers phi, bitcast, // addrspacecast, and getelementptr) start with the uninitialized address space. // The monotone transfer function moves the address space of a pointer down a // lattice path from uninitialized to specific and then to generic. A join // operation of two different specific address spaces pushes the expression down // to the generic address space. The analysis completes once it reaches a fixed // point. // // Second, IR rewriting in Step 2 also needs to be circular. For example, // converting %y to addrspace(3) requires the compiler to know the converted // %y2, but converting %y2 needs the converted %y. To address this complication, // we break these cycles using "undef" placeholders. When converting an // instruction `I` to a new address space, if its operand `Op` is not converted // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. // For instance, our algorithm first converts %y to // %y' = phi float addrspace(3)* [ %input, undef ] // Then, it converts %y2 to // %y2' = getelementptr %y', 1 // Finally, it fixes the undef in %y' so that // %y' = phi float addrspace(3)* [ %input, %y2' ] // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/InferAddressSpaces.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include #include #include #define DEBUG_TYPE "infer-address-spaces" using namespace llvm; static cl::opt AssumeDefaultIsFlatAddressSpace( "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, cl::desc("The default address space is assumed as the flat address space. " "This is mainly for test purpose.")); static const unsigned UninitializedAddressSpace = std::numeric_limits::max(); namespace { using ValueToAddrSpaceMapTy = DenseMap; using PostorderStackTy = llvm::SmallVector, 4>; class InferAddressSpaces : public FunctionPass { unsigned FlatAddrSpace = 0; public: static char ID; InferAddressSpaces() : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {} InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); } bool runOnFunction(Function &F) override; }; class InferAddressSpacesImpl { const TargetTransformInfo *TTI = nullptr; const DataLayout *DL = nullptr; /// Target specific address space which uses of should be replaced if /// possible. unsigned FlatAddrSpace = 0; // Returns the new address space of V if updated; otherwise, returns None. Optional updateAddressSpace(const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const; // Tries to infer the specific address space of each address expression in // Postorder. void inferAddressSpaces(ArrayRef Postorder, ValueToAddrSpaceMapTy *InferredAddrSpace) const; bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; Value *cloneInstructionWithNewAddressSpace( Instruction *I, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, SmallVectorImpl *UndefUsesToFix) const; // Changes the flat address expressions in function F to point to specific // address spaces if InferredAddrSpace says so. Postorder is the postorder of // all flat expressions in the use-def graph of function F. bool rewriteWithNewAddressSpaces( const TargetTransformInfo &TTI, ArrayRef Postorder, const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const; void appendsFlatAddressExpressionToPostorderStack( Value *V, PostorderStackTy &PostorderStack, DenseSet &Visited) const; bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV, Value *NewV) const; void collectRewritableIntrinsicOperands(IntrinsicInst *II, PostorderStackTy &PostorderStack, DenseSet &Visited) const; std::vector collectFlatAddressExpressions(Function &F) const; Value *cloneValueWithNewAddressSpace( Value *V, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, SmallVectorImpl *UndefUsesToFix) const; unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; public: InferAddressSpacesImpl(const TargetTransformInfo *TTI, unsigned FlatAddrSpace) : TTI(TTI), FlatAddrSpace(FlatAddrSpace) {} bool run(Function &F); }; } // end anonymous namespace char InferAddressSpaces::ID = 0; namespace llvm { void initializeInferAddressSpacesPass(PassRegistry &); } // end namespace llvm INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", false, false) // Check whether that's no-op pointer bicast using a pair of // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over // different address spaces. static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, const TargetTransformInfo *TTI) { assert(I2P->getOpcode() == Instruction::IntToPtr); auto *P2I = dyn_cast(I2P->getOperand(0)); if (!P2I || P2I->getOpcode() != Instruction::PtrToInt) return false; // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a // no-op cast. Besides checking both of them are no-op casts, as the // reinterpreted pointer may be used in other pointer arithmetic, we also // need to double-check that through the target-specific hook. That ensures // the underlying target also agrees that's a no-op address space cast and // pointer bits are preserved. // The current IR spec doesn't have clear rules on address space casts, // especially a clear definition for pointer bits in non-default address // spaces. It would be undefined if that pointer is dereferenced after an // invalid reinterpret cast. Also, due to the unclearness for the meaning of // bits in non-default address spaces in the current spec, the pointer // arithmetic may also be undefined after invalid pointer reinterpret cast. // However, as we confirm through the target hooks that it's a no-op // addrspacecast, it doesn't matter since the bits should be the same. return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()), I2P->getOperand(0)->getType(), I2P->getType(), DL) && CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()), P2I->getOperand(0)->getType(), P2I->getType(), DL) && TTI->isNoopAddrSpaceCast( P2I->getOperand(0)->getType()->getPointerAddressSpace(), I2P->getType()->getPointerAddressSpace()); } // Returns true if V is an address expression. // TODO: Currently, we consider only phi, bitcast, addrspacecast, and // getelementptr operators. static bool isAddressExpression(const Value &V, const DataLayout &DL, const TargetTransformInfo *TTI) { const Operator *Op = dyn_cast(&V); if (!Op) return false; switch (Op->getOpcode()) { case Instruction::PHI: assert(Op->getType()->isPointerTy()); return true; case Instruction::BitCast: case Instruction::AddrSpaceCast: case Instruction::GetElementPtr: return true; case Instruction::Select: return Op->getType()->isPointerTy(); case Instruction::Call: { const IntrinsicInst *II = dyn_cast(&V); return II && II->getIntrinsicID() == Intrinsic::ptrmask; } case Instruction::IntToPtr: return isNoopPtrIntCastPair(Op, DL, TTI); default: // That value is an address expression if it has an assumed address space. return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace; } } // Returns the pointer operands of V. // // Precondition: V is an address expression. static SmallVector getPointerOperands(const Value &V, const DataLayout &DL, const TargetTransformInfo *TTI) { const Operator &Op = cast(V); switch (Op.getOpcode()) { case Instruction::PHI: { auto IncomingValues = cast(Op).incoming_values(); return SmallVector(IncomingValues.begin(), IncomingValues.end()); } case Instruction::BitCast: case Instruction::AddrSpaceCast: case Instruction::GetElementPtr: return {Op.getOperand(0)}; case Instruction::Select: return {Op.getOperand(1), Op.getOperand(2)}; case Instruction::Call: { const IntrinsicInst &II = cast(Op); assert(II.getIntrinsicID() == Intrinsic::ptrmask && "unexpected intrinsic call"); return {II.getArgOperand(0)}; } case Instruction::IntToPtr: { assert(isNoopPtrIntCastPair(&Op, DL, TTI)); auto *P2I = cast(Op.getOperand(0)); return {P2I->getOperand(0)}; } default: llvm_unreachable("Unexpected instruction type."); } } bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV, Value *NewV) const { Module *M = II->getParent()->getParent()->getParent(); switch (II->getIntrinsicID()) { case Intrinsic::objectsize: { Type *DestTy = II->getType(); Type *SrcTy = NewV->getType(); Function *NewDecl = Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); II->setArgOperand(0, NewV); II->setCalledFunction(NewDecl); return true; } case Intrinsic::ptrmask: // This is handled as an address expression, not as a use memory operation. return false; default: { Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); if (!Rewrite) return false; if (Rewrite != II) II->replaceAllUsesWith(Rewrite); return true; } } } void InferAddressSpacesImpl::collectRewritableIntrinsicOperands( IntrinsicInst *II, PostorderStackTy &PostorderStack, DenseSet &Visited) const { auto IID = II->getIntrinsicID(); switch (IID) { case Intrinsic::ptrmask: case Intrinsic::objectsize: appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), PostorderStack, Visited); break; default: SmallVector OpIndexes; if (TTI->collectFlatAddressOperands(OpIndexes, IID)) { for (int Idx : OpIndexes) { appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx), PostorderStack, Visited); } } break; } } // Returns all flat address expressions in function F. The elements are // If V is an unvisited flat address expression, appends V to PostorderStack // and marks it as visited. void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack( Value *V, PostorderStackTy &PostorderStack, DenseSet &Visited) const { assert(V->getType()->isPointerTy()); // Generic addressing expressions may be hidden in nested constant // expressions. if (ConstantExpr *CE = dyn_cast(V)) { // TODO: Look in non-address parts, like icmp operands. if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) PostorderStack.emplace_back(CE, false); return; } if (V->getType()->getPointerAddressSpace() == FlatAddrSpace && isAddressExpression(*V, *DL, TTI)) { if (Visited.insert(V).second) { PostorderStack.emplace_back(V, false); Operator *Op = cast(V); for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { if (ConstantExpr *CE = dyn_cast(Op->getOperand(I))) { if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) PostorderStack.emplace_back(CE, false); } } } } } // Returns all flat address expressions in function F. The elements are ordered // ordered in postorder. std::vector InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const { // This function implements a non-recursive postorder traversal of a partial // use-def graph of function F. PostorderStackTy PostorderStack; // The set of visited expressions. DenseSet Visited; auto PushPtrOperand = [&](Value *Ptr) { appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited); }; // Look at operations that may be interesting accelerate by moving to a known // address space. We aim at generating after loads and stores, but pure // addressing calculations may also be faster. for (Instruction &I : instructions(F)) { if (auto *GEP = dyn_cast(&I)) { if (!GEP->getType()->isVectorTy()) PushPtrOperand(GEP->getPointerOperand()); } else if (auto *LI = dyn_cast(&I)) PushPtrOperand(LI->getPointerOperand()); else if (auto *SI = dyn_cast(&I)) PushPtrOperand(SI->getPointerOperand()); else if (auto *RMW = dyn_cast(&I)) PushPtrOperand(RMW->getPointerOperand()); else if (auto *CmpX = dyn_cast(&I)) PushPtrOperand(CmpX->getPointerOperand()); else if (auto *MI = dyn_cast(&I)) { // For memset/memcpy/memmove, any pointer operand can be replaced. PushPtrOperand(MI->getRawDest()); // Handle 2nd operand for memcpy/memmove. if (auto *MTI = dyn_cast(MI)) PushPtrOperand(MTI->getRawSource()); } else if (auto *II = dyn_cast(&I)) collectRewritableIntrinsicOperands(II, PostorderStack, Visited); else if (ICmpInst *Cmp = dyn_cast(&I)) { // FIXME: Handle vectors of pointers if (Cmp->getOperand(0)->getType()->isPointerTy()) { PushPtrOperand(Cmp->getOperand(0)); PushPtrOperand(Cmp->getOperand(1)); } } else if (auto *ASC = dyn_cast(&I)) { if (!ASC->getType()->isVectorTy()) PushPtrOperand(ASC->getPointerOperand()); } else if (auto *I2P = dyn_cast(&I)) { if (isNoopPtrIntCastPair(cast(I2P), *DL, TTI)) PushPtrOperand( cast(I2P->getOperand(0))->getPointerOperand()); } } std::vector Postorder; // The resultant postorder. while (!PostorderStack.empty()) { Value *TopVal = PostorderStack.back().getPointer(); // If the operands of the expression on the top are already explored, // adds that expression to the resultant postorder. if (PostorderStack.back().getInt()) { if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) Postorder.push_back(TopVal); PostorderStack.pop_back(); continue; } // Otherwise, adds its operands to the stack and explores them. PostorderStack.back().setInt(true); // Skip values with an assumed address space. if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) { for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) { appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, Visited); } } } return Postorder; } // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone // of OperandUse.get() in the new address space. If the clone is not ready yet, // returns an undef in the new address space as a placeholder. static Value *operandWithNewAddressSpaceOrCreateUndef( const Use &OperandUse, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, SmallVectorImpl *UndefUsesToFix) { Value *Operand = OperandUse.get(); Type *NewPtrTy = Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); if (Constant *C = dyn_cast(Operand)) return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) return NewOperand; UndefUsesToFix->push_back(&OperandUse); return UndefValue::get(NewPtrTy); } // Returns a clone of `I` with its operands converted to those specified in // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an // operand whose address space needs to be modified might not exist in // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and // adds that operand use to UndefUsesToFix so that caller can fix them later. // // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast // from a pointer whose type already matches. Therefore, this function returns a // Value* instead of an Instruction*. // // This may also return nullptr in the case the instruction could not be // rewritten. Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace( Instruction *I, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, SmallVectorImpl *UndefUsesToFix) const { Type *NewPtrType = I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); if (I->getOpcode() == Instruction::AddrSpaceCast) { Value *Src = I->getOperand(0); // Because `I` is flat, the source address space must be specific. // Therefore, the inferred address space must be the source space, according // to our algorithm. assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); if (Src->getType() != NewPtrType) return new BitCastInst(Src, NewPtrType); return Src; } if (IntrinsicInst *II = dyn_cast(I)) { // Technically the intrinsic ID is a pointer typed argument, so specially // handle calls early. assert(II->getIntrinsicID() == Intrinsic::ptrmask); Value *NewPtr = operandWithNewAddressSpaceOrCreateUndef( II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr); if (Rewrite) { assert(Rewrite != II && "cannot modify this pointer operation in place"); return Rewrite; } return nullptr; } unsigned AS = TTI->getAssumedAddrSpace(I); if (AS != UninitializedAddressSpace) { // For the assumed address space, insert an `addrspacecast` to make that // explicit. auto *NewPtrTy = I->getType()->getPointerElementType()->getPointerTo(AS); auto *NewI = new AddrSpaceCastInst(I, NewPtrTy); NewI->insertAfter(I); return NewI; } // Computes the converted pointer operands. SmallVector NewPointerOperands; for (const Use &OperandUse : I->operands()) { if (!OperandUse.get()->getType()->isPointerTy()) NewPointerOperands.push_back(nullptr); else NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); } switch (I->getOpcode()) { case Instruction::BitCast: return new BitCastInst(NewPointerOperands[0], NewPtrType); case Instruction::PHI: { assert(I->getType()->isPointerTy()); PHINode *PHI = cast(I); PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); NewPHI->addIncoming(NewPointerOperands[OperandNo], PHI->getIncomingBlock(Index)); } return NewPHI; } case Instruction::GetElementPtr: { GetElementPtrInst *GEP = cast(I); GetElementPtrInst *NewGEP = GetElementPtrInst::Create( GEP->getSourceElementType(), NewPointerOperands[0], SmallVector(GEP->indices())); NewGEP->setIsInBounds(GEP->isInBounds()); return NewGEP; } case Instruction::Select: assert(I->getType()->isPointerTy()); return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], NewPointerOperands[2], "", nullptr, I); case Instruction::IntToPtr: { assert(isNoopPtrIntCastPair(cast(I), *DL, TTI)); Value *Src = cast(I->getOperand(0))->getOperand(0); assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); if (Src->getType() != NewPtrType) return new BitCastInst(Src, NewPtrType); return Src; } default: llvm_unreachable("Unexpected opcode"); } } // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the // constant expression `CE` with its operands replaced as specified in // ValueWithNewAddrSpace. static Value *cloneConstantExprWithNewAddressSpace( ConstantExpr *CE, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, const TargetTransformInfo *TTI) { Type *TargetType = CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); if (CE->getOpcode() == Instruction::AddrSpaceCast) { // Because CE is flat, the source address space must be specific. // Therefore, the inferred address space must be the source space according // to our algorithm. assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == NewAddrSpace); return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); } if (CE->getOpcode() == Instruction::BitCast) { if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) return ConstantExpr::getBitCast(cast(NewOperand), TargetType); return ConstantExpr::getAddrSpaceCast(CE, TargetType); } if (CE->getOpcode() == Instruction::Select) { Constant *Src0 = CE->getOperand(1); Constant *Src1 = CE->getOperand(2); if (Src0->getType()->getPointerAddressSpace() == Src1->getType()->getPointerAddressSpace()) { return ConstantExpr::getSelect( CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), ConstantExpr::getAddrSpaceCast(Src1, TargetType)); } } if (CE->getOpcode() == Instruction::IntToPtr) { assert(isNoopPtrIntCastPair(cast(CE), *DL, TTI)); Constant *Src = cast(CE->getOperand(0))->getOperand(0); assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); return ConstantExpr::getBitCast(Src, TargetType); } // Computes the operands of the new constant expression. bool IsNew = false; SmallVector NewOperands; for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { Constant *Operand = CE->getOperand(Index); // If the address space of `Operand` needs to be modified, the new operand // with the new address space should already be in ValueWithNewAddrSpace // because (1) the constant expressions we consider (i.e. addrspacecast, // bitcast, and getelementptr) do not incur cycles in the data flow graph // and (2) this function is called on constant expressions in postorder. if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { IsNew = true; NewOperands.push_back(cast(NewOperand)); continue; } if (auto CExpr = dyn_cast(Operand)) if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) { IsNew = true; NewOperands.push_back(cast(NewOperand)); continue; } // Otherwise, reuses the old operand. NewOperands.push_back(Operand); } // If !IsNew, we will replace the Value with itself. However, replaced values // are assumed to wrapped in a addrspace cast later so drop it now. if (!IsNew) return nullptr; if (CE->getOpcode() == Instruction::GetElementPtr) { // Needs to specify the source type while constructing a getelementptr // constant expression. return CE->getWithOperands( NewOperands, TargetType, /*OnlyIfReduced=*/false, NewOperands[0]->getType()->getPointerElementType()); } return CE->getWithOperands(NewOperands, TargetType); } // Returns a clone of the value `V`, with its operands replaced as specified in // ValueWithNewAddrSpace. This function is called on every flat address // expression whose address space needs to be modified, in postorder. // // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace( Value *V, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, SmallVectorImpl *UndefUsesToFix) const { // All values in Postorder are flat address expressions. assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace && isAddressExpression(*V, *DL, TTI)); if (Instruction *I = dyn_cast(V)) { Value *NewV = cloneInstructionWithNewAddressSpace( I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); if (Instruction *NewI = dyn_cast_or_null(NewV)) { if (NewI->getParent() == nullptr) { NewI->insertBefore(I); NewI->takeName(I); } } return NewV; } return cloneConstantExprWithNewAddressSpace( cast(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI); } // Defines the join operation on the address space lattice (see the file header // comments). unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1, unsigned AS2) const { if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) return FlatAddrSpace; if (AS1 == UninitializedAddressSpace) return AS2; if (AS2 == UninitializedAddressSpace) return AS1; // The join of two different specific address spaces is flat. return (AS1 == AS2) ? AS1 : FlatAddrSpace; } bool InferAddressSpacesImpl::run(Function &F) { DL = &F.getParent()->getDataLayout(); if (AssumeDefaultIsFlatAddressSpace) FlatAddrSpace = 0; if (FlatAddrSpace == UninitializedAddressSpace) { FlatAddrSpace = TTI->getFlatAddressSpace(); if (FlatAddrSpace == UninitializedAddressSpace) return false; } // Collects all flat address expressions in postorder. std::vector Postorder = collectFlatAddressExpressions(F); // Runs a data-flow analysis to refine the address spaces of every expression // in Postorder. ValueToAddrSpaceMapTy InferredAddrSpace; inferAddressSpaces(Postorder, &InferredAddrSpace); // Changes the address spaces of the flat address expressions who are inferred // to point to a specific address space. return rewriteWithNewAddressSpaces(*TTI, Postorder, InferredAddrSpace, &F); } // Constants need to be tracked through RAUW to handle cases with nested // constant expressions, so wrap values in WeakTrackingVH. void InferAddressSpacesImpl::inferAddressSpaces( ArrayRef Postorder, ValueToAddrSpaceMapTy *InferredAddrSpace) const { SetVector Worklist(Postorder.begin(), Postorder.end()); // Initially, all expressions are in the uninitialized address space. for (Value *V : Postorder) (*InferredAddrSpace)[V] = UninitializedAddressSpace; while (!Worklist.empty()) { Value *V = Worklist.pop_back_val(); // Tries to update the address space of the stack top according to the // address spaces of its operands. LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); Optional NewAS = updateAddressSpace(*V, *InferredAddrSpace); if (!NewAS.hasValue()) continue; // If any updates are made, grabs its users to the worklist because // their address spaces can also be possibly updated. LLVM_DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); (*InferredAddrSpace)[V] = NewAS.getValue(); for (Value *User : V->users()) { // Skip if User is already in the worklist. if (Worklist.count(User)) continue; auto Pos = InferredAddrSpace->find(User); // Our algorithm only updates the address spaces of flat address // expressions, which are those in InferredAddrSpace. if (Pos == InferredAddrSpace->end()) continue; // Function updateAddressSpace moves the address space down a lattice // path. Therefore, nothing to do if User is already inferred as flat (the // bottom element in the lattice). if (Pos->second == FlatAddrSpace) continue; Worklist.insert(User); } } } Optional InferAddressSpacesImpl::updateAddressSpace( const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { assert(InferredAddrSpace.count(&V)); // The new inferred address space equals the join of the address spaces // of all its pointer operands. unsigned NewAS = UninitializedAddressSpace; const Operator &Op = cast(V); if (Op.getOpcode() == Instruction::Select) { Value *Src0 = Op.getOperand(1); Value *Src1 = Op.getOperand(2); auto I = InferredAddrSpace.find(Src0); unsigned Src0AS = (I != InferredAddrSpace.end()) ? I->second : Src0->getType()->getPointerAddressSpace(); auto J = InferredAddrSpace.find(Src1); unsigned Src1AS = (J != InferredAddrSpace.end()) ? J->second : Src1->getType()->getPointerAddressSpace(); auto *C0 = dyn_cast(Src0); auto *C1 = dyn_cast(Src1); // If one of the inputs is a constant, we may be able to do a constant // addrspacecast of it. Defer inferring the address space until the input // address space is known. if ((C1 && Src0AS == UninitializedAddressSpace) || (C0 && Src1AS == UninitializedAddressSpace)) return None; if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) NewAS = Src1AS; else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) NewAS = Src0AS; else NewAS = joinAddressSpaces(Src0AS, Src1AS); } else { unsigned AS = TTI->getAssumedAddrSpace(&V); if (AS != UninitializedAddressSpace) { // Use the assumed address space directly. NewAS = AS; } else { // Otherwise, infer the address space from its pointer operands. for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) { auto I = InferredAddrSpace.find(PtrOperand); unsigned OperandAS = I != InferredAddrSpace.end() ? I->second : PtrOperand->getType()->getPointerAddressSpace(); // join(flat, *) = flat. So we can break if NewAS is already flat. NewAS = joinAddressSpaces(NewAS, OperandAS); if (NewAS == FlatAddrSpace) break; } } } unsigned OldAS = InferredAddrSpace.lookup(&V); assert(OldAS != FlatAddrSpace); if (OldAS == NewAS) return None; return NewAS; } /// \p returns true if \p U is the pointer operand of a memory instruction with /// a single pointer operand that can have its address space changed by simply /// mutating the use to a new value. If the memory instruction is volatile, /// return true only if the target allows the memory instruction to be volatile /// in the new address space. static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, Use &U, unsigned AddrSpace) { User *Inst = U.getUser(); unsigned OpNo = U.getOperandNo(); bool VolatileIsAllowed = false; if (auto *I = dyn_cast(Inst)) VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); if (auto *LI = dyn_cast(Inst)) return OpNo == LoadInst::getPointerOperandIndex() && (VolatileIsAllowed || !LI->isVolatile()); if (auto *SI = dyn_cast(Inst)) return OpNo == StoreInst::getPointerOperandIndex() && (VolatileIsAllowed || !SI->isVolatile()); if (auto *RMW = dyn_cast(Inst)) return OpNo == AtomicRMWInst::getPointerOperandIndex() && (VolatileIsAllowed || !RMW->isVolatile()); if (auto *CmpX = dyn_cast(Inst)) return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && (VolatileIsAllowed || !CmpX->isVolatile()); return false; } /// Update memory intrinsic uses that require more complex processing than /// simple memory instructions. Thse require re-mangling and may have multiple /// pointer operands. static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, Value *NewV) { IRBuilder<> B(MI); MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); if (auto *MSI = dyn_cast(MI)) { B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MaybeAlign(MSI->getDestAlignment()), false, // isVolatile TBAA, ScopeMD, NoAliasMD); } else if (auto *MTI = dyn_cast(MI)) { Value *Src = MTI->getRawSource(); Value *Dest = MTI->getRawDest(); // Be careful in case this is a self-to-self copy. if (Src == OldV) Src = NewV; if (Dest == OldV) Dest = NewV; if (isa(MTI)) { MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), MTI->getLength(), false, // isVolatile TBAA, TBAAStruct, ScopeMD, NoAliasMD); } else { assert(isa(MTI)); B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), MTI->getLength(), false, // isVolatile TBAA, ScopeMD, NoAliasMD); } } else llvm_unreachable("unhandled MemIntrinsic"); MI->eraseFromParent(); return true; } // \p returns true if it is OK to change the address space of constant \p C with // a ConstantExpr addrspacecast. bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { assert(NewAS != UninitializedAddressSpace); unsigned SrcAS = C->getType()->getPointerAddressSpace(); if (SrcAS == NewAS || isa(C)) return true; // Prevent illegal casts between different non-flat address spaces. if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) return false; if (isa(C)) return true; if (auto *Op = dyn_cast(C)) { // If we already have a constant addrspacecast, it should be safe to cast it // off. if (Op->getOpcode() == Instruction::AddrSpaceCast) return isSafeToCastConstAddrSpace(cast(Op->getOperand(0)), NewAS); if (Op->getOpcode() == Instruction::IntToPtr && Op->getType()->getPointerAddressSpace() == FlatAddrSpace) return true; } return false; } static Value::use_iterator skipToNextUser(Value::use_iterator I, Value::use_iterator End) { User *CurUser = I->getUser(); ++I; while (I != End && I->getUser() == CurUser) ++I; return I; } bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces( const TargetTransformInfo &TTI, ArrayRef Postorder, const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { // For each address expression to be modified, creates a clone of it with its // pointer operands converted to the new address space. Since the pointer // operands are converted, the clone is naturally in the new address space by // construction. ValueToValueMapTy ValueWithNewAddrSpace; SmallVector UndefUsesToFix; for (Value* V : Postorder) { unsigned NewAddrSpace = InferredAddrSpace.lookup(V); // In some degenerate cases (e.g. invalid IR in unreachable code), we may // not even infer the value to have its original address space. if (NewAddrSpace == UninitializedAddressSpace) continue; if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { Value *New = cloneValueWithNewAddressSpace( V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); if (New) ValueWithNewAddrSpace[V] = New; } } if (ValueWithNewAddrSpace.empty()) return false; // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. for (const Use *UndefUse : UndefUsesToFix) { User *V = UndefUse->getUser(); User *NewV = cast_or_null(ValueWithNewAddrSpace.lookup(V)); if (!NewV) continue; unsigned OperandNo = UndefUse->getOperandNo(); assert(isa(NewV->getOperand(OperandNo))); NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); } SmallVector DeadInstructions; // Replaces the uses of the old address expressions with the new ones. for (const WeakTrackingVH &WVH : Postorder) { assert(WVH && "value was unexpectedly deleted"); Value *V = WVH; Value *NewV = ValueWithNewAddrSpace.lookup(V); if (NewV == nullptr) continue; LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " << *NewV << '\n'); if (Constant *C = dyn_cast(V)) { Constant *Replace = ConstantExpr::getAddrSpaceCast(cast(NewV), C->getType()); if (C != Replace) { LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace << ": " << *Replace << '\n'); C->replaceAllUsesWith(Replace); V = Replace; } } Value::use_iterator I, E, Next; for (I = V->use_begin(), E = V->use_end(); I != E; ) { Use &U = *I; // Some users may see the same pointer operand in multiple operands. Skip // to the next instruction. I = skipToNextUser(I, E); if (isSimplePointerUseValidToReplace( TTI, U, V->getType()->getPointerAddressSpace())) { // If V is used as the pointer operand of a compatible memory operation, // sets the pointer operand to NewV. This replacement does not change // the element type, so the resultant load/store is still valid. U.set(NewV); continue; } User *CurUser = U.getUser(); // Skip if the current user is the new value itself. if (CurUser == NewV) continue; // Handle more complex cases like intrinsic that need to be remangled. if (auto *MI = dyn_cast(CurUser)) { if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) continue; } if (auto *II = dyn_cast(CurUser)) { if (rewriteIntrinsicOperands(II, V, NewV)) continue; } if (isa(CurUser)) { if (ICmpInst *Cmp = dyn_cast(CurUser)) { // If we can infer that both pointers are in the same addrspace, // transform e.g. // %cmp = icmp eq float* %p, %q // into // %cmp = icmp eq float addrspace(3)* %new_p, %new_q unsigned NewAS = NewV->getType()->getPointerAddressSpace(); int SrcIdx = U.getOperandNo(); int OtherIdx = (SrcIdx == 0) ? 1 : 0; Value *OtherSrc = Cmp->getOperand(OtherIdx); if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { Cmp->setOperand(OtherIdx, OtherNewV); Cmp->setOperand(SrcIdx, NewV); continue; } } // Even if the type mismatches, we can cast the constant. if (auto *KOtherSrc = dyn_cast(OtherSrc)) { if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { Cmp->setOperand(SrcIdx, NewV); Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); continue; } } } if (AddrSpaceCastInst *ASC = dyn_cast(CurUser)) { unsigned NewAS = NewV->getType()->getPointerAddressSpace(); if (ASC->getDestAddressSpace() == NewAS) { if (ASC->getType()->getPointerElementType() != NewV->getType()->getPointerElementType()) { NewV = CastInst::Create(Instruction::BitCast, NewV, ASC->getType(), "", ASC); } ASC->replaceAllUsesWith(NewV); DeadInstructions.push_back(ASC); continue; } } // Otherwise, replaces the use with flat(NewV). if (Instruction *Inst = dyn_cast(V)) { // Don't create a copy of the original addrspacecast. if (U == V && isa(V)) continue; BasicBlock::iterator InsertPos = std::next(Inst->getIterator()); while (isa(InsertPos)) ++InsertPos; U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); } else { U.set(ConstantExpr::getAddrSpaceCast(cast(NewV), V->getType())); } } } if (V->use_empty()) { if (Instruction *I = dyn_cast(V)) DeadInstructions.push_back(I); } } for (Instruction *I : DeadInstructions) RecursivelyDeleteTriviallyDeadInstructions(I); return true; } bool InferAddressSpaces::runOnFunction(Function &F) { if (skipFunction(F)) return false; return InferAddressSpacesImpl( &getAnalysis().getTTI(F), FlatAddrSpace) .run(F); } FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { return new InferAddressSpaces(AddressSpace); } InferAddressSpacesPass::InferAddressSpacesPass() : FlatAddrSpace(UninitializedAddressSpace) {} InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace) : FlatAddrSpace(AddressSpace) {} PreservedAnalyses InferAddressSpacesPass::run(Function &F, FunctionAnalysisManager &AM) { bool Changed = InferAddressSpacesImpl(&AM.getResult(F), FlatAddrSpace) .run(F); if (Changed) { PreservedAnalyses PA; PA.preserveSet(); return PA; } return PreservedAnalyses::all(); }