//===-- RISCVInstrInfoFH.td - RISC-V 'FH' instructions -----*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the RISC-V instructions from the standard 'Zfh' // half-precision floating-point extension, version 0.1. // This version is still experimental as the 'Zfh' extension hasn't been // ratified yet. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // RISC-V specific DAG Nodes. //===----------------------------------------------------------------------===// def SDT_RISCVFMV_H_X : SDTypeProfile<1, 1, [SDTCisVT<0, f16>, SDTCisVT<1, XLenVT>]>; def SDT_RISCVFMV_X_ANYEXTH : SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisVT<1, f16>]>; def riscv_fmv_h_x : SDNode<"RISCVISD::FMV_H_X", SDT_RISCVFMV_H_X>; def riscv_fmv_x_anyexth : SDNode<"RISCVISD::FMV_X_ANYEXTH", SDT_RISCVFMV_X_ANYEXTH>; //===----------------------------------------------------------------------===// // Instruction class templates //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPFMAH_rrr_frm : RVInstR4<0b10, opcode, (outs FPR16:$rd), (ins FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, frmarg:$funct3), opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">; class FPFMAHDynFrmAlias : InstAlias; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPALUH_rr funct7, bits<3> funct3, string opcodestr> : RVInstR; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPALUH_rr_frm funct7, string opcodestr> : RVInstRFrm; class FPALUHDynFrmAlias : InstAlias; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPCmpH_rr funct3, string opcodestr> : RVInstR<0b1010010, funct3, OPC_OP_FP, (outs GPR:$rd), (ins FPR16:$rs1, FPR16:$rs2), opcodestr, "$rd, $rs1, $rs2">, Sched<[]>; //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtZfh] in { let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in def FLH : RVInstI<0b001, OPC_LOAD_FP, (outs FPR16:$rd), (ins GPR:$rs1, simm12:$imm12), "flh", "$rd, ${imm12}(${rs1})">, Sched<[]>; // Operands for stores are in the order srcreg, base, offset rather than // reflecting the order these fields are specified in the instruction // encoding. let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in def FSH : RVInstS<0b001, OPC_STORE_FP, (outs), (ins FPR16:$rs2, GPR:$rs1, simm12:$imm12), "fsh", "$rs2, ${imm12}(${rs1})">, Sched<[]>; def FMADD_H : FPFMAH_rrr_frm, Sched<[]>; def : FPFMAHDynFrmAlias; def FMSUB_H : FPFMAH_rrr_frm, Sched<[]>; def : FPFMAHDynFrmAlias; def FNMSUB_H : FPFMAH_rrr_frm, Sched<[]>; def : FPFMAHDynFrmAlias; def FNMADD_H : FPFMAH_rrr_frm, Sched<[]>; def : FPFMAHDynFrmAlias; def FADD_H : FPALUH_rr_frm<0b0000010, "fadd.h">, Sched<[]>; def : FPALUHDynFrmAlias; def FSUB_H : FPALUH_rr_frm<0b0000110, "fsub.h">, Sched<[]>; def : FPALUHDynFrmAlias; def FMUL_H : FPALUH_rr_frm<0b0001010, "fmul.h">, Sched<[]>; def : FPALUHDynFrmAlias; def FDIV_H : FPALUH_rr_frm<0b0001110, "fdiv.h">, Sched<[]>; def : FPALUHDynFrmAlias; def FSQRT_H : FPUnaryOp_r_frm<0b0101110, FPR16, FPR16, "fsqrt.h">, Sched<[]> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias; def FSGNJ_H : FPALUH_rr<0b0010010, 0b000, "fsgnj.h">, Sched<[]>; def FSGNJN_H : FPALUH_rr<0b0010010, 0b001, "fsgnjn.h">, Sched<[]>; def FSGNJX_H : FPALUH_rr<0b0010010, 0b010, "fsgnjx.h">, Sched<[]>; def FMIN_H : FPALUH_rr<0b0010110, 0b000, "fmin.h">, Sched<[]>; def FMAX_H : FPALUH_rr<0b0010110, 0b001, "fmax.h">, Sched<[]>; def FCVT_W_H : FPUnaryOp_r_frm<0b1100010, GPR, FPR16, "fcvt.w.h">, Sched<[]> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias; def FCVT_WU_H : FPUnaryOp_r_frm<0b1100010, GPR, FPR16, "fcvt.wu.h">, Sched<[]> { let rs2 = 0b00001; } def : FPUnaryOpDynFrmAlias; def FCVT_H_W : FPUnaryOp_r_frm<0b1101010, FPR16, GPR, "fcvt.h.w">, Sched<[]> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias; def FCVT_H_WU : FPUnaryOp_r_frm<0b1101010, FPR16, GPR, "fcvt.h.wu">, Sched<[]> { let rs2 = 0b00001; } def : FPUnaryOpDynFrmAlias; def FCVT_H_S : FPUnaryOp_r_frm<0b0100010, FPR16, FPR32, "fcvt.h.s">, Sched<[]> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias; def FCVT_S_H : FPUnaryOp_r<0b0100000, 0b000, FPR32, FPR16, "fcvt.s.h">, Sched<[]> { let rs2 = 0b00010; } def FMV_X_H : FPUnaryOp_r<0b1110010, 0b000, GPR, FPR16, "fmv.x.h">, Sched<[]> { let rs2 = 0b00000; } def FMV_H_X : FPUnaryOp_r<0b1111010, 0b000, FPR16, GPR, "fmv.h.x">, Sched<[]> { let rs2 = 0b00000; } def FEQ_H : FPCmpH_rr<0b010, "feq.h">; def FLT_H : FPCmpH_rr<0b001, "flt.h">; def FLE_H : FPCmpH_rr<0b000, "fle.h">; def FCLASS_H : FPUnaryOp_r<0b1110010, 0b001, GPR, FPR16, "fclass.h">, Sched<[]> { let rs2 = 0b00000; } } // Predicates = [HasStdExtZfh] let Predicates = [HasStdExtZfh, IsRV64] in { def FCVT_L_H : FPUnaryOp_r_frm<0b1100010, GPR, FPR16, "fcvt.l.h">, Sched<[]> { let rs2 = 0b00010; } def : FPUnaryOpDynFrmAlias; def FCVT_LU_H : FPUnaryOp_r_frm<0b1100010, GPR, FPR16, "fcvt.lu.h">, Sched<[]> { let rs2 = 0b00011; } def : FPUnaryOpDynFrmAlias; def FCVT_H_L : FPUnaryOp_r_frm<0b1101010, FPR16, GPR, "fcvt.h.l">, Sched<[]> { let rs2 = 0b00010; } def : FPUnaryOpDynFrmAlias; def FCVT_H_LU : FPUnaryOp_r_frm<0b1101010, FPR16, GPR, "fcvt.h.lu">, Sched<[]> { let rs2 = 0b00011; } def : FPUnaryOpDynFrmAlias; } // Predicates = [HasStdExtZfh, IsRV64] let Predicates = [HasStdExtZfh, HasStdExtD] in { def FCVT_H_D : FPUnaryOp_r_frm<0b0100010, FPR16, FPR64, "fcvt.h.d">, Sched<[]> { let rs2 = 0b00001; } def : FPUnaryOpDynFrmAlias; def FCVT_D_H : FPUnaryOp_r<0b0100001, 0b000, FPR64, FPR16, "fcvt.d.h">, Sched<[]> { let rs2 = 0b00010; } } // Predicates = [HasStdExtZfh, HasStdExtD] //===----------------------------------------------------------------------===// // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) //===----------------------------------------------------------------------===// let Predicates = [HasStdExtZfh] in { def : InstAlias<"flh $rd, (${rs1})", (FLH FPR16:$rd, GPR:$rs1, 0), 0>; def : InstAlias<"fsh $rs2, (${rs1})", (FSH FPR16:$rs2, GPR:$rs1, 0), 0>; def : InstAlias<"fmv.h $rd, $rs", (FSGNJ_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>; def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>; def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>; // fgt.h/fge.h are recognised by the GNU assembler but the canonical // flt.h/fle.h forms will always be printed. Therefore, set a zero weight. def : InstAlias<"fgt.h $rd, $rs, $rt", (FLT_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>; def : InstAlias<"fge.h $rd, $rs, $rt", (FLE_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>; def PseudoFLH : PseudoFloatLoad<"flh", FPR16>; def PseudoFSH : PseudoStore<"fsh", FPR16>; } // Predicates = [HasStdExtZfh] //===----------------------------------------------------------------------===// // Pseudo-instructions and codegen patterns //===----------------------------------------------------------------------===// /// Generic pattern classes class PatFpr16Fpr16 : Pat<(OpNode FPR16:$rs1, FPR16:$rs2), (Inst $rs1, $rs2)>; class PatFpr16Fpr16DynFrm : Pat<(OpNode FPR16:$rs1, FPR16:$rs2), (Inst $rs1, $rs2, 0b111)>; let Predicates = [HasStdExtZfh] in { /// Float constants def : Pat<(f16 (fpimm0)), (FMV_H_X X0)>; /// Float conversion operations // [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so // are defined later. /// Float arithmetic operations def : PatFpr16Fpr16DynFrm; def : PatFpr16Fpr16DynFrm; def : PatFpr16Fpr16DynFrm; def : PatFpr16Fpr16DynFrm; def : Pat<(fsqrt FPR16:$rs1), (FSQRT_H FPR16:$rs1, 0b111)>; def : Pat<(fneg FPR16:$rs1), (FSGNJN_H $rs1, $rs1)>; def : Pat<(fabs FPR16:$rs1), (FSGNJX_H $rs1, $rs1)>; def : PatFpr16Fpr16; def : Pat<(fcopysign FPR16:$rs1, (fneg FPR16:$rs2)), (FSGNJN_H $rs1, $rs2)>; def : Pat<(fcopysign FPR16:$rs1, FPR32:$rs2), (FSGNJ_H $rs1, (FCVT_H_S $rs2, 0b111))>; def : Pat<(fcopysign FPR16:$rs1, FPR64:$rs2), (FSGNJ_H $rs1, (FCVT_H_D $rs2, 0b111))>; def : Pat<(fcopysign FPR32:$rs1, FPR16:$rs2), (FSGNJ_S $rs1, (FCVT_S_H $rs2))>; def : Pat<(fcopysign FPR64:$rs1, FPR16:$rs2), (FSGNJ_D $rs1, (FCVT_D_H $rs2))>; // fmadd: rs1 * rs2 + rs3 def : Pat<(fma FPR16:$rs1, FPR16:$rs2, FPR16:$rs3), (FMADD_H $rs1, $rs2, $rs3, 0b111)>; // fmsub: rs1 * rs2 - rs3 def : Pat<(fma FPR16:$rs1, FPR16:$rs2, (fneg FPR16:$rs3)), (FMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>; // fnmsub: -rs1 * rs2 + rs3 def : Pat<(fma (fneg FPR16:$rs1), FPR16:$rs2, FPR16:$rs3), (FNMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>; // fnmadd: -rs1 * rs2 - rs3 def : Pat<(fma (fneg FPR16:$rs1), FPR16:$rs2, (fneg FPR16:$rs3)), (FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>; def : PatFpr16Fpr16; def : PatFpr16Fpr16; /// Setcc def : PatFpr16Fpr16; def : PatFpr16Fpr16; def : PatFpr16Fpr16; def : PatFpr16Fpr16; def : PatFpr16Fpr16; def : PatFpr16Fpr16; def Select_FPR16_Using_CC_GPR : SelectCC_rrirr; /// Loads defm : LdPat; /// Stores defm : StPat; /// Float conversion operations // f32 -> f16, f16 -> f32 def : Pat<(fpround FPR32:$rs1), (FCVT_H_S FPR32:$rs1, 0b111)>; def : Pat<(fpextend FPR16:$rs1), (FCVT_S_H FPR16:$rs1)>; // Moves (no conversion) def : Pat<(riscv_fmv_h_x GPR:$src), (FMV_H_X GPR:$src)>; def : Pat<(riscv_fmv_x_anyexth FPR16:$src), (FMV_X_H FPR16:$src)>; } // Predicates = [HasStdExtZfh] let Predicates = [HasStdExtZfh, IsRV32] in { // float->[u]int. Round-to-zero must be used. def : Pat<(fp_to_sint FPR16:$rs1), (FCVT_W_H $rs1, 0b001)>; def : Pat<(fp_to_uint FPR16:$rs1), (FCVT_WU_H $rs1, 0b001)>; // [u]int->float. Match GCC and default to using dynamic rounding mode. def : Pat<(sint_to_fp GPR:$rs1), (FCVT_H_W $rs1, 0b111)>; def : Pat<(uint_to_fp GPR:$rs1), (FCVT_H_WU $rs1, 0b111)>; } // Predicates = [HasStdExtZfh, IsRV32] let Predicates = [HasStdExtZfh, IsRV64] in { // FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe // because fpto[u|s]i produces poison if the value can't fit into the target. // We match the single case below because fcvt.wu.s sign-extends its result so // is cheaper than fcvt.lu.h+sext.w. def : Pat<(sext_inreg (assertzexti32 (fp_to_uint FPR16:$rs1)), i32), (FCVT_WU_H $rs1, 0b001)>; // FP->[u]int64 def : Pat<(fp_to_sint FPR16:$rs1), (FCVT_L_H $rs1, 0b001)>; def : Pat<(fp_to_uint FPR16:$rs1), (FCVT_LU_H $rs1, 0b001)>; // [u]int->fp. Match GCC and default to using dynamic rounding mode. def : Pat<(sint_to_fp (sexti32 GPR:$rs1)), (FCVT_H_W $rs1, 0b111)>; def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_H_WU $rs1, 0b111)>; def : Pat<(sint_to_fp GPR:$rs1), (FCVT_H_L $rs1, 0b111)>; def : Pat<(uint_to_fp GPR:$rs1), (FCVT_H_LU $rs1, 0b111)>; } // Predicates = [HasStdExtZfh, IsRV64] let Predicates = [HasStdExtZfh, HasStdExtD] in { /// Float conversion operations // f64 -> f16, f16 -> f64 def : Pat<(fpround FPR64:$rs1), (FCVT_H_D FPR64:$rs1, 0b111)>; def : Pat<(fpextend FPR16:$rs1), (FCVT_D_H FPR16:$rs1)>; }