//===-- PPCInstPrinter.cpp - Convert PPC MCInst to assembly syntax --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This class prints an PPC MCInst to a .s file. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/PPCInstPrinter.h" #include "MCTargetDesc/PPCMCTargetDesc.h" #include "MCTargetDesc/PPCPredicates.h" #include "PPCInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "asm-printer" // FIXME: Once the integrated assembler supports full register names, tie this // to the verbose-asm setting. static cl::opt FullRegNames("ppc-asm-full-reg-names", cl::Hidden, cl::init(false), cl::desc("Use full register names when printing assembly")); // Useful for testing purposes. Prints vs{31-63} as v{0-31} respectively. static cl::opt ShowVSRNumsAsVR("ppc-vsr-nums-as-vr", cl::Hidden, cl::init(false), cl::desc("Prints full register names with vs{31-63} as v{0-31}")); // Prints full register names with percent symbol. static cl::opt FullRegNamesWithPercent("ppc-reg-with-percent-prefix", cl::Hidden, cl::init(false), cl::desc("Prints full register names with percent")); #define PRINT_ALIAS_INSTR #include "PPCGenAsmWriter.inc" void PPCInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const { const char *RegName = getRegisterName(RegNo); OS << RegName; } void PPCInstPrinter::printInst(const MCInst *MI, uint64_t Address, StringRef Annot, const MCSubtargetInfo &STI, raw_ostream &O) { // Customize printing of the addis instruction on AIX. When an operand is a // symbol reference, the instruction syntax is changed to look like a load // operation, i.e: // Transform: addis $rD, $rA, $src --> addis $rD, $src($rA). if (TT.isOSAIX() && (MI->getOpcode() == PPC::ADDIS8 || MI->getOpcode() == PPC::ADDIS) && MI->getOperand(2).isExpr()) { assert((MI->getOperand(0).isReg() && MI->getOperand(1).isReg()) && "The first and the second operand of an addis instruction" " should be registers."); assert(isa(MI->getOperand(2).getExpr()) && "The third operand of an addis instruction should be a symbol " "reference expression if it is an expression at all."); O << "\taddis "; printOperand(MI, 0, STI, O); O << ", "; printOperand(MI, 2, STI, O); O << "("; printOperand(MI, 1, STI, O); O << ")"; return; } // Check if the last operand is an expression with the variant kind // VK_PPC_PCREL_OPT. If this is the case then this is a linker optimization // relocation and the .reloc directive needs to be added. unsigned LastOp = MI->getNumOperands() - 1; if (MI->getNumOperands() > 1) { const MCOperand &Operand = MI->getOperand(LastOp); if (Operand.isExpr()) { const MCExpr *Expr = Operand.getExpr(); const MCSymbolRefExpr *SymExpr = static_cast(Expr); if (SymExpr && SymExpr->getKind() == MCSymbolRefExpr::VK_PPC_PCREL_OPT) { const MCSymbol &Symbol = SymExpr->getSymbol(); if (MI->getOpcode() == PPC::PLDpc) { printInstruction(MI, Address, STI, O); O << "\n"; Symbol.print(O, &MAI); O << ":"; return; } else { O << "\t.reloc "; Symbol.print(O, &MAI); O << "-8,R_PPC64_PCREL_OPT,.-("; Symbol.print(O, &MAI); O << "-8)\n"; } } } } // Check for slwi/srwi mnemonics. if (MI->getOpcode() == PPC::RLWINM) { unsigned char SH = MI->getOperand(2).getImm(); unsigned char MB = MI->getOperand(3).getImm(); unsigned char ME = MI->getOperand(4).getImm(); bool useSubstituteMnemonic = false; if (SH <= 31 && MB == 0 && ME == (31-SH)) { O << "\tslwi "; useSubstituteMnemonic = true; } if (SH <= 31 && MB == (32-SH) && ME == 31) { O << "\tsrwi "; useSubstituteMnemonic = true; SH = 32-SH; } if (useSubstituteMnemonic) { printOperand(MI, 0, STI, O); O << ", "; printOperand(MI, 1, STI, O); O << ", " << (unsigned int)SH; printAnnotation(O, Annot); return; } } if (MI->getOpcode() == PPC::RLDICR || MI->getOpcode() == PPC::RLDICR_32) { unsigned char SH = MI->getOperand(2).getImm(); unsigned char ME = MI->getOperand(3).getImm(); // rldicr RA, RS, SH, 63-SH == sldi RA, RS, SH if (63-SH == ME) { O << "\tsldi "; printOperand(MI, 0, STI, O); O << ", "; printOperand(MI, 1, STI, O); O << ", " << (unsigned int)SH; printAnnotation(O, Annot); return; } } // dcbt[st] is printed manually here because: // 1. The assembly syntax is different between embedded and server targets // 2. We must print the short mnemonics for TH == 0 because the // embedded/server syntax default will not be stable across assemblers // The syntax for dcbt is: // dcbt ra, rb, th [server] // dcbt th, ra, rb [embedded] // where th can be omitted when it is 0. dcbtst is the same. if (MI->getOpcode() == PPC::DCBT || MI->getOpcode() == PPC::DCBTST) { unsigned char TH = MI->getOperand(0).getImm(); O << "\tdcbt"; if (MI->getOpcode() == PPC::DCBTST) O << "st"; if (TH == 16) O << "t"; O << " "; bool IsBookE = STI.getFeatureBits()[PPC::FeatureBookE]; if (IsBookE && TH != 0 && TH != 16) O << (unsigned int) TH << ", "; printOperand(MI, 1, STI, O); O << ", "; printOperand(MI, 2, STI, O); if (!IsBookE && TH != 0 && TH != 16) O << ", " << (unsigned int) TH; printAnnotation(O, Annot); return; } if (MI->getOpcode() == PPC::DCBF) { unsigned char L = MI->getOperand(0).getImm(); if (!L || L == 1 || L == 3 || L == 4 || L == 6) { O << "\tdcb"; if (L != 6) O << "f"; if (L == 1) O << "l"; if (L == 3) O << "lp"; if (L == 4) O << "ps"; if (L == 6) O << "stps"; O << " "; printOperand(MI, 1, STI, O); O << ", "; printOperand(MI, 2, STI, O); printAnnotation(O, Annot); return; } } if (!printAliasInstr(MI, Address, STI, O)) printInstruction(MI, Address, STI, O); printAnnotation(O, Annot); } void PPCInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O, const char *Modifier) { unsigned Code = MI->getOperand(OpNo).getImm(); if (StringRef(Modifier) == "cc") { switch ((PPC::Predicate)Code) { case PPC::PRED_LT_MINUS: case PPC::PRED_LT_PLUS: case PPC::PRED_LT: O << "lt"; return; case PPC::PRED_LE_MINUS: case PPC::PRED_LE_PLUS: case PPC::PRED_LE: O << "le"; return; case PPC::PRED_EQ_MINUS: case PPC::PRED_EQ_PLUS: case PPC::PRED_EQ: O << "eq"; return; case PPC::PRED_GE_MINUS: case PPC::PRED_GE_PLUS: case PPC::PRED_GE: O << "ge"; return; case PPC::PRED_GT_MINUS: case PPC::PRED_GT_PLUS: case PPC::PRED_GT: O << "gt"; return; case PPC::PRED_NE_MINUS: case PPC::PRED_NE_PLUS: case PPC::PRED_NE: O << "ne"; return; case PPC::PRED_UN_MINUS: case PPC::PRED_UN_PLUS: case PPC::PRED_UN: O << "un"; return; case PPC::PRED_NU_MINUS: case PPC::PRED_NU_PLUS: case PPC::PRED_NU: O << "nu"; return; case PPC::PRED_BIT_SET: case PPC::PRED_BIT_UNSET: llvm_unreachable("Invalid use of bit predicate code"); } llvm_unreachable("Invalid predicate code"); } if (StringRef(Modifier) == "pm") { switch ((PPC::Predicate)Code) { case PPC::PRED_LT: case PPC::PRED_LE: case PPC::PRED_EQ: case PPC::PRED_GE: case PPC::PRED_GT: case PPC::PRED_NE: case PPC::PRED_UN: case PPC::PRED_NU: return; case PPC::PRED_LT_MINUS: case PPC::PRED_LE_MINUS: case PPC::PRED_EQ_MINUS: case PPC::PRED_GE_MINUS: case PPC::PRED_GT_MINUS: case PPC::PRED_NE_MINUS: case PPC::PRED_UN_MINUS: case PPC::PRED_NU_MINUS: O << "-"; return; case PPC::PRED_LT_PLUS: case PPC::PRED_LE_PLUS: case PPC::PRED_EQ_PLUS: case PPC::PRED_GE_PLUS: case PPC::PRED_GT_PLUS: case PPC::PRED_NE_PLUS: case PPC::PRED_UN_PLUS: case PPC::PRED_NU_PLUS: O << "+"; return; case PPC::PRED_BIT_SET: case PPC::PRED_BIT_UNSET: llvm_unreachable("Invalid use of bit predicate code"); } llvm_unreachable("Invalid predicate code"); } assert(StringRef(Modifier) == "reg" && "Need to specify 'cc', 'pm' or 'reg' as predicate op modifier!"); printOperand(MI, OpNo + 1, STI, O); } void PPCInstPrinter::printATBitsAsHint(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned Code = MI->getOperand(OpNo).getImm(); if (Code == 2) O << "-"; else if (Code == 3) O << "+"; } void PPCInstPrinter::printU1ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 1 && "Invalid u1imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU2ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 3 && "Invalid u2imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU3ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 8 && "Invalid u3imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU4ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 15 && "Invalid u4imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printS5ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { int Value = MI->getOperand(OpNo).getImm(); Value = SignExtend32<5>(Value); O << (int)Value; } void PPCInstPrinter::printImmZeroOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value == 0 && "Operand must be zero"); O << (unsigned int)Value; } void PPCInstPrinter::printU5ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 31 && "Invalid u5imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU6ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 63 && "Invalid u6imm argument!"); O << (unsigned int)Value; } void PPCInstPrinter::printU7ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned int Value = MI->getOperand(OpNo).getImm(); assert(Value <= 127 && "Invalid u7imm argument!"); O << (unsigned int)Value; } // Operands of BUILD_VECTOR are signed and we use this to print operands // of XXSPLTIB which are unsigned. So we simply truncate to 8 bits and // print as unsigned. void PPCInstPrinter::printU8ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned char Value = MI->getOperand(OpNo).getImm(); O << (unsigned int)Value; } void PPCInstPrinter::printU10ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned short Value = MI->getOperand(OpNo).getImm(); assert(Value <= 1023 && "Invalid u10imm argument!"); O << (unsigned short)Value; } void PPCInstPrinter::printU12ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned short Value = MI->getOperand(OpNo).getImm(); assert(Value <= 4095 && "Invalid u12imm argument!"); O << (unsigned short)Value; } void PPCInstPrinter::printS16ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { if (MI->getOperand(OpNo).isImm()) O << (short)MI->getOperand(OpNo).getImm(); else printOperand(MI, OpNo, STI, O); } void PPCInstPrinter::printS34ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { if (MI->getOperand(OpNo).isImm()) { long long Value = MI->getOperand(OpNo).getImm(); assert(isInt<34>(Value) && "Invalid s34imm argument!"); O << (long long)Value; } else printOperand(MI, OpNo, STI, O); } void PPCInstPrinter::printU16ImmOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { if (MI->getOperand(OpNo).isImm()) O << (unsigned short)MI->getOperand(OpNo).getImm(); else printOperand(MI, OpNo, STI, O); } void PPCInstPrinter::printBranchOperand(const MCInst *MI, uint64_t Address, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { if (!MI->getOperand(OpNo).isImm()) return printOperand(MI, OpNo, STI, O); int32_t Imm = SignExtend32<32>((unsigned)MI->getOperand(OpNo).getImm() << 2); if (PrintBranchImmAsAddress) { uint64_t Target = Address + Imm; if (!TT.isPPC64()) Target &= 0xffffffff; O << formatHex(Target); } else { // Branches can take an immediate operand. This is used by the branch // selection pass to print, for example `.+8` (for ELF) or `$+8` (for AIX) // to express an eight byte displacement from the program counter. if (!TT.isOSAIX()) O << "."; else O << "$"; if (Imm >= 0) O << "+"; O << Imm; } } void PPCInstPrinter::printAbsBranchOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { if (!MI->getOperand(OpNo).isImm()) return printOperand(MI, OpNo, STI, O); O << SignExtend32<32>((unsigned)MI->getOperand(OpNo).getImm() << 2); } void PPCInstPrinter::printcrbitm(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { unsigned CCReg = MI->getOperand(OpNo).getReg(); unsigned RegNo; switch (CCReg) { default: llvm_unreachable("Unknown CR register"); case PPC::CR0: RegNo = 0; break; case PPC::CR1: RegNo = 1; break; case PPC::CR2: RegNo = 2; break; case PPC::CR3: RegNo = 3; break; case PPC::CR4: RegNo = 4; break; case PPC::CR5: RegNo = 5; break; case PPC::CR6: RegNo = 6; break; case PPC::CR7: RegNo = 7; break; } O << (0x80 >> RegNo); } void PPCInstPrinter::printMemRegImm(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { printS16ImmOperand(MI, OpNo, STI, O); O << '('; if (MI->getOperand(OpNo+1).getReg() == PPC::R0) O << "0"; else printOperand(MI, OpNo + 1, STI, O); O << ')'; } void PPCInstPrinter::printMemRegImm34PCRel(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { printS34ImmOperand(MI, OpNo, STI, O); O << '('; printImmZeroOperand(MI, OpNo + 1, STI, O); O << ')'; } void PPCInstPrinter::printMemRegImm34(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { printS34ImmOperand(MI, OpNo, STI, O); O << '('; printOperand(MI, OpNo + 1, STI, O); O << ')'; } void PPCInstPrinter::printMemRegReg(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { // When used as the base register, r0 reads constant zero rather than // the value contained in the register. For this reason, the darwin // assembler requires that we print r0 as 0 (no r) when used as the base. if (MI->getOperand(OpNo).getReg() == PPC::R0) O << "0"; else printOperand(MI, OpNo, STI, O); O << ", "; printOperand(MI, OpNo + 1, STI, O); } void PPCInstPrinter::printTLSCall(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { // On PPC64, VariantKind is VK_None, but on PPC32, it's VK_PLT, and it must // come at the _end_ of the expression. const MCOperand &Op = MI->getOperand(OpNo); const MCSymbolRefExpr *RefExp = nullptr; const MCConstantExpr *ConstExp = nullptr; if (const MCBinaryExpr *BinExpr = dyn_cast(Op.getExpr())) { RefExp = cast(BinExpr->getLHS()); ConstExp = cast(BinExpr->getRHS()); } else RefExp = cast(Op.getExpr()); O << RefExp->getSymbol().getName(); // The variant kind VK_PPC_NOTOC needs to be handled as a special case // because we do not want the assembly to print out the @notoc at the // end like __tls_get_addr(x@tlsgd)@notoc. Instead we want it to look // like __tls_get_addr@notoc(x@tlsgd). if (RefExp->getKind() == MCSymbolRefExpr::VK_PPC_NOTOC) O << '@' << MCSymbolRefExpr::getVariantKindName(RefExp->getKind()); O << '('; printOperand(MI, OpNo + 1, STI, O); O << ')'; if (RefExp->getKind() != MCSymbolRefExpr::VK_None && RefExp->getKind() != MCSymbolRefExpr::VK_PPC_NOTOC) O << '@' << MCSymbolRefExpr::getVariantKindName(RefExp->getKind()); if (ConstExp != nullptr) O << '+' << ConstExp->getValue(); } /// showRegistersWithPercentPrefix - Check if this register name should be /// printed with a percentage symbol as prefix. bool PPCInstPrinter::showRegistersWithPercentPrefix(const char *RegName) const { if (!FullRegNamesWithPercent || TT.getOS() == Triple::AIX) return false; switch (RegName[0]) { default: return false; case 'r': case 'f': case 'q': case 'v': case 'c': return true; } } /// getVerboseConditionalRegName - This method expands the condition register /// when requested explicitly or targetting Darwin. const char *PPCInstPrinter::getVerboseConditionRegName(unsigned RegNum, unsigned RegEncoding) const { if (!FullRegNames) return nullptr; if (RegNum < PPC::CR0EQ || RegNum > PPC::CR7UN) return nullptr; const char *CRBits[] = { "lt", "gt", "eq", "un", "4*cr1+lt", "4*cr1+gt", "4*cr1+eq", "4*cr1+un", "4*cr2+lt", "4*cr2+gt", "4*cr2+eq", "4*cr2+un", "4*cr3+lt", "4*cr3+gt", "4*cr3+eq", "4*cr3+un", "4*cr4+lt", "4*cr4+gt", "4*cr4+eq", "4*cr4+un", "4*cr5+lt", "4*cr5+gt", "4*cr5+eq", "4*cr5+un", "4*cr6+lt", "4*cr6+gt", "4*cr6+eq", "4*cr6+un", "4*cr7+lt", "4*cr7+gt", "4*cr7+eq", "4*cr7+un" }; return CRBits[RegEncoding]; } // showRegistersWithPrefix - This method determines whether registers // should be number-only or include the prefix. bool PPCInstPrinter::showRegistersWithPrefix() const { if (TT.getOS() == Triple::AIX) return false; return FullRegNamesWithPercent || FullRegNames; } void PPCInstPrinter::printOperand(const MCInst *MI, unsigned OpNo, const MCSubtargetInfo &STI, raw_ostream &O) { const MCOperand &Op = MI->getOperand(OpNo); if (Op.isReg()) { unsigned Reg = Op.getReg(); if (!ShowVSRNumsAsVR) Reg = PPCInstrInfo::getRegNumForOperand(MII.get(MI->getOpcode()), Reg, OpNo); const char *RegName; RegName = getVerboseConditionRegName(Reg, MRI.getEncodingValue(Reg)); if (RegName == nullptr) RegName = getRegisterName(Reg); if (showRegistersWithPercentPrefix(RegName)) O << "%"; if (!showRegistersWithPrefix()) RegName = PPCRegisterInfo::stripRegisterPrefix(RegName); O << RegName; return; } if (Op.isImm()) { O << Op.getImm(); return; } assert(Op.isExpr() && "unknown operand kind in printOperand"); Op.getExpr()->print(O, &MAI); }