//===-- X86InstrFMA.td - FMA Instruction Set ---------------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes FMA (Fused Multiply-Add) instructions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // FMA3 - Intel 3 operand Fused Multiply-Add instructions //===----------------------------------------------------------------------===// // For all FMA opcodes declared in fma3p_rm_* and fma3s_rm_* multiclasses // defined below, both the register and memory variants are commutable. // For the register form the commutable operands are 1, 2 and 3. // For the memory variant the folded operand must be in 3. Thus, // in that case, only the operands 1 and 2 can be swapped. // Commuting some of operands may require the opcode change. // FMA*213*: // operands 1 and 2 (memory & register forms): *213* --> *213*(no changes); // operands 1 and 3 (register forms only): *213* --> *231*; // operands 2 and 3 (register forms only): *213* --> *132*. // FMA*132*: // operands 1 and 2 (memory & register forms): *132* --> *231*; // operands 1 and 3 (register forms only): *132* --> *132*(no changes); // operands 2 and 3 (register forms only): *132* --> *213*. // FMA*231*: // operands 1 and 2 (memory & register forms): *231* --> *132*; // operands 1 and 3 (register forms only): *231* --> *213*; // operands 2 and 3 (register forms only): *231* --> *231*(no changes). multiclass fma3p_rm_213 opc, string OpcodeStr, RegisterClass RC, ValueType VT, X86MemOperand x86memop, PatFrag MemFrag, SDNode Op, X86FoldableSchedWrite sched> { def r : FMA3, Sched<[sched]>; let mayLoad = 1 in def m : FMA3, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>; } multiclass fma3p_rm_231 opc, string OpcodeStr, RegisterClass RC, ValueType VT, X86MemOperand x86memop, PatFrag MemFrag, SDNode Op, X86FoldableSchedWrite sched> { let hasSideEffects = 0 in def r : FMA3, Sched<[sched]>; let mayLoad = 1 in def m : FMA3, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>; } multiclass fma3p_rm_132 opc, string OpcodeStr, RegisterClass RC, ValueType VT, X86MemOperand x86memop, PatFrag MemFrag, SDNode Op, X86FoldableSchedWrite sched> { let hasSideEffects = 0 in def r : FMA3, Sched<[sched]>; // Pattern is 312 order so that the load is in a different place from the // 213 and 231 patterns this helps tablegen's duplicate pattern detection. let mayLoad = 1 in def m : FMA3, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>; } let Constraints = "$src1 = $dst", hasSideEffects = 0, isCommutable = 1, Uses = [MXCSR], mayRaiseFPException = 1 in multiclass fma3p_forms opc132, bits<8> opc213, bits<8> opc231, string OpcodeStr, string PackTy, string Suff, PatFrag MemFrag128, PatFrag MemFrag256, SDNode Op, ValueType OpTy128, ValueType OpTy256, X86SchedWriteWidths sched> { defm NAME#213#Suff : fma3p_rm_213; defm NAME#231#Suff : fma3p_rm_231; defm NAME#132#Suff : fma3p_rm_132; defm NAME#213#Suff#Y : fma3p_rm_213, VEX_L; defm NAME#231#Suff#Y : fma3p_rm_231, VEX_L; defm NAME#132#Suff#Y : fma3p_rm_132, VEX_L; } // Fused Multiply-Add let ExeDomain = SSEPackedSingle in { defm VFMADD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "ps", "PS", loadv4f32, loadv8f32, any_fma, v4f32, v8f32, SchedWriteFMA>; defm VFMSUB : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "ps", "PS", loadv4f32, loadv8f32, X86any_Fmsub, v4f32, v8f32, SchedWriteFMA>; defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "ps", "PS", loadv4f32, loadv8f32, X86Fmaddsub, v4f32, v8f32, SchedWriteFMA>; defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "ps", "PS", loadv4f32, loadv8f32, X86Fmsubadd, v4f32, v8f32, SchedWriteFMA>; } let ExeDomain = SSEPackedDouble in { defm VFMADD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "pd", "PD", loadv2f64, loadv4f64, any_fma, v2f64, v4f64, SchedWriteFMA>, VEX_W; defm VFMSUB : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "pd", "PD", loadv2f64, loadv4f64, X86any_Fmsub, v2f64, v4f64, SchedWriteFMA>, VEX_W; defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "pd", "PD", loadv2f64, loadv4f64, X86Fmaddsub, v2f64, v4f64, SchedWriteFMA>, VEX_W; defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "pd", "PD", loadv2f64, loadv4f64, X86Fmsubadd, v2f64, v4f64, SchedWriteFMA>, VEX_W; } // Fused Negative Multiply-Add let ExeDomain = SSEPackedSingle in { defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "ps", "PS", loadv4f32, loadv8f32, X86any_Fnmadd, v4f32, v8f32, SchedWriteFMA>; defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps", "PS", loadv4f32, loadv8f32, X86any_Fnmsub, v4f32, v8f32, SchedWriteFMA>; } let ExeDomain = SSEPackedDouble in { defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "pd", "PD", loadv2f64, loadv4f64, X86any_Fnmadd, v2f64, v4f64, SchedWriteFMA>, VEX_W; defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd", "PD", loadv2f64, loadv4f64, X86any_Fnmsub, v2f64, v4f64, SchedWriteFMA>, VEX_W; } // All source register operands of FMA opcodes defined in fma3s_rm multiclass // can be commuted. In many cases such commute transformation requires an opcode // adjustment, for example, commuting the operands 1 and 2 in FMA*132 form // would require an opcode change to FMA*231: // FMA*132* reg1, reg2, reg3; // reg1 * reg3 + reg2; // --> // FMA*231* reg2, reg1, reg3; // reg1 * reg3 + reg2; // Please see more detailed comment at the very beginning of the section // defining FMA3 opcodes above. multiclass fma3s_rm_213 opc, string OpcodeStr, X86MemOperand x86memop, RegisterClass RC, SDPatternOperator OpNode, X86FoldableSchedWrite sched> { def r : FMA3S, Sched<[sched]>; let mayLoad = 1 in def m : FMA3S, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>; } multiclass fma3s_rm_231 opc, string OpcodeStr, X86MemOperand x86memop, RegisterClass RC, SDPatternOperator OpNode, X86FoldableSchedWrite sched> { let hasSideEffects = 0 in def r : FMA3S, Sched<[sched]>; let mayLoad = 1 in def m : FMA3S, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>; } multiclass fma3s_rm_132 opc, string OpcodeStr, X86MemOperand x86memop, RegisterClass RC, SDPatternOperator OpNode, X86FoldableSchedWrite sched> { let hasSideEffects = 0 in def r : FMA3S, Sched<[sched]>; // Pattern is 312 order so that the load is in a different place from the // 213 and 231 patterns this helps tablegen's duplicate pattern detection. let mayLoad = 1 in def m : FMA3S, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>; } let Constraints = "$src1 = $dst", isCommutable = 1, isCodeGenOnly = 1, hasSideEffects = 0, Uses = [MXCSR], mayRaiseFPException = 1 in multiclass fma3s_forms opc132, bits<8> opc213, bits<8> opc231, string OpStr, string PackTy, string Suff, SDNode OpNode, RegisterClass RC, X86MemOperand x86memop, X86FoldableSchedWrite sched> { defm NAME#213#Suff : fma3s_rm_213; defm NAME#231#Suff : fma3s_rm_231; defm NAME#132#Suff : fma3s_rm_132; } // These FMA*_Int instructions are defined specially for being used when // the scalar FMA intrinsics are lowered to machine instructions, and in that // sense, they are similar to existing ADD*_Int, SUB*_Int, MUL*_Int, etc. // instructions. // // All of the FMA*_Int opcodes are defined as commutable here. // Commuting the 2nd and 3rd source register operands of FMAs is quite trivial // and the corresponding optimizations have been developed. // Commuting the 1st operand of FMA*_Int requires some additional analysis, // the commute optimization is legal only if all users of FMA*_Int use only // the lowest element of the FMA*_Int instruction. Even though such analysis // may be not implemented yet we allow the routines doing the actual commute // transformation to decide if one or another instruction is commutable or not. let Constraints = "$src1 = $dst", isCommutable = 1, hasSideEffects = 0, Uses = [MXCSR], mayRaiseFPException = 1 in multiclass fma3s_rm_int opc, string OpcodeStr, Operand memopr, RegisterClass RC, X86FoldableSchedWrite sched> { def r_Int : FMA3S_Int, Sched<[sched]>; let mayLoad = 1 in def m_Int : FMA3S_Int, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>; } // The FMA 213 form is created for lowering of scalar FMA intrinsics // to machine instructions. // The FMA 132 form can trivially be get by commuting the 2nd and 3rd operands // of FMA 213 form. // The FMA 231 form can be get only by commuting the 1st operand of 213 or 132 // forms and is possible only after special analysis of all uses of the initial // instruction. Such analysis do not exist yet and thus introducing the 231 // form of FMA*_Int instructions is done using an optimistic assumption that // such analysis will be implemented eventually. multiclass fma3s_int_forms opc132, bits<8> opc213, bits<8> opc231, string OpStr, string PackTy, string Suff, RegisterClass RC, Operand memop, X86FoldableSchedWrite sched> { defm NAME#132#Suff : fma3s_rm_int; defm NAME#213#Suff : fma3s_rm_int; defm NAME#231#Suff : fma3s_rm_int; } multiclass fma3s opc132, bits<8> opc213, bits<8> opc231, string OpStr, SDNode OpNode, X86FoldableSchedWrite sched> { let ExeDomain = SSEPackedSingle in defm NAME : fma3s_forms, fma3s_int_forms; let ExeDomain = SSEPackedDouble in defm NAME : fma3s_forms, fma3s_int_forms, VEX_W; } defm VFMADD : fma3s<0x99, 0xA9, 0xB9, "vfmadd", any_fma, SchedWriteFMA.Scl>, VEX_LIG; defm VFMSUB : fma3s<0x9B, 0xAB, 0xBB, "vfmsub", X86any_Fmsub, SchedWriteFMA.Scl>, VEX_LIG; defm VFNMADD : fma3s<0x9D, 0xAD, 0xBD, "vfnmadd", X86any_Fnmadd, SchedWriteFMA.Scl>, VEX_LIG; defm VFNMSUB : fma3s<0x9F, 0xAF, 0xBF, "vfnmsub", X86any_Fnmsub, SchedWriteFMA.Scl>, VEX_LIG; multiclass scalar_fma_patterns { let Predicates = [HasFMA, NoAVX512] in { def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector (Op RC:$src2, (EltVT (extractelt (VT VR128:$src1), (iPTR 0))), RC:$src3))))), (!cast(Prefix#"213"#Suffix#"r_Int") VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)), (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>; def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector (Op RC:$src2, RC:$src3, (EltVT (extractelt (VT VR128:$src1), (iPTR 0)))))))), (!cast(Prefix#"231"#Suffix#"r_Int") VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)), (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>; def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector (Op RC:$src2, (EltVT (extractelt (VT VR128:$src1), (iPTR 0))), (mem_frag addr:$src3)))))), (!cast(Prefix#"213"#Suffix#"m_Int") VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)), addr:$src3)>; def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector (Op (EltVT (extractelt (VT VR128:$src1), (iPTR 0))), (mem_frag addr:$src3), RC:$src2))))), (!cast(Prefix#"132"#Suffix#"m_Int") VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)), addr:$src3)>; def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector (Op RC:$src2, (mem_frag addr:$src3), (EltVT (extractelt (VT VR128:$src1), (iPTR 0)))))))), (!cast(Prefix#"231"#Suffix#"m_Int") VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)), addr:$src3)>; } } defm : scalar_fma_patterns; defm : scalar_fma_patterns; defm : scalar_fma_patterns; defm : scalar_fma_patterns; defm : scalar_fma_patterns; defm : scalar_fma_patterns; defm : scalar_fma_patterns; defm : scalar_fma_patterns; //===----------------------------------------------------------------------===// // FMA4 - AMD 4 operand Fused Multiply-Add instructions //===----------------------------------------------------------------------===// let Uses = [MXCSR], mayRaiseFPException = 1 in multiclass fma4s opc, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop, ValueType OpVT, SDNode OpNode, PatFrag mem_frag, X86FoldableSchedWrite sched> { let isCommutable = 1 in def rr : FMA4S, VEX_W, VEX_LIG, Sched<[sched]>; def rm : FMA4S, VEX_W, VEX_LIG, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>; def mr : FMA4S, VEX_LIG, Sched<[sched.Folded, sched.ReadAfterFold, // x86memop:$src2 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, // RC:$src3 sched.ReadAfterFold]>; // For disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in def rr_REV : FMA4S, VEX_LIG, FoldGenData, Sched<[sched]>; } multiclass fma4s_int opc, string OpcodeStr, Operand memop, ValueType VT, X86FoldableSchedWrite sched> { let isCodeGenOnly = 1, hasSideEffects = 0, Uses = [MXCSR], mayRaiseFPException = 1 in { def rr_Int : FMA4S_Int, VEX_W, VEX_LIG, Sched<[sched]>; let mayLoad = 1 in def rm_Int : FMA4S_Int, VEX_W, VEX_LIG, Sched<[sched.Folded, sched.ReadAfterFold, sched.ReadAfterFold]>; let mayLoad = 1 in def mr_Int : FMA4S_Int, VEX_LIG, Sched<[sched.Folded, sched.ReadAfterFold, // memop:$src2 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, // VR128::$src3 sched.ReadAfterFold]>; def rr_Int_REV : FMA4S_Int, VEX_LIG, FoldGenData, Sched<[sched]>; } // isCodeGenOnly = 1 } let Uses = [MXCSR], mayRaiseFPException = 1 in multiclass fma4p opc, string OpcodeStr, SDNode OpNode, ValueType OpVT128, ValueType OpVT256, PatFrag ld_frag128, PatFrag ld_frag256, X86SchedWriteWidths sched> { let isCommutable = 1 in def rr : FMA4, VEX_W, Sched<[sched.XMM]>; def rm : FMA4, VEX_W, Sched<[sched.XMM.Folded, sched.XMM.ReadAfterFold, sched.XMM.ReadAfterFold]>; def mr : FMA4, Sched<[sched.XMM.Folded, sched.XMM.ReadAfterFold, // f128mem:$src2 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, // VR128::$src3 sched.XMM.ReadAfterFold]>; let isCommutable = 1 in def Yrr : FMA4, VEX_W, VEX_L, Sched<[sched.YMM]>; def Yrm : FMA4, VEX_W, VEX_L, Sched<[sched.YMM.Folded, sched.YMM.ReadAfterFold, sched.YMM.ReadAfterFold]>; def Ymr : FMA4, VEX_L, Sched<[sched.YMM.Folded, sched.YMM.ReadAfterFold, // f256mem:$src2 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, // VR256::$src3 sched.YMM.ReadAfterFold]>; // For disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in { def rr_REV : FMA4, Sched<[sched.XMM]>, FoldGenData; def Yrr_REV : FMA4, VEX_L, Sched<[sched.YMM]>, FoldGenData; } // isCodeGenOnly = 1 } let ExeDomain = SSEPackedSingle in { // Scalar Instructions defm VFMADDSS4 : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, any_fma, loadf32, SchedWriteFMA.Scl>, fma4s_int<0x6A, "vfmaddss", ssmem, v4f32, SchedWriteFMA.Scl>; defm VFMSUBSS4 : fma4s<0x6E, "vfmsubss", FR32, f32mem, f32, X86any_Fmsub, loadf32, SchedWriteFMA.Scl>, fma4s_int<0x6E, "vfmsubss", ssmem, v4f32, SchedWriteFMA.Scl>; defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss", FR32, f32mem, f32, X86any_Fnmadd, loadf32, SchedWriteFMA.Scl>, fma4s_int<0x7A, "vfnmaddss", ssmem, v4f32, SchedWriteFMA.Scl>; defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss", FR32, f32mem, f32, X86any_Fnmsub, loadf32, SchedWriteFMA.Scl>, fma4s_int<0x7E, "vfnmsubss", ssmem, v4f32, SchedWriteFMA.Scl>; // Packed Instructions defm VFMADDPS4 : fma4p<0x68, "vfmaddps", any_fma, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps", X86any_Fmsub, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps", X86any_Fnmadd, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps", X86any_Fnmsub, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; } let ExeDomain = SSEPackedDouble in { // Scalar Instructions defm VFMADDSD4 : fma4s<0x6B, "vfmaddsd", FR64, f64mem, f64, any_fma, loadf64, SchedWriteFMA.Scl>, fma4s_int<0x6B, "vfmaddsd", sdmem, v2f64, SchedWriteFMA.Scl>; defm VFMSUBSD4 : fma4s<0x6F, "vfmsubsd", FR64, f64mem, f64, X86any_Fmsub, loadf64, SchedWriteFMA.Scl>, fma4s_int<0x6F, "vfmsubsd", sdmem, v2f64, SchedWriteFMA.Scl>; defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd", FR64, f64mem, f64, X86any_Fnmadd, loadf64, SchedWriteFMA.Scl>, fma4s_int<0x7B, "vfnmaddsd", sdmem, v2f64, SchedWriteFMA.Scl>; defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64, X86any_Fnmsub, loadf64, SchedWriteFMA.Scl>, fma4s_int<0x7F, "vfnmsubsd", sdmem, v2f64, SchedWriteFMA.Scl>; // Packed Instructions defm VFMADDPD4 : fma4p<0x69, "vfmaddpd", any_fma, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd", X86any_Fmsub, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd", X86any_Fnmadd, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd", X86any_Fnmsub, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; } multiclass scalar_fma4_patterns { let Predicates = [HasFMA4] in { def : Pat<(VT (X86vzmovl (VT (scalar_to_vector (Op RC:$src1, RC:$src2, RC:$src3))))), (!cast(Name#"rr_Int") (VT (COPY_TO_REGCLASS RC:$src1, VR128)), (VT (COPY_TO_REGCLASS RC:$src2, VR128)), (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>; def : Pat<(VT (X86vzmovl (VT (scalar_to_vector (Op RC:$src1, RC:$src2, (mem_frag addr:$src3)))))), (!cast(Name#"rm_Int") (VT (COPY_TO_REGCLASS RC:$src1, VR128)), (VT (COPY_TO_REGCLASS RC:$src2, VR128)), addr:$src3)>; def : Pat<(VT (X86vzmovl (VT (scalar_to_vector (Op RC:$src1, (mem_frag addr:$src2), RC:$src3))))), (!cast(Name#"mr_Int") (VT (COPY_TO_REGCLASS RC:$src1, VR128)), addr:$src2, (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>; } } defm : scalar_fma4_patterns; defm : scalar_fma4_patterns; defm : scalar_fma4_patterns; defm : scalar_fma4_patterns; defm : scalar_fma4_patterns; defm : scalar_fma4_patterns; defm : scalar_fma4_patterns; defm : scalar_fma4_patterns;