//===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the interfaces that NVPTX uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "NVPTXISelLowering.h" #include "MCTargetDesc/NVPTXBaseInfo.h" #include "NVPTX.h" #include "NVPTXSubtarget.h" #include "NVPTXTargetMachine.h" #include "NVPTXTargetObjectFile.h" #include "NVPTXUtilities.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetCallingConv.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicsNVPTX.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include #include #include #include #include #define DEBUG_TYPE "nvptx-lower" using namespace llvm; static std::atomic GlobalUniqueCallSite; static cl::opt sched4reg( "nvptx-sched4reg", cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false)); static cl::opt FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden, cl::desc("NVPTX Specific: FMA contraction (0: don't do it" " 1: do it 2: do it aggressively"), cl::init(2)); static cl::opt UsePrecDivF32( "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden, cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use" " IEEE Compliant F32 div.rnd if available."), cl::init(2)); static cl::opt UsePrecSqrtF32( "nvptx-prec-sqrtf32", cl::Hidden, cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), cl::init(true)); int NVPTXTargetLowering::getDivF32Level() const { if (UsePrecDivF32.getNumOccurrences() > 0) { // If nvptx-prec-div32=N is used on the command-line, always honor it return UsePrecDivF32; } else { // Otherwise, use div.approx if fast math is enabled if (getTargetMachine().Options.UnsafeFPMath) return 0; else return 2; } } bool NVPTXTargetLowering::usePrecSqrtF32() const { if (UsePrecSqrtF32.getNumOccurrences() > 0) { // If nvptx-prec-sqrtf32 is used on the command-line, always honor it return UsePrecSqrtF32; } else { // Otherwise, use sqrt.approx if fast math is enabled return !getTargetMachine().Options.UnsafeFPMath; } } bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const { return MF.getDenormalMode(APFloat::IEEEsingle()).Output == DenormalMode::PreserveSign; } static bool IsPTXVectorType(MVT VT) { switch (VT.SimpleTy) { default: return false; case MVT::v2i1: case MVT::v4i1: case MVT::v2i8: case MVT::v4i8: case MVT::v2i16: case MVT::v4i16: case MVT::v2i32: case MVT::v4i32: case MVT::v2i64: case MVT::v2f16: case MVT::v4f16: case MVT::v8f16: // <4 x f16x2> case MVT::v2f32: case MVT::v4f32: case MVT::v2f64: return true; } } /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive /// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors /// into their primitive components. /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the /// same number of types as the Ins/Outs arrays in LowerFormalArguments, /// LowerCall, and LowerReturn. static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl &ValueVTs, SmallVectorImpl *Offsets = nullptr, uint64_t StartingOffset = 0) { SmallVector TempVTs; SmallVector TempOffsets; // Special case for i128 - decompose to (i64, i64) if (Ty->isIntegerTy(128)) { ValueVTs.push_back(EVT(MVT::i64)); ValueVTs.push_back(EVT(MVT::i64)); if (Offsets) { Offsets->push_back(StartingOffset + 0); Offsets->push_back(StartingOffset + 8); } return; } // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs. if (StructType *STy = dyn_cast(Ty)) { auto const *SL = DL.getStructLayout(STy); auto ElementNum = 0; for(auto *EI : STy->elements()) { ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets, StartingOffset + SL->getElementOffset(ElementNum)); ++ElementNum; } return; } ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset); for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) { EVT VT = TempVTs[i]; uint64_t Off = TempOffsets[i]; // Split vectors into individual elements, except for v2f16, which // we will pass as a single scalar. if (VT.isVector()) { unsigned NumElts = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); // Vectors with an even number of f16 elements will be passed to // us as an array of v2f16 elements. We must match this so we // stay in sync with Ins/Outs. if (EltVT == MVT::f16 && NumElts % 2 == 0) { EltVT = MVT::v2f16; NumElts /= 2; } for (unsigned j = 0; j != NumElts; ++j) { ValueVTs.push_back(EltVT); if (Offsets) Offsets->push_back(Off + j * EltVT.getStoreSize()); } } else { ValueVTs.push_back(VT); if (Offsets) Offsets->push_back(Off); } } } // Check whether we can merge loads/stores of some of the pieces of a // flattened function parameter or return value into a single vector // load/store. // // The flattened parameter is represented as a list of EVTs and // offsets, and the whole structure is aligned to ParamAlignment. This // function determines whether we can load/store pieces of the // parameter starting at index Idx using a single vectorized op of // size AccessSize. If so, it returns the number of param pieces // covered by the vector op. Otherwise, it returns 1. static unsigned CanMergeParamLoadStoresStartingAt( unsigned Idx, uint32_t AccessSize, const SmallVectorImpl &ValueVTs, const SmallVectorImpl &Offsets, Align ParamAlignment) { // Can't vectorize if param alignment is not sufficient. if (ParamAlignment < AccessSize) return 1; // Can't vectorize if offset is not aligned. if (Offsets[Idx] & (AccessSize - 1)) return 1; EVT EltVT = ValueVTs[Idx]; unsigned EltSize = EltVT.getStoreSize(); // Element is too large to vectorize. if (EltSize >= AccessSize) return 1; unsigned NumElts = AccessSize / EltSize; // Can't vectorize if AccessBytes if not a multiple of EltSize. if (AccessSize != EltSize * NumElts) return 1; // We don't have enough elements to vectorize. if (Idx + NumElts > ValueVTs.size()) return 1; // PTX ISA can only deal with 2- and 4-element vector ops. if (NumElts != 4 && NumElts != 2) return 1; for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) { // Types do not match. if (ValueVTs[j] != EltVT) return 1; // Elements are not contiguous. if (Offsets[j] - Offsets[j - 1] != EltSize) return 1; } // OK. We can vectorize ValueVTs[i..i+NumElts) return NumElts; } // Flags for tracking per-element vectorization state of loads/stores // of a flattened function parameter or return value. enum ParamVectorizationFlags { PVF_INNER = 0x0, // Middle elements of a vector. PVF_FIRST = 0x1, // First element of the vector. PVF_LAST = 0x2, // Last element of the vector. // Scalar is effectively a 1-element vector. PVF_SCALAR = PVF_FIRST | PVF_LAST }; // Computes whether and how we can vectorize the loads/stores of a // flattened function parameter or return value. // // The flattened parameter is represented as the list of ValueVTs and // Offsets, and is aligned to ParamAlignment bytes. We return a vector // of the same size as ValueVTs indicating how each piece should be // loaded/stored (i.e. as a scalar, or as part of a vector // load/store). static SmallVector VectorizePTXValueVTs(const SmallVectorImpl &ValueVTs, const SmallVectorImpl &Offsets, Align ParamAlignment) { // Set vector size to match ValueVTs and mark all elements as // scalars by default. SmallVector VectorInfo; VectorInfo.assign(ValueVTs.size(), PVF_SCALAR); // Check what we can vectorize using 128/64/32-bit accesses. for (int I = 0, E = ValueVTs.size(); I != E; ++I) { // Skip elements we've already processed. assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state."); for (unsigned AccessSize : {16, 8, 4, 2}) { unsigned NumElts = CanMergeParamLoadStoresStartingAt( I, AccessSize, ValueVTs, Offsets, ParamAlignment); // Mark vectorized elements. switch (NumElts) { default: llvm_unreachable("Unexpected return value"); case 1: // Can't vectorize using this size, try next smaller size. continue; case 2: assert(I + 1 < E && "Not enough elements."); VectorInfo[I] = PVF_FIRST; VectorInfo[I + 1] = PVF_LAST; I += 1; break; case 4: assert(I + 3 < E && "Not enough elements."); VectorInfo[I] = PVF_FIRST; VectorInfo[I + 1] = PVF_INNER; VectorInfo[I + 2] = PVF_INNER; VectorInfo[I + 3] = PVF_LAST; I += 3; break; } // Break out of the inner loop because we've already succeeded // using largest possible AccessSize. break; } } return VectorInfo; } // NVPTXTargetLowering Constructor. NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM, const NVPTXSubtarget &STI) : TargetLowering(TM), nvTM(&TM), STI(STI) { // always lower memset, memcpy, and memmove intrinsics to load/store // instructions, rather // then generating calls to memset, mempcy or memmove. MaxStoresPerMemset = (unsigned) 0xFFFFFFFF; MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF; MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF; setBooleanContents(ZeroOrNegativeOneBooleanContent); setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); // Jump is Expensive. Don't create extra control flow for 'and', 'or' // condition branches. setJumpIsExpensive(true); // Wide divides are _very_ slow. Try to reduce the width of the divide if // possible. addBypassSlowDiv(64, 32); // By default, use the Source scheduling if (sched4reg) setSchedulingPreference(Sched::RegPressure); else setSchedulingPreference(Sched::Source); auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, LegalizeAction NoF16Action) { setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action); }; addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass); addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass); addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass); addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass); addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass); addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass); addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass); addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass); // Conversion to/from FP16/FP16x2 is always legal. setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal); setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand); setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote); setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand); // Operations not directly supported by NVPTX. for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::i32, MVT::i64}) { setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::BR_CC, VT, Expand); } // Some SIGN_EXTEND_INREG can be done using cvt instruction. // For others we will expand to a SHL/SRA pair. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom); setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom); setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom); setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom); setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom); setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom); setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); // TODO: we may consider expanding ROTL/ROTR on older GPUs. Currently on GPUs // that don't have h/w rotation we lower them to multi-instruction assembly. // See ROT*_sw in NVPTXIntrInfo.td setOperationAction(ISD::ROTL, MVT::i64, Legal); setOperationAction(ISD::ROTR, MVT::i64, Legal); setOperationAction(ISD::ROTL, MVT::i32, Legal); setOperationAction(ISD::ROTR, MVT::i32, Legal); setOperationAction(ISD::ROTL, MVT::i16, Expand); setOperationAction(ISD::ROTR, MVT::i16, Expand); setOperationAction(ISD::ROTL, MVT::i8, Expand); setOperationAction(ISD::ROTR, MVT::i8, Expand); setOperationAction(ISD::BSWAP, MVT::i16, Expand); setOperationAction(ISD::BSWAP, MVT::i32, Expand); setOperationAction(ISD::BSWAP, MVT::i64, Expand); // Indirect branch is not supported. // This also disables Jump Table creation. setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BRIND, MVT::Other, Expand); setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); // We want to legalize constant related memmove and memcopy // intrinsics. setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); // Turn FP extload into load/fpextend setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); // Turn FP truncstore into trunc + store. // FIXME: vector types should also be expanded setTruncStoreAction(MVT::f32, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); // PTX does not support load / store predicate registers setOperationAction(ISD::LOAD, MVT::i1, Custom); setOperationAction(ISD::STORE, MVT::i1, Custom); for (MVT VT : MVT::integer_valuetypes()) { setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); setTruncStoreAction(VT, MVT::i1, Expand); } // This is legal in NVPTX setOperationAction(ISD::ConstantFP, MVT::f64, Legal); setOperationAction(ISD::ConstantFP, MVT::f32, Legal); setOperationAction(ISD::ConstantFP, MVT::f16, Legal); // TRAP can be lowered to PTX trap setOperationAction(ISD::TRAP, MVT::Other, Legal); // Register custom handling for vector loads/stores for (MVT VT : MVT::fixedlen_vector_valuetypes()) { if (IsPTXVectorType(VT)) { setOperationAction(ISD::LOAD, VT, Custom); setOperationAction(ISD::STORE, VT, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom); } } // Custom handling for i8 intrinsics setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) { setOperationAction(ISD::ABS, Ty, Legal); setOperationAction(ISD::SMIN, Ty, Legal); setOperationAction(ISD::SMAX, Ty, Legal); setOperationAction(ISD::UMIN, Ty, Legal); setOperationAction(ISD::UMAX, Ty, Legal); setOperationAction(ISD::CTPOP, Ty, Legal); setOperationAction(ISD::CTLZ, Ty, Legal); } setOperationAction(ISD::CTTZ, MVT::i16, Expand); setOperationAction(ISD::CTTZ, MVT::i32, Expand); setOperationAction(ISD::CTTZ, MVT::i64, Expand); // PTX does not directly support SELP of i1, so promote to i32 first setOperationAction(ISD::SELECT, MVT::i1, Custom); // PTX cannot multiply two i64s in a single instruction. setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); // We have some custom DAG combine patterns for these nodes setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::FADD); setTargetDAGCombine(ISD::MUL); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SREM); setTargetDAGCombine(ISD::UREM); // setcc for f16x2 needs special handling to prevent legalizer's // attempt to scalarize it due to v2i1 not being legal. if (STI.allowFP16Math()) setTargetDAGCombine(ISD::SETCC); // Promote fp16 arithmetic if fp16 hardware isn't available or the // user passed --nvptx-no-fp16-math. The flag is useful because, // although sm_53+ GPUs have some sort of FP16 support in // hardware, only sm_53 and sm_60 have full implementation. Others // only have token amount of hardware and are likely to run faster // by using fp32 units instead. for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) { setFP16OperationAction(Op, MVT::f16, Legal, Promote); setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); } // There's no neg.f16 instruction. Expand to (0-x). setOperationAction(ISD::FNEG, MVT::f16, Expand); setOperationAction(ISD::FNEG, MVT::v2f16, Expand); // (would be) Library functions. // These map to conversion instructions for scalar FP types. for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT, ISD::FTRUNC}) { setOperationAction(Op, MVT::f16, Legal); setOperationAction(Op, MVT::f32, Legal); setOperationAction(Op, MVT::f64, Legal); setOperationAction(Op, MVT::v2f16, Expand); } setOperationAction(ISD::FROUND, MVT::f16, Promote); setOperationAction(ISD::FROUND, MVT::v2f16, Expand); setOperationAction(ISD::FROUND, MVT::f32, Custom); setOperationAction(ISD::FROUND, MVT::f64, Custom); // 'Expand' implements FCOPYSIGN without calling an external library. setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); // These map to corresponding instructions for f32/f64. f16 must be // promoted to f32. v2f16 is expanded to f16, which is then promoted // to f32. for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) { setOperationAction(Op, MVT::f16, Promote); setOperationAction(Op, MVT::f32, Legal); setOperationAction(Op, MVT::f64, Legal); setOperationAction(Op, MVT::v2f16, Expand); } setOperationAction(ISD::FMINNUM, MVT::f16, Promote); setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); setOperationAction(ISD::FMINIMUM, MVT::f16, Promote); setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote); // No FEXP2, FLOG2. The PTX ex2 and log2 functions are always approximate. // No FPOW or FREM in PTX. // Now deduce the information based on the above mentioned // actions computeRegisterProperties(STI.getRegisterInfo()); } const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((NVPTXISD::NodeType)Opcode) { case NVPTXISD::FIRST_NUMBER: break; case NVPTXISD::CALL: return "NVPTXISD::CALL"; case NVPTXISD::RET_FLAG: return "NVPTXISD::RET_FLAG"; case NVPTXISD::LOAD_PARAM: return "NVPTXISD::LOAD_PARAM"; case NVPTXISD::Wrapper: return "NVPTXISD::Wrapper"; case NVPTXISD::DeclareParam: return "NVPTXISD::DeclareParam"; case NVPTXISD::DeclareScalarParam: return "NVPTXISD::DeclareScalarParam"; case NVPTXISD::DeclareRet: return "NVPTXISD::DeclareRet"; case NVPTXISD::DeclareScalarRet: return "NVPTXISD::DeclareScalarRet"; case NVPTXISD::DeclareRetParam: return "NVPTXISD::DeclareRetParam"; case NVPTXISD::PrintCall: return "NVPTXISD::PrintCall"; case NVPTXISD::PrintConvergentCall: return "NVPTXISD::PrintConvergentCall"; case NVPTXISD::PrintCallUni: return "NVPTXISD::PrintCallUni"; case NVPTXISD::PrintConvergentCallUni: return "NVPTXISD::PrintConvergentCallUni"; case NVPTXISD::LoadParam: return "NVPTXISD::LoadParam"; case NVPTXISD::LoadParamV2: return "NVPTXISD::LoadParamV2"; case NVPTXISD::LoadParamV4: return "NVPTXISD::LoadParamV4"; case NVPTXISD::StoreParam: return "NVPTXISD::StoreParam"; case NVPTXISD::StoreParamV2: return "NVPTXISD::StoreParamV2"; case NVPTXISD::StoreParamV4: return "NVPTXISD::StoreParamV4"; case NVPTXISD::StoreParamS32: return "NVPTXISD::StoreParamS32"; case NVPTXISD::StoreParamU32: return "NVPTXISD::StoreParamU32"; case NVPTXISD::CallArgBegin: return "NVPTXISD::CallArgBegin"; case NVPTXISD::CallArg: return "NVPTXISD::CallArg"; case NVPTXISD::LastCallArg: return "NVPTXISD::LastCallArg"; case NVPTXISD::CallArgEnd: return "NVPTXISD::CallArgEnd"; case NVPTXISD::CallVoid: return "NVPTXISD::CallVoid"; case NVPTXISD::CallVal: return "NVPTXISD::CallVal"; case NVPTXISD::CallSymbol: return "NVPTXISD::CallSymbol"; case NVPTXISD::Prototype: return "NVPTXISD::Prototype"; case NVPTXISD::MoveParam: return "NVPTXISD::MoveParam"; case NVPTXISD::StoreRetval: return "NVPTXISD::StoreRetval"; case NVPTXISD::StoreRetvalV2: return "NVPTXISD::StoreRetvalV2"; case NVPTXISD::StoreRetvalV4: return "NVPTXISD::StoreRetvalV4"; case NVPTXISD::PseudoUseParam: return "NVPTXISD::PseudoUseParam"; case NVPTXISD::RETURN: return "NVPTXISD::RETURN"; case NVPTXISD::CallSeqBegin: return "NVPTXISD::CallSeqBegin"; case NVPTXISD::CallSeqEnd: return "NVPTXISD::CallSeqEnd"; case NVPTXISD::CallPrototype: return "NVPTXISD::CallPrototype"; case NVPTXISD::ProxyReg: return "NVPTXISD::ProxyReg"; case NVPTXISD::LoadV2: return "NVPTXISD::LoadV2"; case NVPTXISD::LoadV4: return "NVPTXISD::LoadV4"; case NVPTXISD::LDGV2: return "NVPTXISD::LDGV2"; case NVPTXISD::LDGV4: return "NVPTXISD::LDGV4"; case NVPTXISD::LDUV2: return "NVPTXISD::LDUV2"; case NVPTXISD::LDUV4: return "NVPTXISD::LDUV4"; case NVPTXISD::StoreV2: return "NVPTXISD::StoreV2"; case NVPTXISD::StoreV4: return "NVPTXISD::StoreV4"; case NVPTXISD::FUN_SHFL_CLAMP: return "NVPTXISD::FUN_SHFL_CLAMP"; case NVPTXISD::FUN_SHFR_CLAMP: return "NVPTXISD::FUN_SHFR_CLAMP"; case NVPTXISD::IMAD: return "NVPTXISD::IMAD"; case NVPTXISD::SETP_F16X2: return "NVPTXISD::SETP_F16X2"; case NVPTXISD::Dummy: return "NVPTXISD::Dummy"; case NVPTXISD::MUL_WIDE_SIGNED: return "NVPTXISD::MUL_WIDE_SIGNED"; case NVPTXISD::MUL_WIDE_UNSIGNED: return "NVPTXISD::MUL_WIDE_UNSIGNED"; case NVPTXISD::Tex1DFloatS32: return "NVPTXISD::Tex1DFloatS32"; case NVPTXISD::Tex1DFloatFloat: return "NVPTXISD::Tex1DFloatFloat"; case NVPTXISD::Tex1DFloatFloatLevel: return "NVPTXISD::Tex1DFloatFloatLevel"; case NVPTXISD::Tex1DFloatFloatGrad: return "NVPTXISD::Tex1DFloatFloatGrad"; case NVPTXISD::Tex1DS32S32: return "NVPTXISD::Tex1DS32S32"; case NVPTXISD::Tex1DS32Float: return "NVPTXISD::Tex1DS32Float"; case NVPTXISD::Tex1DS32FloatLevel: return "NVPTXISD::Tex1DS32FloatLevel"; case NVPTXISD::Tex1DS32FloatGrad: return "NVPTXISD::Tex1DS32FloatGrad"; case NVPTXISD::Tex1DU32S32: return "NVPTXISD::Tex1DU32S32"; case NVPTXISD::Tex1DU32Float: return "NVPTXISD::Tex1DU32Float"; case NVPTXISD::Tex1DU32FloatLevel: return "NVPTXISD::Tex1DU32FloatLevel"; case NVPTXISD::Tex1DU32FloatGrad: return "NVPTXISD::Tex1DU32FloatGrad"; case NVPTXISD::Tex1DArrayFloatS32: return "NVPTXISD::Tex1DArrayFloatS32"; case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat"; case NVPTXISD::Tex1DArrayFloatFloatLevel: return "NVPTXISD::Tex1DArrayFloatFloatLevel"; case NVPTXISD::Tex1DArrayFloatFloatGrad: return "NVPTXISD::Tex1DArrayFloatFloatGrad"; case NVPTXISD::Tex1DArrayS32S32: return "NVPTXISD::Tex1DArrayS32S32"; case NVPTXISD::Tex1DArrayS32Float: return "NVPTXISD::Tex1DArrayS32Float"; case NVPTXISD::Tex1DArrayS32FloatLevel: return "NVPTXISD::Tex1DArrayS32FloatLevel"; case NVPTXISD::Tex1DArrayS32FloatGrad: return "NVPTXISD::Tex1DArrayS32FloatGrad"; case NVPTXISD::Tex1DArrayU32S32: return "NVPTXISD::Tex1DArrayU32S32"; case NVPTXISD::Tex1DArrayU32Float: return "NVPTXISD::Tex1DArrayU32Float"; case NVPTXISD::Tex1DArrayU32FloatLevel: return "NVPTXISD::Tex1DArrayU32FloatLevel"; case NVPTXISD::Tex1DArrayU32FloatGrad: return "NVPTXISD::Tex1DArrayU32FloatGrad"; case NVPTXISD::Tex2DFloatS32: return "NVPTXISD::Tex2DFloatS32"; case NVPTXISD::Tex2DFloatFloat: return "NVPTXISD::Tex2DFloatFloat"; case NVPTXISD::Tex2DFloatFloatLevel: return "NVPTXISD::Tex2DFloatFloatLevel"; case NVPTXISD::Tex2DFloatFloatGrad: return "NVPTXISD::Tex2DFloatFloatGrad"; case NVPTXISD::Tex2DS32S32: return "NVPTXISD::Tex2DS32S32"; case NVPTXISD::Tex2DS32Float: return "NVPTXISD::Tex2DS32Float"; case NVPTXISD::Tex2DS32FloatLevel: return "NVPTXISD::Tex2DS32FloatLevel"; case NVPTXISD::Tex2DS32FloatGrad: return "NVPTXISD::Tex2DS32FloatGrad"; case NVPTXISD::Tex2DU32S32: return "NVPTXISD::Tex2DU32S32"; case NVPTXISD::Tex2DU32Float: return "NVPTXISD::Tex2DU32Float"; case NVPTXISD::Tex2DU32FloatLevel: return "NVPTXISD::Tex2DU32FloatLevel"; case NVPTXISD::Tex2DU32FloatGrad: return "NVPTXISD::Tex2DU32FloatGrad"; case NVPTXISD::Tex2DArrayFloatS32: return "NVPTXISD::Tex2DArrayFloatS32"; case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat"; case NVPTXISD::Tex2DArrayFloatFloatLevel: return "NVPTXISD::Tex2DArrayFloatFloatLevel"; case NVPTXISD::Tex2DArrayFloatFloatGrad: return "NVPTXISD::Tex2DArrayFloatFloatGrad"; case NVPTXISD::Tex2DArrayS32S32: return "NVPTXISD::Tex2DArrayS32S32"; case NVPTXISD::Tex2DArrayS32Float: return "NVPTXISD::Tex2DArrayS32Float"; case NVPTXISD::Tex2DArrayS32FloatLevel: return "NVPTXISD::Tex2DArrayS32FloatLevel"; case NVPTXISD::Tex2DArrayS32FloatGrad: return "NVPTXISD::Tex2DArrayS32FloatGrad"; case NVPTXISD::Tex2DArrayU32S32: return "NVPTXISD::Tex2DArrayU32S32"; case NVPTXISD::Tex2DArrayU32Float: return "NVPTXISD::Tex2DArrayU32Float"; case NVPTXISD::Tex2DArrayU32FloatLevel: return "NVPTXISD::Tex2DArrayU32FloatLevel"; case NVPTXISD::Tex2DArrayU32FloatGrad: return "NVPTXISD::Tex2DArrayU32FloatGrad"; case NVPTXISD::Tex3DFloatS32: return "NVPTXISD::Tex3DFloatS32"; case NVPTXISD::Tex3DFloatFloat: return "NVPTXISD::Tex3DFloatFloat"; case NVPTXISD::Tex3DFloatFloatLevel: return "NVPTXISD::Tex3DFloatFloatLevel"; case NVPTXISD::Tex3DFloatFloatGrad: return "NVPTXISD::Tex3DFloatFloatGrad"; case NVPTXISD::Tex3DS32S32: return "NVPTXISD::Tex3DS32S32"; case NVPTXISD::Tex3DS32Float: return "NVPTXISD::Tex3DS32Float"; case NVPTXISD::Tex3DS32FloatLevel: return "NVPTXISD::Tex3DS32FloatLevel"; case NVPTXISD::Tex3DS32FloatGrad: return "NVPTXISD::Tex3DS32FloatGrad"; case NVPTXISD::Tex3DU32S32: return "NVPTXISD::Tex3DU32S32"; case NVPTXISD::Tex3DU32Float: return "NVPTXISD::Tex3DU32Float"; case NVPTXISD::Tex3DU32FloatLevel: return "NVPTXISD::Tex3DU32FloatLevel"; case NVPTXISD::Tex3DU32FloatGrad: return "NVPTXISD::Tex3DU32FloatGrad"; case NVPTXISD::TexCubeFloatFloat: return "NVPTXISD::TexCubeFloatFloat"; case NVPTXISD::TexCubeFloatFloatLevel: return "NVPTXISD::TexCubeFloatFloatLevel"; case NVPTXISD::TexCubeS32Float: return "NVPTXISD::TexCubeS32Float"; case NVPTXISD::TexCubeS32FloatLevel: return "NVPTXISD::TexCubeS32FloatLevel"; case NVPTXISD::TexCubeU32Float: return "NVPTXISD::TexCubeU32Float"; case NVPTXISD::TexCubeU32FloatLevel: return "NVPTXISD::TexCubeU32FloatLevel"; case NVPTXISD::TexCubeArrayFloatFloat: return "NVPTXISD::TexCubeArrayFloatFloat"; case NVPTXISD::TexCubeArrayFloatFloatLevel: return "NVPTXISD::TexCubeArrayFloatFloatLevel"; case NVPTXISD::TexCubeArrayS32Float: return "NVPTXISD::TexCubeArrayS32Float"; case NVPTXISD::TexCubeArrayS32FloatLevel: return "NVPTXISD::TexCubeArrayS32FloatLevel"; case NVPTXISD::TexCubeArrayU32Float: return "NVPTXISD::TexCubeArrayU32Float"; case NVPTXISD::TexCubeArrayU32FloatLevel: return "NVPTXISD::TexCubeArrayU32FloatLevel"; case NVPTXISD::Tld4R2DFloatFloat: return "NVPTXISD::Tld4R2DFloatFloat"; case NVPTXISD::Tld4G2DFloatFloat: return "NVPTXISD::Tld4G2DFloatFloat"; case NVPTXISD::Tld4B2DFloatFloat: return "NVPTXISD::Tld4B2DFloatFloat"; case NVPTXISD::Tld4A2DFloatFloat: return "NVPTXISD::Tld4A2DFloatFloat"; case NVPTXISD::Tld4R2DS64Float: return "NVPTXISD::Tld4R2DS64Float"; case NVPTXISD::Tld4G2DS64Float: return "NVPTXISD::Tld4G2DS64Float"; case NVPTXISD::Tld4B2DS64Float: return "NVPTXISD::Tld4B2DS64Float"; case NVPTXISD::Tld4A2DS64Float: return "NVPTXISD::Tld4A2DS64Float"; case NVPTXISD::Tld4R2DU64Float: return "NVPTXISD::Tld4R2DU64Float"; case NVPTXISD::Tld4G2DU64Float: return "NVPTXISD::Tld4G2DU64Float"; case NVPTXISD::Tld4B2DU64Float: return "NVPTXISD::Tld4B2DU64Float"; case NVPTXISD::Tld4A2DU64Float: return "NVPTXISD::Tld4A2DU64Float"; case NVPTXISD::TexUnified1DFloatS32: return "NVPTXISD::TexUnified1DFloatS32"; case NVPTXISD::TexUnified1DFloatFloat: return "NVPTXISD::TexUnified1DFloatFloat"; case NVPTXISD::TexUnified1DFloatFloatLevel: return "NVPTXISD::TexUnified1DFloatFloatLevel"; case NVPTXISD::TexUnified1DFloatFloatGrad: return "NVPTXISD::TexUnified1DFloatFloatGrad"; case NVPTXISD::TexUnified1DS32S32: return "NVPTXISD::TexUnified1DS32S32"; case NVPTXISD::TexUnified1DS32Float: return "NVPTXISD::TexUnified1DS32Float"; case NVPTXISD::TexUnified1DS32FloatLevel: return "NVPTXISD::TexUnified1DS32FloatLevel"; case NVPTXISD::TexUnified1DS32FloatGrad: return "NVPTXISD::TexUnified1DS32FloatGrad"; case NVPTXISD::TexUnified1DU32S32: return "NVPTXISD::TexUnified1DU32S32"; case NVPTXISD::TexUnified1DU32Float: return "NVPTXISD::TexUnified1DU32Float"; case NVPTXISD::TexUnified1DU32FloatLevel: return "NVPTXISD::TexUnified1DU32FloatLevel"; case NVPTXISD::TexUnified1DU32FloatGrad: return "NVPTXISD::TexUnified1DU32FloatGrad"; case NVPTXISD::TexUnified1DArrayFloatS32: return "NVPTXISD::TexUnified1DArrayFloatS32"; case NVPTXISD::TexUnified1DArrayFloatFloat: return "NVPTXISD::TexUnified1DArrayFloatFloat"; case NVPTXISD::TexUnified1DArrayFloatFloatLevel: return "NVPTXISD::TexUnified1DArrayFloatFloatLevel"; case NVPTXISD::TexUnified1DArrayFloatFloatGrad: return "NVPTXISD::TexUnified1DArrayFloatFloatGrad"; case NVPTXISD::TexUnified1DArrayS32S32: return "NVPTXISD::TexUnified1DArrayS32S32"; case NVPTXISD::TexUnified1DArrayS32Float: return "NVPTXISD::TexUnified1DArrayS32Float"; case NVPTXISD::TexUnified1DArrayS32FloatLevel: return "NVPTXISD::TexUnified1DArrayS32FloatLevel"; case NVPTXISD::TexUnified1DArrayS32FloatGrad: return "NVPTXISD::TexUnified1DArrayS32FloatGrad"; case NVPTXISD::TexUnified1DArrayU32S32: return "NVPTXISD::TexUnified1DArrayU32S32"; case NVPTXISD::TexUnified1DArrayU32Float: return "NVPTXISD::TexUnified1DArrayU32Float"; case NVPTXISD::TexUnified1DArrayU32FloatLevel: return "NVPTXISD::TexUnified1DArrayU32FloatLevel"; case NVPTXISD::TexUnified1DArrayU32FloatGrad: return "NVPTXISD::TexUnified1DArrayU32FloatGrad"; case NVPTXISD::TexUnified2DFloatS32: return "NVPTXISD::TexUnified2DFloatS32"; case NVPTXISD::TexUnified2DFloatFloat: return "NVPTXISD::TexUnified2DFloatFloat"; case NVPTXISD::TexUnified2DFloatFloatLevel: return "NVPTXISD::TexUnified2DFloatFloatLevel"; case NVPTXISD::TexUnified2DFloatFloatGrad: return "NVPTXISD::TexUnified2DFloatFloatGrad"; case NVPTXISD::TexUnified2DS32S32: return "NVPTXISD::TexUnified2DS32S32"; case NVPTXISD::TexUnified2DS32Float: return "NVPTXISD::TexUnified2DS32Float"; case NVPTXISD::TexUnified2DS32FloatLevel: return "NVPTXISD::TexUnified2DS32FloatLevel"; case NVPTXISD::TexUnified2DS32FloatGrad: return "NVPTXISD::TexUnified2DS32FloatGrad"; case NVPTXISD::TexUnified2DU32S32: return "NVPTXISD::TexUnified2DU32S32"; case NVPTXISD::TexUnified2DU32Float: return "NVPTXISD::TexUnified2DU32Float"; case NVPTXISD::TexUnified2DU32FloatLevel: return "NVPTXISD::TexUnified2DU32FloatLevel"; case NVPTXISD::TexUnified2DU32FloatGrad: return "NVPTXISD::TexUnified2DU32FloatGrad"; case NVPTXISD::TexUnified2DArrayFloatS32: return "NVPTXISD::TexUnified2DArrayFloatS32"; case NVPTXISD::TexUnified2DArrayFloatFloat: return "NVPTXISD::TexUnified2DArrayFloatFloat"; case NVPTXISD::TexUnified2DArrayFloatFloatLevel: return "NVPTXISD::TexUnified2DArrayFloatFloatLevel"; case NVPTXISD::TexUnified2DArrayFloatFloatGrad: return "NVPTXISD::TexUnified2DArrayFloatFloatGrad"; case NVPTXISD::TexUnified2DArrayS32S32: return "NVPTXISD::TexUnified2DArrayS32S32"; case NVPTXISD::TexUnified2DArrayS32Float: return "NVPTXISD::TexUnified2DArrayS32Float"; case NVPTXISD::TexUnified2DArrayS32FloatLevel: return "NVPTXISD::TexUnified2DArrayS32FloatLevel"; case NVPTXISD::TexUnified2DArrayS32FloatGrad: return "NVPTXISD::TexUnified2DArrayS32FloatGrad"; case NVPTXISD::TexUnified2DArrayU32S32: return "NVPTXISD::TexUnified2DArrayU32S32"; case NVPTXISD::TexUnified2DArrayU32Float: return "NVPTXISD::TexUnified2DArrayU32Float"; case NVPTXISD::TexUnified2DArrayU32FloatLevel: return "NVPTXISD::TexUnified2DArrayU32FloatLevel"; case NVPTXISD::TexUnified2DArrayU32FloatGrad: return "NVPTXISD::TexUnified2DArrayU32FloatGrad"; case NVPTXISD::TexUnified3DFloatS32: return "NVPTXISD::TexUnified3DFloatS32"; case NVPTXISD::TexUnified3DFloatFloat: return "NVPTXISD::TexUnified3DFloatFloat"; case NVPTXISD::TexUnified3DFloatFloatLevel: return "NVPTXISD::TexUnified3DFloatFloatLevel"; case NVPTXISD::TexUnified3DFloatFloatGrad: return "NVPTXISD::TexUnified3DFloatFloatGrad"; case NVPTXISD::TexUnified3DS32S32: return "NVPTXISD::TexUnified3DS32S32"; case NVPTXISD::TexUnified3DS32Float: return "NVPTXISD::TexUnified3DS32Float"; case NVPTXISD::TexUnified3DS32FloatLevel: return "NVPTXISD::TexUnified3DS32FloatLevel"; case NVPTXISD::TexUnified3DS32FloatGrad: return "NVPTXISD::TexUnified3DS32FloatGrad"; case NVPTXISD::TexUnified3DU32S32: return "NVPTXISD::TexUnified3DU32S32"; case NVPTXISD::TexUnified3DU32Float: return "NVPTXISD::TexUnified3DU32Float"; case NVPTXISD::TexUnified3DU32FloatLevel: return "NVPTXISD::TexUnified3DU32FloatLevel"; case NVPTXISD::TexUnified3DU32FloatGrad: return "NVPTXISD::TexUnified3DU32FloatGrad"; case NVPTXISD::TexUnifiedCubeFloatFloat: return "NVPTXISD::TexUnifiedCubeFloatFloat"; case NVPTXISD::TexUnifiedCubeFloatFloatLevel: return "NVPTXISD::TexUnifiedCubeFloatFloatLevel"; case NVPTXISD::TexUnifiedCubeS32Float: return "NVPTXISD::TexUnifiedCubeS32Float"; case NVPTXISD::TexUnifiedCubeS32FloatLevel: return "NVPTXISD::TexUnifiedCubeS32FloatLevel"; case NVPTXISD::TexUnifiedCubeU32Float: return "NVPTXISD::TexUnifiedCubeU32Float"; case NVPTXISD::TexUnifiedCubeU32FloatLevel: return "NVPTXISD::TexUnifiedCubeU32FloatLevel"; case NVPTXISD::TexUnifiedCubeArrayFloatFloat: return "NVPTXISD::TexUnifiedCubeArrayFloatFloat"; case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel: return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel"; case NVPTXISD::TexUnifiedCubeArrayS32Float: return "NVPTXISD::TexUnifiedCubeArrayS32Float"; case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel: return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel"; case NVPTXISD::TexUnifiedCubeArrayU32Float: return "NVPTXISD::TexUnifiedCubeArrayU32Float"; case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel: return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel"; case NVPTXISD::Tld4UnifiedR2DFloatFloat: return "NVPTXISD::Tld4UnifiedR2DFloatFloat"; case NVPTXISD::Tld4UnifiedG2DFloatFloat: return "NVPTXISD::Tld4UnifiedG2DFloatFloat"; case NVPTXISD::Tld4UnifiedB2DFloatFloat: return "NVPTXISD::Tld4UnifiedB2DFloatFloat"; case NVPTXISD::Tld4UnifiedA2DFloatFloat: return "NVPTXISD::Tld4UnifiedA2DFloatFloat"; case NVPTXISD::Tld4UnifiedR2DS64Float: return "NVPTXISD::Tld4UnifiedR2DS64Float"; case NVPTXISD::Tld4UnifiedG2DS64Float: return "NVPTXISD::Tld4UnifiedG2DS64Float"; case NVPTXISD::Tld4UnifiedB2DS64Float: return "NVPTXISD::Tld4UnifiedB2DS64Float"; case NVPTXISD::Tld4UnifiedA2DS64Float: return "NVPTXISD::Tld4UnifiedA2DS64Float"; case NVPTXISD::Tld4UnifiedR2DU64Float: return "NVPTXISD::Tld4UnifiedR2DU64Float"; case NVPTXISD::Tld4UnifiedG2DU64Float: return "NVPTXISD::Tld4UnifiedG2DU64Float"; case NVPTXISD::Tld4UnifiedB2DU64Float: return "NVPTXISD::Tld4UnifiedB2DU64Float"; case NVPTXISD::Tld4UnifiedA2DU64Float: return "NVPTXISD::Tld4UnifiedA2DU64Float"; case NVPTXISD::Suld1DI8Clamp: return "NVPTXISD::Suld1DI8Clamp"; case NVPTXISD::Suld1DI16Clamp: return "NVPTXISD::Suld1DI16Clamp"; case NVPTXISD::Suld1DI32Clamp: return "NVPTXISD::Suld1DI32Clamp"; case NVPTXISD::Suld1DI64Clamp: return "NVPTXISD::Suld1DI64Clamp"; case NVPTXISD::Suld1DV2I8Clamp: return "NVPTXISD::Suld1DV2I8Clamp"; case NVPTXISD::Suld1DV2I16Clamp: return "NVPTXISD::Suld1DV2I16Clamp"; case NVPTXISD::Suld1DV2I32Clamp: return "NVPTXISD::Suld1DV2I32Clamp"; case NVPTXISD::Suld1DV2I64Clamp: return "NVPTXISD::Suld1DV2I64Clamp"; case NVPTXISD::Suld1DV4I8Clamp: return "NVPTXISD::Suld1DV4I8Clamp"; case NVPTXISD::Suld1DV4I16Clamp: return "NVPTXISD::Suld1DV4I16Clamp"; case NVPTXISD::Suld1DV4I32Clamp: return "NVPTXISD::Suld1DV4I32Clamp"; case NVPTXISD::Suld1DArrayI8Clamp: return "NVPTXISD::Suld1DArrayI8Clamp"; case NVPTXISD::Suld1DArrayI16Clamp: return "NVPTXISD::Suld1DArrayI16Clamp"; case NVPTXISD::Suld1DArrayI32Clamp: return "NVPTXISD::Suld1DArrayI32Clamp"; case NVPTXISD::Suld1DArrayI64Clamp: return "NVPTXISD::Suld1DArrayI64Clamp"; case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp"; case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp"; case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp"; case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp"; case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp"; case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp"; case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp"; case NVPTXISD::Suld2DI8Clamp: return "NVPTXISD::Suld2DI8Clamp"; case NVPTXISD::Suld2DI16Clamp: return "NVPTXISD::Suld2DI16Clamp"; case NVPTXISD::Suld2DI32Clamp: return "NVPTXISD::Suld2DI32Clamp"; case NVPTXISD::Suld2DI64Clamp: return "NVPTXISD::Suld2DI64Clamp"; case NVPTXISD::Suld2DV2I8Clamp: return "NVPTXISD::Suld2DV2I8Clamp"; case NVPTXISD::Suld2DV2I16Clamp: return "NVPTXISD::Suld2DV2I16Clamp"; case NVPTXISD::Suld2DV2I32Clamp: return "NVPTXISD::Suld2DV2I32Clamp"; case NVPTXISD::Suld2DV2I64Clamp: return "NVPTXISD::Suld2DV2I64Clamp"; case NVPTXISD::Suld2DV4I8Clamp: return "NVPTXISD::Suld2DV4I8Clamp"; case NVPTXISD::Suld2DV4I16Clamp: return "NVPTXISD::Suld2DV4I16Clamp"; case NVPTXISD::Suld2DV4I32Clamp: return "NVPTXISD::Suld2DV4I32Clamp"; case NVPTXISD::Suld2DArrayI8Clamp: return "NVPTXISD::Suld2DArrayI8Clamp"; case NVPTXISD::Suld2DArrayI16Clamp: return "NVPTXISD::Suld2DArrayI16Clamp"; case NVPTXISD::Suld2DArrayI32Clamp: return "NVPTXISD::Suld2DArrayI32Clamp"; case NVPTXISD::Suld2DArrayI64Clamp: return "NVPTXISD::Suld2DArrayI64Clamp"; case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp"; case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp"; case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp"; case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp"; case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp"; case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp"; case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp"; case NVPTXISD::Suld3DI8Clamp: return "NVPTXISD::Suld3DI8Clamp"; case NVPTXISD::Suld3DI16Clamp: return "NVPTXISD::Suld3DI16Clamp"; case NVPTXISD::Suld3DI32Clamp: return "NVPTXISD::Suld3DI32Clamp"; case NVPTXISD::Suld3DI64Clamp: return "NVPTXISD::Suld3DI64Clamp"; case NVPTXISD::Suld3DV2I8Clamp: return "NVPTXISD::Suld3DV2I8Clamp"; case NVPTXISD::Suld3DV2I16Clamp: return "NVPTXISD::Suld3DV2I16Clamp"; case NVPTXISD::Suld3DV2I32Clamp: return "NVPTXISD::Suld3DV2I32Clamp"; case NVPTXISD::Suld3DV2I64Clamp: return "NVPTXISD::Suld3DV2I64Clamp"; case NVPTXISD::Suld3DV4I8Clamp: return "NVPTXISD::Suld3DV4I8Clamp"; case NVPTXISD::Suld3DV4I16Clamp: return "NVPTXISD::Suld3DV4I16Clamp"; case NVPTXISD::Suld3DV4I32Clamp: return "NVPTXISD::Suld3DV4I32Clamp"; case NVPTXISD::Suld1DI8Trap: return "NVPTXISD::Suld1DI8Trap"; case NVPTXISD::Suld1DI16Trap: return "NVPTXISD::Suld1DI16Trap"; case NVPTXISD::Suld1DI32Trap: return "NVPTXISD::Suld1DI32Trap"; case NVPTXISD::Suld1DI64Trap: return "NVPTXISD::Suld1DI64Trap"; case NVPTXISD::Suld1DV2I8Trap: return "NVPTXISD::Suld1DV2I8Trap"; case NVPTXISD::Suld1DV2I16Trap: return "NVPTXISD::Suld1DV2I16Trap"; case NVPTXISD::Suld1DV2I32Trap: return "NVPTXISD::Suld1DV2I32Trap"; case NVPTXISD::Suld1DV2I64Trap: return "NVPTXISD::Suld1DV2I64Trap"; case NVPTXISD::Suld1DV4I8Trap: return "NVPTXISD::Suld1DV4I8Trap"; case NVPTXISD::Suld1DV4I16Trap: return "NVPTXISD::Suld1DV4I16Trap"; case NVPTXISD::Suld1DV4I32Trap: return "NVPTXISD::Suld1DV4I32Trap"; case NVPTXISD::Suld1DArrayI8Trap: return "NVPTXISD::Suld1DArrayI8Trap"; case NVPTXISD::Suld1DArrayI16Trap: return "NVPTXISD::Suld1DArrayI16Trap"; case NVPTXISD::Suld1DArrayI32Trap: return "NVPTXISD::Suld1DArrayI32Trap"; case NVPTXISD::Suld1DArrayI64Trap: return "NVPTXISD::Suld1DArrayI64Trap"; case NVPTXISD::Suld1DArrayV2I8Trap: return "NVPTXISD::Suld1DArrayV2I8Trap"; case NVPTXISD::Suld1DArrayV2I16Trap: return "NVPTXISD::Suld1DArrayV2I16Trap"; case NVPTXISD::Suld1DArrayV2I32Trap: return "NVPTXISD::Suld1DArrayV2I32Trap"; case NVPTXISD::Suld1DArrayV2I64Trap: return "NVPTXISD::Suld1DArrayV2I64Trap"; case NVPTXISD::Suld1DArrayV4I8Trap: return "NVPTXISD::Suld1DArrayV4I8Trap"; case NVPTXISD::Suld1DArrayV4I16Trap: return "NVPTXISD::Suld1DArrayV4I16Trap"; case NVPTXISD::Suld1DArrayV4I32Trap: return "NVPTXISD::Suld1DArrayV4I32Trap"; case NVPTXISD::Suld2DI8Trap: return "NVPTXISD::Suld2DI8Trap"; case NVPTXISD::Suld2DI16Trap: return "NVPTXISD::Suld2DI16Trap"; case NVPTXISD::Suld2DI32Trap: return "NVPTXISD::Suld2DI32Trap"; case NVPTXISD::Suld2DI64Trap: return "NVPTXISD::Suld2DI64Trap"; case NVPTXISD::Suld2DV2I8Trap: return "NVPTXISD::Suld2DV2I8Trap"; case NVPTXISD::Suld2DV2I16Trap: return "NVPTXISD::Suld2DV2I16Trap"; case NVPTXISD::Suld2DV2I32Trap: return "NVPTXISD::Suld2DV2I32Trap"; case NVPTXISD::Suld2DV2I64Trap: return "NVPTXISD::Suld2DV2I64Trap"; case NVPTXISD::Suld2DV4I8Trap: return "NVPTXISD::Suld2DV4I8Trap"; case NVPTXISD::Suld2DV4I16Trap: return "NVPTXISD::Suld2DV4I16Trap"; case NVPTXISD::Suld2DV4I32Trap: return "NVPTXISD::Suld2DV4I32Trap"; case NVPTXISD::Suld2DArrayI8Trap: return "NVPTXISD::Suld2DArrayI8Trap"; case NVPTXISD::Suld2DArrayI16Trap: return "NVPTXISD::Suld2DArrayI16Trap"; case NVPTXISD::Suld2DArrayI32Trap: return "NVPTXISD::Suld2DArrayI32Trap"; case NVPTXISD::Suld2DArrayI64Trap: return "NVPTXISD::Suld2DArrayI64Trap"; case NVPTXISD::Suld2DArrayV2I8Trap: return "NVPTXISD::Suld2DArrayV2I8Trap"; case NVPTXISD::Suld2DArrayV2I16Trap: return "NVPTXISD::Suld2DArrayV2I16Trap"; case NVPTXISD::Suld2DArrayV2I32Trap: return "NVPTXISD::Suld2DArrayV2I32Trap"; case NVPTXISD::Suld2DArrayV2I64Trap: return "NVPTXISD::Suld2DArrayV2I64Trap"; case NVPTXISD::Suld2DArrayV4I8Trap: return "NVPTXISD::Suld2DArrayV4I8Trap"; case NVPTXISD::Suld2DArrayV4I16Trap: return "NVPTXISD::Suld2DArrayV4I16Trap"; case NVPTXISD::Suld2DArrayV4I32Trap: return "NVPTXISD::Suld2DArrayV4I32Trap"; case NVPTXISD::Suld3DI8Trap: return "NVPTXISD::Suld3DI8Trap"; case NVPTXISD::Suld3DI16Trap: return "NVPTXISD::Suld3DI16Trap"; case NVPTXISD::Suld3DI32Trap: return "NVPTXISD::Suld3DI32Trap"; case NVPTXISD::Suld3DI64Trap: return "NVPTXISD::Suld3DI64Trap"; case NVPTXISD::Suld3DV2I8Trap: return "NVPTXISD::Suld3DV2I8Trap"; case NVPTXISD::Suld3DV2I16Trap: return "NVPTXISD::Suld3DV2I16Trap"; case NVPTXISD::Suld3DV2I32Trap: return "NVPTXISD::Suld3DV2I32Trap"; case NVPTXISD::Suld3DV2I64Trap: return "NVPTXISD::Suld3DV2I64Trap"; case NVPTXISD::Suld3DV4I8Trap: return "NVPTXISD::Suld3DV4I8Trap"; case NVPTXISD::Suld3DV4I16Trap: return "NVPTXISD::Suld3DV4I16Trap"; case NVPTXISD::Suld3DV4I32Trap: return "NVPTXISD::Suld3DV4I32Trap"; case NVPTXISD::Suld1DI8Zero: return "NVPTXISD::Suld1DI8Zero"; case NVPTXISD::Suld1DI16Zero: return "NVPTXISD::Suld1DI16Zero"; case NVPTXISD::Suld1DI32Zero: return "NVPTXISD::Suld1DI32Zero"; case NVPTXISD::Suld1DI64Zero: return "NVPTXISD::Suld1DI64Zero"; case NVPTXISD::Suld1DV2I8Zero: return "NVPTXISD::Suld1DV2I8Zero"; case NVPTXISD::Suld1DV2I16Zero: return "NVPTXISD::Suld1DV2I16Zero"; case NVPTXISD::Suld1DV2I32Zero: return "NVPTXISD::Suld1DV2I32Zero"; case NVPTXISD::Suld1DV2I64Zero: return "NVPTXISD::Suld1DV2I64Zero"; case NVPTXISD::Suld1DV4I8Zero: return "NVPTXISD::Suld1DV4I8Zero"; case NVPTXISD::Suld1DV4I16Zero: return "NVPTXISD::Suld1DV4I16Zero"; case NVPTXISD::Suld1DV4I32Zero: return "NVPTXISD::Suld1DV4I32Zero"; case NVPTXISD::Suld1DArrayI8Zero: return "NVPTXISD::Suld1DArrayI8Zero"; case NVPTXISD::Suld1DArrayI16Zero: return "NVPTXISD::Suld1DArrayI16Zero"; case NVPTXISD::Suld1DArrayI32Zero: return "NVPTXISD::Suld1DArrayI32Zero"; case NVPTXISD::Suld1DArrayI64Zero: return "NVPTXISD::Suld1DArrayI64Zero"; case NVPTXISD::Suld1DArrayV2I8Zero: return "NVPTXISD::Suld1DArrayV2I8Zero"; case NVPTXISD::Suld1DArrayV2I16Zero: return "NVPTXISD::Suld1DArrayV2I16Zero"; case NVPTXISD::Suld1DArrayV2I32Zero: return "NVPTXISD::Suld1DArrayV2I32Zero"; case NVPTXISD::Suld1DArrayV2I64Zero: return "NVPTXISD::Suld1DArrayV2I64Zero"; case NVPTXISD::Suld1DArrayV4I8Zero: return "NVPTXISD::Suld1DArrayV4I8Zero"; case NVPTXISD::Suld1DArrayV4I16Zero: return "NVPTXISD::Suld1DArrayV4I16Zero"; case NVPTXISD::Suld1DArrayV4I32Zero: return "NVPTXISD::Suld1DArrayV4I32Zero"; case NVPTXISD::Suld2DI8Zero: return "NVPTXISD::Suld2DI8Zero"; case NVPTXISD::Suld2DI16Zero: return "NVPTXISD::Suld2DI16Zero"; case NVPTXISD::Suld2DI32Zero: return "NVPTXISD::Suld2DI32Zero"; case NVPTXISD::Suld2DI64Zero: return "NVPTXISD::Suld2DI64Zero"; case NVPTXISD::Suld2DV2I8Zero: return "NVPTXISD::Suld2DV2I8Zero"; case NVPTXISD::Suld2DV2I16Zero: return "NVPTXISD::Suld2DV2I16Zero"; case NVPTXISD::Suld2DV2I32Zero: return "NVPTXISD::Suld2DV2I32Zero"; case NVPTXISD::Suld2DV2I64Zero: return "NVPTXISD::Suld2DV2I64Zero"; case NVPTXISD::Suld2DV4I8Zero: return "NVPTXISD::Suld2DV4I8Zero"; case NVPTXISD::Suld2DV4I16Zero: return "NVPTXISD::Suld2DV4I16Zero"; case NVPTXISD::Suld2DV4I32Zero: return "NVPTXISD::Suld2DV4I32Zero"; case NVPTXISD::Suld2DArrayI8Zero: return "NVPTXISD::Suld2DArrayI8Zero"; case NVPTXISD::Suld2DArrayI16Zero: return "NVPTXISD::Suld2DArrayI16Zero"; case NVPTXISD::Suld2DArrayI32Zero: return "NVPTXISD::Suld2DArrayI32Zero"; case NVPTXISD::Suld2DArrayI64Zero: return "NVPTXISD::Suld2DArrayI64Zero"; case NVPTXISD::Suld2DArrayV2I8Zero: return "NVPTXISD::Suld2DArrayV2I8Zero"; case NVPTXISD::Suld2DArrayV2I16Zero: return "NVPTXISD::Suld2DArrayV2I16Zero"; case NVPTXISD::Suld2DArrayV2I32Zero: return "NVPTXISD::Suld2DArrayV2I32Zero"; case NVPTXISD::Suld2DArrayV2I64Zero: return "NVPTXISD::Suld2DArrayV2I64Zero"; case NVPTXISD::Suld2DArrayV4I8Zero: return "NVPTXISD::Suld2DArrayV4I8Zero"; case NVPTXISD::Suld2DArrayV4I16Zero: return "NVPTXISD::Suld2DArrayV4I16Zero"; case NVPTXISD::Suld2DArrayV4I32Zero: return "NVPTXISD::Suld2DArrayV4I32Zero"; case NVPTXISD::Suld3DI8Zero: return "NVPTXISD::Suld3DI8Zero"; case NVPTXISD::Suld3DI16Zero: return "NVPTXISD::Suld3DI16Zero"; case NVPTXISD::Suld3DI32Zero: return "NVPTXISD::Suld3DI32Zero"; case NVPTXISD::Suld3DI64Zero: return "NVPTXISD::Suld3DI64Zero"; case NVPTXISD::Suld3DV2I8Zero: return "NVPTXISD::Suld3DV2I8Zero"; case NVPTXISD::Suld3DV2I16Zero: return "NVPTXISD::Suld3DV2I16Zero"; case NVPTXISD::Suld3DV2I32Zero: return "NVPTXISD::Suld3DV2I32Zero"; case NVPTXISD::Suld3DV2I64Zero: return "NVPTXISD::Suld3DV2I64Zero"; case NVPTXISD::Suld3DV4I8Zero: return "NVPTXISD::Suld3DV4I8Zero"; case NVPTXISD::Suld3DV4I16Zero: return "NVPTXISD::Suld3DV4I16Zero"; case NVPTXISD::Suld3DV4I32Zero: return "NVPTXISD::Suld3DV4I32Zero"; } return nullptr; } TargetLoweringBase::LegalizeTypeAction NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const { if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1) return TypeSplitVector; if (VT == MVT::v2f16) return TypeLegal; return TargetLoweringBase::getPreferredVectorAction(VT); } SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps, bool &UseOneConst, bool Reciprocal) const { if (!(Enabled == ReciprocalEstimate::Enabled || (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32()))) return SDValue(); if (ExtraSteps == ReciprocalEstimate::Unspecified) ExtraSteps = 0; SDLoc DL(Operand); EVT VT = Operand.getValueType(); bool Ftz = useF32FTZ(DAG.getMachineFunction()); auto MakeIntrinsicCall = [&](Intrinsic::ID IID) { return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(IID, DL, MVT::i32), Operand); }; // The sqrt and rsqrt refinement processes assume we always start out with an // approximation of the rsqrt. Therefore, if we're going to do any refinement // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing // any refinement, we must return a regular sqrt. if (Reciprocal || ExtraSteps > 0) { if (VT == MVT::f32) return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f : Intrinsic::nvvm_rsqrt_approx_f); else if (VT == MVT::f64) return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d); else return SDValue(); } else { if (VT == MVT::f32) return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f : Intrinsic::nvvm_sqrt_approx_f); else { // There's no sqrt.approx.f64 instruction, so we emit // reciprocal(rsqrt(x)). This is faster than // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain // x * rsqrt(x).) return DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32), MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d)); } } } SDValue NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); const GlobalAddressSDNode *GAN = cast(Op); auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace()); Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT); return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op); } std::string NVPTXTargetLowering::getPrototype( const DataLayout &DL, Type *retTy, const ArgListTy &Args, const SmallVectorImpl &Outs, MaybeAlign retAlignment, const CallBase &CB, unsigned UniqueCallSite) const { auto PtrVT = getPointerTy(DL); bool isABI = (STI.getSmVersion() >= 20); assert(isABI && "Non-ABI compilation is not supported"); if (!isABI) return ""; std::stringstream O; O << "prototype_" << UniqueCallSite << " : .callprototype "; if (retTy->getTypeID() == Type::VoidTyID) { O << "()"; } else { O << "("; if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) { unsigned size = 0; if (auto *ITy = dyn_cast(retTy)) { size = ITy->getBitWidth(); } else { assert(retTy->isFloatingPointTy() && "Floating point type expected here"); size = retTy->getPrimitiveSizeInBits(); } // PTX ABI requires all scalar return values to be at least 32 // bits in size. fp16 normally uses .b16 as its storage type in // PTX, so its size must be adjusted here, too. if (size < 32) size = 32; O << ".param .b" << size << " _"; } else if (isa(retTy)) { O << ".param .b" << PtrVT.getSizeInBits() << " _"; } else if (retTy->isAggregateType() || retTy->isVectorTy() || retTy->isIntegerTy(128)) { O << ".param .align " << (retAlignment ? retAlignment->value() : 0) << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]"; } else { llvm_unreachable("Unknown return type"); } O << ") "; } O << "_ ("; bool first = true; unsigned OIdx = 0; for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) { Type *Ty = Args[i].Ty; if (!first) { O << ", "; } first = false; if (!Outs[OIdx].Flags.isByVal()) { if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) { unsigned align = 0; const CallInst *CallI = cast(&CB); // +1 because index 0 is reserved for return type alignment if (!getAlign(*CallI, i + 1, align)) align = DL.getABITypeAlignment(Ty); unsigned sz = DL.getTypeAllocSize(Ty); O << ".param .align " << align << " .b8 "; O << "_"; O << "[" << sz << "]"; // update the index for Outs SmallVector vtparts; ComputeValueVTs(*this, DL, Ty, vtparts); if (unsigned len = vtparts.size()) OIdx += len - 1; continue; } // i8 types in IR will be i16 types in SDAG assert((getValueType(DL, Ty) == Outs[OIdx].VT || (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) && "type mismatch between callee prototype and arguments"); // scalar type unsigned sz = 0; if (isa(Ty)) { sz = cast(Ty)->getBitWidth(); if (sz < 32) sz = 32; } else if (isa(Ty)) { sz = PtrVT.getSizeInBits(); } else if (Ty->isHalfTy()) // PTX ABI requires all scalar parameters to be at least 32 // bits in size. fp16 normally uses .b16 as its storage type // in PTX, so its size must be adjusted here, too. sz = 32; else sz = Ty->getPrimitiveSizeInBits(); O << ".param .b" << sz << " "; O << "_"; continue; } auto *PTy = dyn_cast(Ty); assert(PTy && "Param with byval attribute should be a pointer type"); Type *ETy = PTy->getElementType(); Align align = Outs[OIdx].Flags.getNonZeroByValAlign(); unsigned sz = DL.getTypeAllocSize(ETy); O << ".param .align " << align.value() << " .b8 "; O << "_"; O << "[" << sz << "]"; } O << ");"; return O.str(); } Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee, const CallBase *CB, Type *Ty, unsigned Idx, const DataLayout &DL) const { if (!CB) { // CallSite is zero, fallback to ABI type alignment return DL.getABITypeAlign(Ty); } unsigned Alignment = 0; const Function *DirectCallee = CB->getCalledFunction(); if (!DirectCallee) { // We don't have a direct function symbol, but that may be because of // constant cast instructions in the call. // With bitcast'd call targets, the instruction will be the call if (const auto *CI = dyn_cast(CB)) { // Check if we have call alignment metadata if (getAlign(*CI, Idx, Alignment)) return Align(Alignment); const Value *CalleeV = CI->getCalledOperand(); // Ignore any bitcast instructions while (isa(CalleeV)) { const ConstantExpr *CE = cast(CalleeV); if (!CE->isCast()) break; // Look through the bitcast CalleeV = cast(CalleeV)->getOperand(0); } // We have now looked past all of the bitcasts. Do we finally have a // Function? if (const auto *CalleeF = dyn_cast(CalleeV)) DirectCallee = CalleeF; } } // Check for function alignment information if we found that the // ultimate target is a Function if (DirectCallee) if (getAlign(*DirectCallee, Idx, Alignment)) return Align(Alignment); // Call is indirect or alignment information is not available, fall back to // the ABI type alignment return DL.getABITypeAlign(Ty); } SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc dl = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; ArgListTy &Args = CLI.getArgs(); Type *RetTy = CLI.RetTy; const CallBase *CB = CLI.CB; const DataLayout &DL = DAG.getDataLayout(); bool isABI = (STI.getSmVersion() >= 20); assert(isABI && "Non-ABI compilation is not supported"); if (!isABI) return Chain; unsigned UniqueCallSite = GlobalUniqueCallSite.fetch_add(1); SDValue tempChain = Chain; Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl); SDValue InFlag = Chain.getValue(1); unsigned paramCount = 0; // Args.size() and Outs.size() need not match. // Outs.size() will be larger // * if there is an aggregate argument with multiple fields (each field // showing up separately in Outs) // * if there is a vector argument with more than typical vector-length // elements (generally if more than 4) where each vector element is // individually present in Outs. // So a different index should be used for indexing into Outs/OutVals. // See similar issue in LowerFormalArguments. unsigned OIdx = 0; // Declare the .params or .reg need to pass values // to the function for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) { EVT VT = Outs[OIdx].VT; Type *Ty = Args[i].Ty; if (!Outs[OIdx].Flags.isByVal()) { SmallVector VTs; SmallVector Offsets; ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets); Align ArgAlign = getArgumentAlignment(Callee, CB, Ty, paramCount + 1, DL); unsigned AllocSize = DL.getTypeAllocSize(Ty); SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); bool NeedAlign; // Does argument declaration specify alignment? if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) { // declare .param .align .b8 .param[]; SDValue DeclareParamOps[] = { Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32), DAG.getConstant(paramCount, dl, MVT::i32), DAG.getConstant(AllocSize, dl, MVT::i32), InFlag}; Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs, DeclareParamOps); NeedAlign = true; } else { // declare .param .b .param; if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) { // PTX ABI requires integral types to be at least 32 bits in // size. FP16 is loaded/stored using i16, so it's handled // here as well. AllocSize = 4; } SDValue DeclareScalarParamOps[] = { Chain, DAG.getConstant(paramCount, dl, MVT::i32), DAG.getConstant(AllocSize * 8, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), InFlag}; Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs, DeclareScalarParamOps); NeedAlign = false; } InFlag = Chain.getValue(1); // PTX Interoperability Guide 3.3(A): [Integer] Values shorter // than 32-bits are sign extended or zero extended, depending on // whether they are signed or unsigned types. This case applies // only to scalar parameters and not to aggregate values. bool ExtendIntegerParam = Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32; auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign); SmallVector StoreOperands; for (unsigned j = 0, je = VTs.size(); j != je; ++j) { // New store. if (VectorInfo[j] & PVF_FIRST) { assert(StoreOperands.empty() && "Unfinished preceding store."); StoreOperands.push_back(Chain); StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32)); StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32)); } EVT EltVT = VTs[j]; SDValue StVal = OutVals[OIdx]; if (ExtendIntegerParam) { assert(VTs.size() == 1 && "Scalar can't have multiple parts."); // zext/sext to i32 StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, MVT::i32, StVal); } else if (EltVT.getSizeInBits() < 16) { // Use 16-bit registers for small stores as it's the // smallest general purpose register size supported by NVPTX. StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal); } // Record the value to store. StoreOperands.push_back(StVal); if (VectorInfo[j] & PVF_LAST) { unsigned NumElts = StoreOperands.size() - 3; NVPTXISD::NodeType Op; switch (NumElts) { case 1: Op = NVPTXISD::StoreParam; break; case 2: Op = NVPTXISD::StoreParamV2; break; case 4: Op = NVPTXISD::StoreParamV4; break; default: llvm_unreachable("Invalid vector info."); } StoreOperands.push_back(InFlag); // Adjust type of the store op if we've extended the scalar // return value. EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j]; MaybeAlign EltAlign; if (NeedAlign) EltAlign = commonAlignment(ArgAlign, Offsets[j]); Chain = DAG.getMemIntrinsicNode( Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands, TheStoreType, MachinePointerInfo(), EltAlign, MachineMemOperand::MOStore); InFlag = Chain.getValue(1); // Cleanup. StoreOperands.clear(); } ++OIdx; } assert(StoreOperands.empty() && "Unfinished parameter store."); if (VTs.size() > 0) --OIdx; ++paramCount; continue; } // ByVal arguments SmallVector VTs; SmallVector Offsets; auto *PTy = dyn_cast(Args[i].Ty); assert(PTy && "Type of a byval parameter should be pointer"); ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0); // declare .param .align .b8 .param[]; unsigned sz = Outs[OIdx].Flags.getByValSize(); SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); Align ArgAlign = Outs[OIdx].Flags.getNonZeroByValAlign(); // The ByValAlign in the Outs[OIdx].Flags is alway set at this point, // so we don't need to worry about natural alignment or not. // See TargetLowering::LowerCallTo(). // Enforce minumum alignment of 4 to work around ptxas miscompile // for sm_50+. See corresponding alignment adjustment in // emitFunctionParamList() for details. if (ArgAlign < Align(4)) ArgAlign = Align(4); SDValue DeclareParamOps[] = { Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32), DAG.getConstant(paramCount, dl, MVT::i32), DAG.getConstant(sz, dl, MVT::i32), InFlag}; Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs, DeclareParamOps); InFlag = Chain.getValue(1); for (unsigned j = 0, je = VTs.size(); j != je; ++j) { EVT elemtype = VTs[j]; int curOffset = Offsets[j]; unsigned PartAlign = GreatestCommonDivisor64(ArgAlign.value(), curOffset); auto PtrVT = getPointerTy(DL); SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx], DAG.getConstant(curOffset, dl, PtrVT)); SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr, MachinePointerInfo(), PartAlign); if (elemtype.getSizeInBits() < 16) { theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal); } SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, dl, MVT::i32), DAG.getConstant(curOffset, dl, MVT::i32), theVal, InFlag }; Chain = DAG.getMemIntrinsicNode( NVPTXISD::StoreParam, dl, CopyParamVTs, CopyParamOps, elemtype, MachinePointerInfo(), /* Align */ None, MachineMemOperand::MOStore); InFlag = Chain.getValue(1); } ++paramCount; } GlobalAddressSDNode *Func = dyn_cast(Callee.getNode()); MaybeAlign retAlignment = None; // Handle Result if (Ins.size() > 0) { SmallVector resvtparts; ComputeValueVTs(*this, DL, RetTy, resvtparts); // Declare // .param .align 16 .b8 retval0[], or // .param .b retval0 unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy); // Emit ".param .b retval0" instead of byte arrays only for // these three types to match the logic in // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype. // Plus, this behavior is consistent with nvcc's. if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() || (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) { // Scalar needs to be at least 32bit wide if (resultsz < 32) resultsz = 32; SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(resultsz, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), InFlag }; Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs, DeclareRetOps); InFlag = Chain.getValue(1); } else { retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL); assert(retAlignment && "retAlignment is guaranteed to be set"); SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue DeclareRetOps[] = { Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32), DAG.getConstant(resultsz / 8, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), InFlag}; Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs, DeclareRetOps); InFlag = Chain.getValue(1); } } // Both indirect calls and libcalls have nullptr Func. In order to distinguish // between them we must rely on the call site value which is valid for // indirect calls but is always null for libcalls. bool isIndirectCall = !Func && CB; if (isa(Callee)) { Function* CalleeFunc = nullptr; // Try to find the callee in the current module. Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc); assert(CalleeFunc != nullptr && "Libcall callee must be set."); // Set the "libcall callee" attribute to indicate that the function // must always have a declaration. CalleeFunc->addFnAttr("nvptx-libcall-callee", "true"); } if (isIndirectCall) { // This is indirect function call case : PTX requires a prototype of the // form // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _); // to be emitted, and the label has to used as the last arg of call // instruction. // The prototype is embedded in a string and put as the operand for a // CallPrototype SDNode which will print out to the value of the string. SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue); std::string Proto = getPrototype(DL, RetTy, Args, Outs, retAlignment, *CB, UniqueCallSite); const char *ProtoStr = nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str(); SDValue ProtoOps[] = { Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag, }; Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps); InFlag = Chain.getValue(1); } // Op to just print "call" SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue PrintCallOps[] = { Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag }; // We model convergent calls as separate opcodes. unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni; if (CLI.IsConvergent) Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni : NVPTXISD::PrintConvergentCall; Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps); InFlag = Chain.getValue(1); // Ops to print out the function name SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CallVoidOps[] = { Chain, Callee, InFlag }; Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps); InFlag = Chain.getValue(1); // Ops to print out the param list SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CallArgBeginOps[] = { Chain, InFlag }; Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs, CallArgBeginOps); InFlag = Chain.getValue(1); for (unsigned i = 0, e = paramCount; i != e; ++i) { unsigned opcode; if (i == (e - 1)) opcode = NVPTXISD::LastCallArg; else opcode = NVPTXISD::CallArg; SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(i, dl, MVT::i32), InFlag }; Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps); InFlag = Chain.getValue(1); } SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CallArgEndOps[] = { Chain, DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32), InFlag }; Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps); InFlag = Chain.getValue(1); if (isIndirectCall) { SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue PrototypeOps[] = { Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InFlag}; Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps); InFlag = Chain.getValue(1); } SmallVector ProxyRegOps; SmallVector, 16> ProxyRegTruncates; // Generate loads from param memory/moves from registers for result if (Ins.size() > 0) { SmallVector VTs; SmallVector Offsets; ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0); assert(VTs.size() == Ins.size() && "Bad value decomposition"); Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL); auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign); SmallVector LoadVTs; int VecIdx = -1; // Index of the first element of the vector. // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than // 32-bits are sign extended or zero extended, depending on whether // they are signed or unsigned types. bool ExtendIntegerRetVal = RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32; for (unsigned i = 0, e = VTs.size(); i != e; ++i) { bool needTruncate = false; EVT TheLoadType = VTs[i]; EVT EltType = Ins[i].VT; Align EltAlign = commonAlignment(RetAlign, Offsets[i]); if (ExtendIntegerRetVal) { TheLoadType = MVT::i32; EltType = MVT::i32; needTruncate = true; } else if (TheLoadType.getSizeInBits() < 16) { if (VTs[i].isInteger()) needTruncate = true; EltType = MVT::i16; } // Record index of the very first element of the vector. if (VectorInfo[i] & PVF_FIRST) { assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list."); VecIdx = i; } LoadVTs.push_back(EltType); if (VectorInfo[i] & PVF_LAST) { unsigned NumElts = LoadVTs.size(); LoadVTs.push_back(MVT::Other); LoadVTs.push_back(MVT::Glue); NVPTXISD::NodeType Op; switch (NumElts) { case 1: Op = NVPTXISD::LoadParam; break; case 2: Op = NVPTXISD::LoadParamV2; break; case 4: Op = NVPTXISD::LoadParamV4; break; default: llvm_unreachable("Invalid vector info."); } SDValue LoadOperands[] = { Chain, DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag}; SDValue RetVal = DAG.getMemIntrinsicNode( Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType, MachinePointerInfo(), EltAlign, MachineMemOperand::MOLoad); for (unsigned j = 0; j < NumElts; ++j) { ProxyRegOps.push_back(RetVal.getValue(j)); if (needTruncate) ProxyRegTruncates.push_back(Optional(Ins[VecIdx + j].VT)); else ProxyRegTruncates.push_back(Optional()); } Chain = RetVal.getValue(NumElts); InFlag = RetVal.getValue(NumElts + 1); // Cleanup VecIdx = -1; LoadVTs.clear(); } } } Chain = DAG.getCALLSEQ_END( Chain, DAG.getIntPtrConstant(UniqueCallSite, dl, true), DAG.getIntPtrConstant(UniqueCallSite + 1, dl, true), InFlag, dl); InFlag = Chain.getValue(1); // Append ProxyReg instructions to the chain to make sure that `callseq_end` // will not get lost. Otherwise, during libcalls expansion, the nodes can become // dangling. for (unsigned i = 0; i < ProxyRegOps.size(); ++i) { SDValue Ret = DAG.getNode( NVPTXISD::ProxyReg, dl, DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue), { Chain, ProxyRegOps[i], InFlag } ); Chain = Ret.getValue(1); InFlag = Ret.getValue(2); if (ProxyRegTruncates[i].hasValue()) { Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret); } InVals.push_back(Ret); } // set isTailCall to false for now, until we figure out how to express // tail call optimization in PTX isTailCall = false; return Chain; } // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack() // (see LegalizeDAG.cpp). This is slow and uses local memory. // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5 SDValue NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { SDNode *Node = Op.getNode(); SDLoc dl(Node); SmallVector Ops; unsigned NumOperands = Node->getNumOperands(); for (unsigned i = 0; i < NumOperands; ++i) { SDValue SubOp = Node->getOperand(i); EVT VVT = SubOp.getNode()->getValueType(0); EVT EltVT = VVT.getVectorElementType(); unsigned NumSubElem = VVT.getVectorNumElements(); for (unsigned j = 0; j < NumSubElem; ++j) { Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp, DAG.getIntPtrConstant(j, dl))); } } return DAG.getBuildVector(Node->getValueType(0), dl, Ops); } // We can init constant f16x2 with a single .b32 move. Normally it // would get lowered as two constant loads and vector-packing move. // mov.b16 %h1, 0x4000; // mov.b16 %h2, 0x3C00; // mov.b32 %hh2, {%h2, %h1}; // Instead we want just a constant move: // mov.b32 %hh2, 0x40003C00 // // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0 // generates good SASS in both cases. SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { //return Op; if (!(Op->getValueType(0) == MVT::v2f16 && isa(Op->getOperand(0)) && isa(Op->getOperand(1)))) return Op; APInt E0 = cast(Op->getOperand(0))->getValueAPF().bitcastToAPInt(); APInt E1 = cast(Op->getOperand(1))->getValueAPF().bitcastToAPInt(); SDValue Const = DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32); return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const); } SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDValue Index = Op->getOperand(1); // Constant index will be matched by tablegen. if (isa(Index.getNode())) return Op; // Extract individual elements and select one of them. SDValue Vector = Op->getOperand(0); EVT VectorVT = Vector.getValueType(); assert(VectorVT == MVT::v2f16 && "Unexpected vector type."); EVT EltVT = VectorVT.getVectorElementType(); SDLoc dl(Op.getNode()); SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, DAG.getIntPtrConstant(0, dl)); SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, DAG.getIntPtrConstant(1, dl)); return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1, ISD::CondCode::SETEQ); } /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift /// amount, or /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift /// amount. SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; if (VTBits == 32 && STI.getSmVersion() >= 35) { // For 32bit and sm35, we can use the funnel shift 'shf' instruction. // {dHi, dLo} = {aHi, aLo} >> Amt // dHi = aHi >> Amt // dLo = shf.r.clamp aLo, aHi, Amt SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi, ShAmt); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } else { // {dHi, dLo} = {aHi, aLo} >> Amt // - if (Amt>=size) then // dLo = aHi >> (Amt-size) // dHi = aHi >> Amt (this is either all 0 or all 1) // else // dLo = (aLo >>logic Amt) | (aHi << (size-Amt)) // dHi = aHi >> Amt SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, DAG.getConstant(VTBits, dl, MVT::i32)); SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, DAG.getConstant(VTBits, dl, MVT::i32), ISD::SETGE); SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } } /// LowerShiftLeftParts - Lower SHL_PARTS, which /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift /// amount, or /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift /// amount. SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const { assert(Op.getNumOperands() == 3 && "Not a double-shift!"); assert(Op.getOpcode() == ISD::SHL_PARTS); EVT VT = Op.getValueType(); unsigned VTBits = VT.getSizeInBits(); SDLoc dl(Op); SDValue ShOpLo = Op.getOperand(0); SDValue ShOpHi = Op.getOperand(1); SDValue ShAmt = Op.getOperand(2); if (VTBits == 32 && STI.getSmVersion() >= 35) { // For 32bit and sm35, we can use the funnel shift 'shf' instruction. // {dHi, dLo} = {aHi, aLo} << Amt // dHi = shf.l.clamp aLo, aHi, Amt // dLo = aLo << Amt SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi, ShAmt); SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } else { // {dHi, dLo} = {aHi, aLo} << Amt // - if (Amt>=size) then // dLo = aLo << Amt (all 0) // dLo = aLo << (Amt-size) // else // dLo = aLo << Amt // dHi = (aHi << Amt) | (aLo >> (size-Amt)) SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, DAG.getConstant(VTBits, dl, MVT::i32)); SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, DAG.getConstant(VTBits, dl, MVT::i32), ISD::SETGE); SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); SDValue Ops[2] = { Lo, Hi }; return DAG.getMergeValues(Ops, dl); } } SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT == MVT::f32) return LowerFROUND32(Op, DAG); if (VT == MVT::f64) return LowerFROUND64(Op, DAG); llvm_unreachable("unhandled type"); } // This is the the rounding method used in CUDA libdevice in C like code: // float roundf(float A) // { // float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)); // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; // return abs(A) < 0.5 ? (float)(int)A : RoundedA; // } SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue A = Op.getOperand(0); EVT VT = Op.getValueType(); SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)) SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A); const int SignBitMask = 0x80000000; SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast, DAG.getConstant(SignBitMask, SL, MVT::i32)); const int PointFiveInBits = 0x3F000000; SDValue PointFiveWithSignRaw = DAG.getNode(ISD::OR, SL, MVT::i32, Sign, DAG.getConstant(PointFiveInBits, SL, MVT::i32)); SDValue PointFiveWithSign = DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw); SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign); SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); SDValue IsLarge = DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT), ISD::SETOGT); RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); // return abs(A) < 0.5 ? (float)(int)A : RoundedA; SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A); return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA); } // The implementation of round(double) is similar to that of round(float) in // that they both separate the value range into three regions and use a method // specific to the region to round the values. However, round(double) first // calculates the round of the absolute value and then adds the sign back while // round(float) directly rounds the value with sign. SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue A = Op.getOperand(0); EVT VT = Op.getValueType(); SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); // double RoundedA = (double) (int) (abs(A) + 0.5f); SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA, DAG.getConstantFP(0.5, SL, VT)); SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA; EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall, DAG.getConstantFP(0, SL, VT), RoundedA); // Add sign to rounded_A RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A); DAG.getNode(ISD::FTRUNC, SL, VT, A); // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA; SDValue IsLarge = DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT), ISD::SETOGT); return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); } SDValue NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::RETURNADDR: return SDValue(); case ISD::FRAMEADDR: return SDValue(); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::INTRINSIC_W_CHAIN: return Op; case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return Op; case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::LOAD: return LowerLOAD(Op, DAG); case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); case ISD::SRA_PARTS: case ISD::SRL_PARTS: return LowerShiftRightParts(Op, DAG); case ISD::SELECT: return LowerSelect(Op, DAG); case ISD::FROUND: return LowerFROUND(Op, DAG); default: llvm_unreachable("Custom lowering not defined for operation"); } } SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const { SDValue Op0 = Op->getOperand(0); SDValue Op1 = Op->getOperand(1); SDValue Op2 = Op->getOperand(2); SDLoc DL(Op.getNode()); assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1"); Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1); Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2); SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select); return Trunc; } SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType() == MVT::i1) return LowerLOADi1(Op, DAG); // v2f16 is legal, so we can't rely on legalizer to handle unaligned // loads and have to handle it here. if (Op.getValueType() == MVT::v2f16) { LoadSDNode *Load = cast(Op); EVT MemVT = Load->getMemoryVT(); if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), MemVT, *Load->getMemOperand())) { SDValue Ops[2]; std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); return DAG.getMergeValues(Ops, SDLoc(Op)); } } return SDValue(); } // v = ld i1* addr // => // v1 = ld i8* addr (-> i16) // v = trunc i16 to i1 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const { SDNode *Node = Op.getNode(); LoadSDNode *LD = cast(Node); SDLoc dl(Node); assert(LD->getExtensionType() == ISD::NON_EXTLOAD); assert(Node->getValueType(0) == MVT::i1 && "Custom lowering for i1 load only"); SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), LD->getAlignment(), LD->getMemOperand()->getFlags()); SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD); // The legalizer (the caller) is expecting two values from the legalized // load, so we build a MergeValues node for it. See ExpandUnalignedLoad() // in LegalizeDAG.cpp which also uses MergeValues. SDValue Ops[] = { result, LD->getChain() }; return DAG.getMergeValues(Ops, dl); } SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { StoreSDNode *Store = cast(Op); EVT VT = Store->getMemoryVT(); if (VT == MVT::i1) return LowerSTOREi1(Op, DAG); // v2f16 is legal, so we can't rely on legalizer to handle unaligned // stores and have to handle it here. if (VT == MVT::v2f16 && !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), VT, *Store->getMemOperand())) return expandUnalignedStore(Store, DAG); if (VT.isVector()) return LowerSTOREVector(Op, DAG); return SDValue(); } SDValue NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const { SDNode *N = Op.getNode(); SDValue Val = N->getOperand(1); SDLoc DL(N); EVT ValVT = Val.getValueType(); if (ValVT.isVector()) { // We only handle "native" vector sizes for now, e.g. <4 x double> is not // legal. We can (and should) split that into 2 stores of <2 x double> here // but I'm leaving that as a TODO for now. if (!ValVT.isSimple()) return SDValue(); switch (ValVT.getSimpleVT().SimpleTy) { default: return SDValue(); case MVT::v2i8: case MVT::v2i16: case MVT::v2i32: case MVT::v2i64: case MVT::v2f16: case MVT::v2f32: case MVT::v2f64: case MVT::v4i8: case MVT::v4i16: case MVT::v4i32: case MVT::v4f16: case MVT::v4f32: case MVT::v8f16: // <4 x f16x2> // This is a "native" vector type break; } MemSDNode *MemSD = cast(N); const DataLayout &TD = DAG.getDataLayout(); Align Alignment = MemSD->getAlign(); Align PrefAlign = TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext())); if (Alignment < PrefAlign) { // This store is not sufficiently aligned, so bail out and let this vector // store be scalarized. Note that we may still be able to emit smaller // vector stores. For example, if we are storing a <4 x float> with an // alignment of 8, this check will fail but the legalizer will try again // with 2 x <2 x float>, which will succeed with an alignment of 8. return SDValue(); } unsigned Opcode = 0; EVT EltVT = ValVT.getVectorElementType(); unsigned NumElts = ValVT.getVectorNumElements(); // Since StoreV2 is a target node, we cannot rely on DAG type legalization. // Therefore, we must ensure the type is legal. For i1 and i8, we set the // stored type to i16 and propagate the "real" type as the memory type. bool NeedExt = false; if (EltVT.getSizeInBits() < 16) NeedExt = true; bool StoreF16x2 = false; switch (NumElts) { default: return SDValue(); case 2: Opcode = NVPTXISD::StoreV2; break; case 4: Opcode = NVPTXISD::StoreV4; break; case 8: // v8f16 is a special case. PTX doesn't have st.v8.f16 // instruction. Instead, we split the vector into v2f16 chunks and // store them with st.v4.b32. assert(EltVT == MVT::f16 && "Wrong type for the vector."); Opcode = NVPTXISD::StoreV4; StoreF16x2 = true; break; } SmallVector Ops; // First is the chain Ops.push_back(N->getOperand(0)); if (StoreF16x2) { // Combine f16,f16 -> v2f16 NumElts /= 2; for (unsigned i = 0; i < NumElts; ++i) { SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val, DAG.getIntPtrConstant(i * 2, DL)); SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val, DAG.getIntPtrConstant(i * 2 + 1, DL)); SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1); Ops.push_back(V2); } } else { // Then the split values for (unsigned i = 0; i < NumElts; ++i) { SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val, DAG.getIntPtrConstant(i, DL)); if (NeedExt) ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal); Ops.push_back(ExtVal); } } // Then any remaining arguments Ops.append(N->op_begin() + 2, N->op_end()); SDValue NewSt = DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops, MemSD->getMemoryVT(), MemSD->getMemOperand()); // return DCI.CombineTo(N, NewSt, true); return NewSt; } return SDValue(); } // st i1 v, addr // => // v1 = zxt v to i16 // st.u8 i16, addr SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const { SDNode *Node = Op.getNode(); SDLoc dl(Node); StoreSDNode *ST = cast(Node); SDValue Tmp1 = ST->getChain(); SDValue Tmp2 = ST->getBasePtr(); SDValue Tmp3 = ST->getValue(); assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only"); Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3); SDValue Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8, ST->getAlignment(), ST->getMemOperand()->getFlags()); return Result; } SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const { std::string ParamSym; raw_string_ostream ParamStr(ParamSym); ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx; ParamStr.flush(); std::string *SavedStr = nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str()); return DAG.getTargetExternalSymbol(SavedStr->c_str(), v); } // Check to see if the kernel argument is image*_t or sampler_t static bool isImageOrSamplerVal(const Value *arg, const Module *context) { static const char *const specialTypes[] = { "struct._image2d_t", "struct._image3d_t", "struct._sampler_t" }; Type *Ty = arg->getType(); auto *PTy = dyn_cast(Ty); if (!PTy) return false; if (!context) return false; auto *STy = dyn_cast(PTy->getElementType()); if (!STy || STy->isLiteral()) return false; return llvm::is_contained(specialTypes, STy->getName()); } SDValue NVPTXTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); const DataLayout &DL = DAG.getDataLayout(); auto PtrVT = getPointerTy(DAG.getDataLayout()); const Function *F = &MF.getFunction(); const AttributeList &PAL = F->getAttributes(); const TargetLowering *TLI = STI.getTargetLowering(); SDValue Root = DAG.getRoot(); std::vector OutChains; bool isABI = (STI.getSmVersion() >= 20); assert(isABI && "Non-ABI compilation is not supported"); if (!isABI) return Chain; std::vector argTypes; std::vector theArgs; for (const Argument &I : F->args()) { theArgs.push_back(&I); argTypes.push_back(I.getType()); } // argTypes.size() (or theArgs.size()) and Ins.size() need not match. // Ins.size() will be larger // * if there is an aggregate argument with multiple fields (each field // showing up separately in Ins) // * if there is a vector argument with more than typical vector-length // elements (generally if more than 4) where each vector element is // individually present in Ins. // So a different index should be used for indexing into Ins. // See similar issue in LowerCall. unsigned InsIdx = 0; int idx = 0; for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) { Type *Ty = argTypes[i]; // If the kernel argument is image*_t or sampler_t, convert it to // a i32 constant holding the parameter position. This can later // matched in the AsmPrinter to output the correct mangled name. if (isImageOrSamplerVal( theArgs[i], (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent() : nullptr))) { assert(isKernelFunction(*F) && "Only kernels can have image/sampler params"); InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32)); continue; } if (theArgs[i]->use_empty()) { // argument is dead if (Ty->isAggregateType() || Ty->isIntegerTy(128)) { SmallVector vtparts; ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts); assert(vtparts.size() > 0 && "empty aggregate type not expected"); for (unsigned parti = 0, parte = vtparts.size(); parti != parte; ++parti) { InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT)); ++InsIdx; } if (vtparts.size() > 0) --InsIdx; continue; } if (Ty->isVectorTy()) { EVT ObjectVT = getValueType(DL, Ty); unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT); for (unsigned parti = 0; parti < NumRegs; ++parti) { InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT)); ++InsIdx; } if (NumRegs > 0) --InsIdx; continue; } InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT)); continue; } // In the following cases, assign a node order of "idx+1" // to newly created nodes. The SDNodes for params have to // appear in the same order as their order of appearance // in the original function. "idx+1" holds that order. if (!PAL.hasParamAttribute(i, Attribute::ByVal)) { bool aggregateIsPacked = false; if (StructType *STy = dyn_cast(Ty)) aggregateIsPacked = STy->isPacked(); SmallVector VTs; SmallVector Offsets; ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0); assert(VTs.size() > 0 && "Unexpected empty type."); auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlign(Ty)); SDValue Arg = getParamSymbol(DAG, idx, PtrVT); int VecIdx = -1; // Index of the first element of the current vector. for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) { if (VectorInfo[parti] & PVF_FIRST) { assert(VecIdx == -1 && "Orphaned vector."); VecIdx = parti; } // That's the last element of this store op. if (VectorInfo[parti] & PVF_LAST) { unsigned NumElts = parti - VecIdx + 1; EVT EltVT = VTs[parti]; // i1 is loaded/stored as i8. EVT LoadVT = EltVT; if (EltVT == MVT::i1) LoadVT = MVT::i8; else if (EltVT == MVT::v2f16) // getLoad needs a vector type, but it can't handle // vectors which contain v2f16 elements. So we must load // using i32 here and then bitcast back. LoadVT = MVT::i32; EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts); SDValue VecAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, DAG.getConstant(Offsets[VecIdx], dl, PtrVT)); Value *srcValue = Constant::getNullValue(PointerType::get( EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM)); SDValue P = DAG.getLoad(VecVT, dl, Root, VecAddr, MachinePointerInfo(srcValue), aggregateIsPacked, MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); if (P.getNode()) P.getNode()->setIROrder(idx + 1); for (unsigned j = 0; j < NumElts; ++j) { SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P, DAG.getIntPtrConstant(j, dl)); // We've loaded i1 as an i8 and now must truncate it back to i1 if (EltVT == MVT::i1) Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt); // v2f16 was loaded as an i32. Now we must bitcast it back. else if (EltVT == MVT::v2f16) Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt); // Extend the element if necessary (e.g. an i8 is loaded // into an i16 register) if (Ins[InsIdx].VT.isInteger() && Ins[InsIdx].VT.getFixedSizeInBits() > LoadVT.getFixedSizeInBits()) { unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt); } InVals.push_back(Elt); } // Reset vector tracking state. VecIdx = -1; } ++InsIdx; } if (VTs.size() > 0) --InsIdx; continue; } // Param has ByVal attribute // Return MoveParam(param symbol). // Ideally, the param symbol can be returned directly, // but when SDNode builder decides to use it in a CopyToReg(), // machine instruction fails because TargetExternalSymbol // (not lowered) is target dependent, and CopyToReg assumes // the source is lowered. EVT ObjectVT = getValueType(DL, Ty); assert(ObjectVT == Ins[InsIdx].VT && "Ins type did not match function type"); SDValue Arg = getParamSymbol(DAG, idx, PtrVT); SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg); if (p.getNode()) p.getNode()->setIROrder(idx + 1); InVals.push_back(p); } // Clang will check explicit VarArg and issue error if any. However, Clang // will let code with // implicit var arg like f() pass. See bug 617733. // We treat this case as if the arg list is empty. // if (F.isVarArg()) { // assert(0 && "VarArg not supported yet!"); //} if (!OutChains.empty()) DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains)); return Chain; } SDValue NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &dl, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); Type *RetTy = MF.getFunction().getReturnType(); bool isABI = (STI.getSmVersion() >= 20); assert(isABI && "Non-ABI compilation is not supported"); if (!isABI) return Chain; const DataLayout DL = DAG.getDataLayout(); SmallVector VTs; SmallVector Offsets; ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets); assert(VTs.size() == OutVals.size() && "Bad return value decomposition"); auto VectorInfo = VectorizePTXValueVTs( VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlign(RetTy) : Align(1)); // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than // 32-bits are sign extended or zero extended, depending on whether // they are signed or unsigned types. bool ExtendIntegerRetVal = RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32; SmallVector StoreOperands; for (unsigned i = 0, e = VTs.size(); i != e; ++i) { // New load/store. Record chain and offset operands. if (VectorInfo[i] & PVF_FIRST) { assert(StoreOperands.empty() && "Orphaned operand list."); StoreOperands.push_back(Chain); StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32)); } SDValue RetVal = OutVals[i]; if (ExtendIntegerRetVal) { RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, MVT::i32, RetVal); } else if (RetVal.getValueSizeInBits() < 16) { // Use 16-bit registers for small load-stores as it's the // smallest general purpose register size supported by NVPTX. RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal); } // Record the value to return. StoreOperands.push_back(RetVal); // That's the last element of this store op. if (VectorInfo[i] & PVF_LAST) { NVPTXISD::NodeType Op; unsigned NumElts = StoreOperands.size() - 2; switch (NumElts) { case 1: Op = NVPTXISD::StoreRetval; break; case 2: Op = NVPTXISD::StoreRetvalV2; break; case 4: Op = NVPTXISD::StoreRetvalV4; break; default: llvm_unreachable("Invalid vector info."); } // Adjust type of load/store op if we've extended the scalar // return value. EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i]; Chain = DAG.getMemIntrinsicNode( Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType, MachinePointerInfo(), Align(1), MachineMemOperand::MOStore); // Cleanup vector state. StoreOperands.clear(); } } return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain); } void NVPTXTargetLowering::LowerAsmOperandForConstraint( SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const { if (Constraint.length() > 1) return; else TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } static unsigned getOpcForTextureInstr(unsigned Intrinsic) { switch (Intrinsic) { default: return 0; case Intrinsic::nvvm_tex_1d_v4f32_s32: return NVPTXISD::Tex1DFloatS32; case Intrinsic::nvvm_tex_1d_v4f32_f32: return NVPTXISD::Tex1DFloatFloat; case Intrinsic::nvvm_tex_1d_level_v4f32_f32: return NVPTXISD::Tex1DFloatFloatLevel; case Intrinsic::nvvm_tex_1d_grad_v4f32_f32: return NVPTXISD::Tex1DFloatFloatGrad; case Intrinsic::nvvm_tex_1d_v4s32_s32: return NVPTXISD::Tex1DS32S32; case Intrinsic::nvvm_tex_1d_v4s32_f32: return NVPTXISD::Tex1DS32Float; case Intrinsic::nvvm_tex_1d_level_v4s32_f32: return NVPTXISD::Tex1DS32FloatLevel; case Intrinsic::nvvm_tex_1d_grad_v4s32_f32: return NVPTXISD::Tex1DS32FloatGrad; case Intrinsic::nvvm_tex_1d_v4u32_s32: return NVPTXISD::Tex1DU32S32; case Intrinsic::nvvm_tex_1d_v4u32_f32: return NVPTXISD::Tex1DU32Float; case Intrinsic::nvvm_tex_1d_level_v4u32_f32: return NVPTXISD::Tex1DU32FloatLevel; case Intrinsic::nvvm_tex_1d_grad_v4u32_f32: return NVPTXISD::Tex1DU32FloatGrad; case Intrinsic::nvvm_tex_1d_array_v4f32_s32: return NVPTXISD::Tex1DArrayFloatS32; case Intrinsic::nvvm_tex_1d_array_v4f32_f32: return NVPTXISD::Tex1DArrayFloatFloat; case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32: return NVPTXISD::Tex1DArrayFloatFloatLevel; case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32: return NVPTXISD::Tex1DArrayFloatFloatGrad; case Intrinsic::nvvm_tex_1d_array_v4s32_s32: return NVPTXISD::Tex1DArrayS32S32; case Intrinsic::nvvm_tex_1d_array_v4s32_f32: return NVPTXISD::Tex1DArrayS32Float; case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32: return NVPTXISD::Tex1DArrayS32FloatLevel; case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32: return NVPTXISD::Tex1DArrayS32FloatGrad; case Intrinsic::nvvm_tex_1d_array_v4u32_s32: return NVPTXISD::Tex1DArrayU32S32; case Intrinsic::nvvm_tex_1d_array_v4u32_f32: return NVPTXISD::Tex1DArrayU32Float; case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32: return NVPTXISD::Tex1DArrayU32FloatLevel; case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32: return NVPTXISD::Tex1DArrayU32FloatGrad; case Intrinsic::nvvm_tex_2d_v4f32_s32: return NVPTXISD::Tex2DFloatS32; case Intrinsic::nvvm_tex_2d_v4f32_f32: return NVPTXISD::Tex2DFloatFloat; case Intrinsic::nvvm_tex_2d_level_v4f32_f32: return NVPTXISD::Tex2DFloatFloatLevel; case Intrinsic::nvvm_tex_2d_grad_v4f32_f32: return NVPTXISD::Tex2DFloatFloatGrad; case Intrinsic::nvvm_tex_2d_v4s32_s32: return NVPTXISD::Tex2DS32S32; case Intrinsic::nvvm_tex_2d_v4s32_f32: return NVPTXISD::Tex2DS32Float; case Intrinsic::nvvm_tex_2d_level_v4s32_f32: return NVPTXISD::Tex2DS32FloatLevel; case Intrinsic::nvvm_tex_2d_grad_v4s32_f32: return NVPTXISD::Tex2DS32FloatGrad; case Intrinsic::nvvm_tex_2d_v4u32_s32: return NVPTXISD::Tex2DU32S32; case Intrinsic::nvvm_tex_2d_v4u32_f32: return NVPTXISD::Tex2DU32Float; case Intrinsic::nvvm_tex_2d_level_v4u32_f32: return NVPTXISD::Tex2DU32FloatLevel; case Intrinsic::nvvm_tex_2d_grad_v4u32_f32: return NVPTXISD::Tex2DU32FloatGrad; case Intrinsic::nvvm_tex_2d_array_v4f32_s32: return NVPTXISD::Tex2DArrayFloatS32; case Intrinsic::nvvm_tex_2d_array_v4f32_f32: return NVPTXISD::Tex2DArrayFloatFloat; case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32: return NVPTXISD::Tex2DArrayFloatFloatLevel; case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32: return NVPTXISD::Tex2DArrayFloatFloatGrad; case Intrinsic::nvvm_tex_2d_array_v4s32_s32: return NVPTXISD::Tex2DArrayS32S32; case Intrinsic::nvvm_tex_2d_array_v4s32_f32: return NVPTXISD::Tex2DArrayS32Float; case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32: return NVPTXISD::Tex2DArrayS32FloatLevel; case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32: return NVPTXISD::Tex2DArrayS32FloatGrad; case Intrinsic::nvvm_tex_2d_array_v4u32_s32: return NVPTXISD::Tex2DArrayU32S32; case Intrinsic::nvvm_tex_2d_array_v4u32_f32: return NVPTXISD::Tex2DArrayU32Float; case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32: return NVPTXISD::Tex2DArrayU32FloatLevel; case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32: return NVPTXISD::Tex2DArrayU32FloatGrad; case Intrinsic::nvvm_tex_3d_v4f32_s32: return NVPTXISD::Tex3DFloatS32; case Intrinsic::nvvm_tex_3d_v4f32_f32: return NVPTXISD::Tex3DFloatFloat; case Intrinsic::nvvm_tex_3d_level_v4f32_f32: return NVPTXISD::Tex3DFloatFloatLevel; case Intrinsic::nvvm_tex_3d_grad_v4f32_f32: return NVPTXISD::Tex3DFloatFloatGrad; case Intrinsic::nvvm_tex_3d_v4s32_s32: return NVPTXISD::Tex3DS32S32; case Intrinsic::nvvm_tex_3d_v4s32_f32: return NVPTXISD::Tex3DS32Float; case Intrinsic::nvvm_tex_3d_level_v4s32_f32: return NVPTXISD::Tex3DS32FloatLevel; case Intrinsic::nvvm_tex_3d_grad_v4s32_f32: return NVPTXISD::Tex3DS32FloatGrad; case Intrinsic::nvvm_tex_3d_v4u32_s32: return NVPTXISD::Tex3DU32S32; case Intrinsic::nvvm_tex_3d_v4u32_f32: return NVPTXISD::Tex3DU32Float; case Intrinsic::nvvm_tex_3d_level_v4u32_f32: return NVPTXISD::Tex3DU32FloatLevel; case Intrinsic::nvvm_tex_3d_grad_v4u32_f32: return NVPTXISD::Tex3DU32FloatGrad; case Intrinsic::nvvm_tex_cube_v4f32_f32: return NVPTXISD::TexCubeFloatFloat; case Intrinsic::nvvm_tex_cube_level_v4f32_f32: return NVPTXISD::TexCubeFloatFloatLevel; case Intrinsic::nvvm_tex_cube_v4s32_f32: return NVPTXISD::TexCubeS32Float; case Intrinsic::nvvm_tex_cube_level_v4s32_f32: return NVPTXISD::TexCubeS32FloatLevel; case Intrinsic::nvvm_tex_cube_v4u32_f32: return NVPTXISD::TexCubeU32Float; case Intrinsic::nvvm_tex_cube_level_v4u32_f32: return NVPTXISD::TexCubeU32FloatLevel; case Intrinsic::nvvm_tex_cube_array_v4f32_f32: return NVPTXISD::TexCubeArrayFloatFloat; case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32: return NVPTXISD::TexCubeArrayFloatFloatLevel; case Intrinsic::nvvm_tex_cube_array_v4s32_f32: return NVPTXISD::TexCubeArrayS32Float; case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32: return NVPTXISD::TexCubeArrayS32FloatLevel; case Intrinsic::nvvm_tex_cube_array_v4u32_f32: return NVPTXISD::TexCubeArrayU32Float; case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32: return NVPTXISD::TexCubeArrayU32FloatLevel; case Intrinsic::nvvm_tld4_r_2d_v4f32_f32: return NVPTXISD::Tld4R2DFloatFloat; case Intrinsic::nvvm_tld4_g_2d_v4f32_f32: return NVPTXISD::Tld4G2DFloatFloat; case Intrinsic::nvvm_tld4_b_2d_v4f32_f32: return NVPTXISD::Tld4B2DFloatFloat; case Intrinsic::nvvm_tld4_a_2d_v4f32_f32: return NVPTXISD::Tld4A2DFloatFloat; case Intrinsic::nvvm_tld4_r_2d_v4s32_f32: return NVPTXISD::Tld4R2DS64Float; case Intrinsic::nvvm_tld4_g_2d_v4s32_f32: return NVPTXISD::Tld4G2DS64Float; case Intrinsic::nvvm_tld4_b_2d_v4s32_f32: return NVPTXISD::Tld4B2DS64Float; case Intrinsic::nvvm_tld4_a_2d_v4s32_f32: return NVPTXISD::Tld4A2DS64Float; case Intrinsic::nvvm_tld4_r_2d_v4u32_f32: return NVPTXISD::Tld4R2DU64Float; case Intrinsic::nvvm_tld4_g_2d_v4u32_f32: return NVPTXISD::Tld4G2DU64Float; case Intrinsic::nvvm_tld4_b_2d_v4u32_f32: return NVPTXISD::Tld4B2DU64Float; case Intrinsic::nvvm_tld4_a_2d_v4u32_f32: return NVPTXISD::Tld4A2DU64Float; case Intrinsic::nvvm_tex_unified_1d_v4f32_s32: return NVPTXISD::TexUnified1DFloatS32; case Intrinsic::nvvm_tex_unified_1d_v4f32_f32: return NVPTXISD::TexUnified1DFloatFloat; case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32: return NVPTXISD::TexUnified1DFloatFloatLevel; case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32: return NVPTXISD::TexUnified1DFloatFloatGrad; case Intrinsic::nvvm_tex_unified_1d_v4s32_s32: return NVPTXISD::TexUnified1DS32S32; case Intrinsic::nvvm_tex_unified_1d_v4s32_f32: return NVPTXISD::TexUnified1DS32Float; case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32: return NVPTXISD::TexUnified1DS32FloatLevel; case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32: return NVPTXISD::TexUnified1DS32FloatGrad; case Intrinsic::nvvm_tex_unified_1d_v4u32_s32: return NVPTXISD::TexUnified1DU32S32; case Intrinsic::nvvm_tex_unified_1d_v4u32_f32: return NVPTXISD::TexUnified1DU32Float; case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32: return NVPTXISD::TexUnified1DU32FloatLevel; case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32: return NVPTXISD::TexUnified1DU32FloatGrad; case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32: return NVPTXISD::TexUnified1DArrayFloatS32; case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32: return NVPTXISD::TexUnified1DArrayFloatFloat; case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32: return NVPTXISD::TexUnified1DArrayFloatFloatLevel; case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32: return NVPTXISD::TexUnified1DArrayFloatFloatGrad; case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32: return NVPTXISD::TexUnified1DArrayS32S32; case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32: return NVPTXISD::TexUnified1DArrayS32Float; case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32: return NVPTXISD::TexUnified1DArrayS32FloatLevel; case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32: return NVPTXISD::TexUnified1DArrayS32FloatGrad; case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32: return NVPTXISD::TexUnified1DArrayU32S32; case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32: return NVPTXISD::TexUnified1DArrayU32Float; case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32: return NVPTXISD::TexUnified1DArrayU32FloatLevel; case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32: return NVPTXISD::TexUnified1DArrayU32FloatGrad; case Intrinsic::nvvm_tex_unified_2d_v4f32_s32: return NVPTXISD::TexUnified2DFloatS32; case Intrinsic::nvvm_tex_unified_2d_v4f32_f32: return NVPTXISD::TexUnified2DFloatFloat; case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32: return NVPTXISD::TexUnified2DFloatFloatLevel; case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32: return NVPTXISD::TexUnified2DFloatFloatGrad; case Intrinsic::nvvm_tex_unified_2d_v4s32_s32: return NVPTXISD::TexUnified2DS32S32; case Intrinsic::nvvm_tex_unified_2d_v4s32_f32: return NVPTXISD::TexUnified2DS32Float; case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32: return NVPTXISD::TexUnified2DS32FloatLevel; case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32: return NVPTXISD::TexUnified2DS32FloatGrad; case Intrinsic::nvvm_tex_unified_2d_v4u32_s32: return NVPTXISD::TexUnified2DU32S32; case Intrinsic::nvvm_tex_unified_2d_v4u32_f32: return NVPTXISD::TexUnified2DU32Float; case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32: return NVPTXISD::TexUnified2DU32FloatLevel; case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32: return NVPTXISD::TexUnified2DU32FloatGrad; case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32: return NVPTXISD::TexUnified2DArrayFloatS32; case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32: return NVPTXISD::TexUnified2DArrayFloatFloat; case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32: return NVPTXISD::TexUnified2DArrayFloatFloatLevel; case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32: return NVPTXISD::TexUnified2DArrayFloatFloatGrad; case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32: return NVPTXISD::TexUnified2DArrayS32S32; case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32: return NVPTXISD::TexUnified2DArrayS32Float; case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32: return NVPTXISD::TexUnified2DArrayS32FloatLevel; case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32: return NVPTXISD::TexUnified2DArrayS32FloatGrad; case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32: return NVPTXISD::TexUnified2DArrayU32S32; case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32: return NVPTXISD::TexUnified2DArrayU32Float; case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32: return NVPTXISD::TexUnified2DArrayU32FloatLevel; case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32: return NVPTXISD::TexUnified2DArrayU32FloatGrad; case Intrinsic::nvvm_tex_unified_3d_v4f32_s32: return NVPTXISD::TexUnified3DFloatS32; case Intrinsic::nvvm_tex_unified_3d_v4f32_f32: return NVPTXISD::TexUnified3DFloatFloat; case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32: return NVPTXISD::TexUnified3DFloatFloatLevel; case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32: return NVPTXISD::TexUnified3DFloatFloatGrad; case Intrinsic::nvvm_tex_unified_3d_v4s32_s32: return NVPTXISD::TexUnified3DS32S32; case Intrinsic::nvvm_tex_unified_3d_v4s32_f32: return NVPTXISD::TexUnified3DS32Float; case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32: return NVPTXISD::TexUnified3DS32FloatLevel; case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32: return NVPTXISD::TexUnified3DS32FloatGrad; case Intrinsic::nvvm_tex_unified_3d_v4u32_s32: return NVPTXISD::TexUnified3DU32S32; case Intrinsic::nvvm_tex_unified_3d_v4u32_f32: return NVPTXISD::TexUnified3DU32Float; case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32: return NVPTXISD::TexUnified3DU32FloatLevel; case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32: return NVPTXISD::TexUnified3DU32FloatGrad; case Intrinsic::nvvm_tex_unified_cube_v4f32_f32: return NVPTXISD::TexUnifiedCubeFloatFloat; case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32: return NVPTXISD::TexUnifiedCubeFloatFloatLevel; case Intrinsic::nvvm_tex_unified_cube_v4s32_f32: return NVPTXISD::TexUnifiedCubeS32Float; case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32: return NVPTXISD::TexUnifiedCubeS32FloatLevel; case Intrinsic::nvvm_tex_unified_cube_v4u32_f32: return NVPTXISD::TexUnifiedCubeU32Float; case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32: return NVPTXISD::TexUnifiedCubeU32FloatLevel; case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32: return NVPTXISD::TexUnifiedCubeArrayFloatFloat; case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32: return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel; case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32: return NVPTXISD::TexUnifiedCubeArrayS32Float; case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32: return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel; case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32: return NVPTXISD::TexUnifiedCubeArrayU32Float; case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32: return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel; case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32: return NVPTXISD::Tld4UnifiedR2DFloatFloat; case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32: return NVPTXISD::Tld4UnifiedG2DFloatFloat; case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32: return NVPTXISD::Tld4UnifiedB2DFloatFloat; case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: return NVPTXISD::Tld4UnifiedA2DFloatFloat; case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32: return NVPTXISD::Tld4UnifiedR2DS64Float; case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32: return NVPTXISD::Tld4UnifiedG2DS64Float; case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32: return NVPTXISD::Tld4UnifiedB2DS64Float; case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32: return NVPTXISD::Tld4UnifiedA2DS64Float; case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32: return NVPTXISD::Tld4UnifiedR2DU64Float; case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32: return NVPTXISD::Tld4UnifiedG2DU64Float; case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32: return NVPTXISD::Tld4UnifiedB2DU64Float; case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: return NVPTXISD::Tld4UnifiedA2DU64Float; } } static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) { switch (Intrinsic) { default: return 0; case Intrinsic::nvvm_suld_1d_i8_clamp: return NVPTXISD::Suld1DI8Clamp; case Intrinsic::nvvm_suld_1d_i16_clamp: return NVPTXISD::Suld1DI16Clamp; case Intrinsic::nvvm_suld_1d_i32_clamp: return NVPTXISD::Suld1DI32Clamp; case Intrinsic::nvvm_suld_1d_i64_clamp: return NVPTXISD::Suld1DI64Clamp; case Intrinsic::nvvm_suld_1d_v2i8_clamp: return NVPTXISD::Suld1DV2I8Clamp; case Intrinsic::nvvm_suld_1d_v2i16_clamp: return NVPTXISD::Suld1DV2I16Clamp; case Intrinsic::nvvm_suld_1d_v2i32_clamp: return NVPTXISD::Suld1DV2I32Clamp; case Intrinsic::nvvm_suld_1d_v2i64_clamp: return NVPTXISD::Suld1DV2I64Clamp; case Intrinsic::nvvm_suld_1d_v4i8_clamp: return NVPTXISD::Suld1DV4I8Clamp; case Intrinsic::nvvm_suld_1d_v4i16_clamp: return NVPTXISD::Suld1DV4I16Clamp; case Intrinsic::nvvm_suld_1d_v4i32_clamp: return NVPTXISD::Suld1DV4I32Clamp; case Intrinsic::nvvm_suld_1d_array_i8_clamp: return NVPTXISD::Suld1DArrayI8Clamp; case Intrinsic::nvvm_suld_1d_array_i16_clamp: return NVPTXISD::Suld1DArrayI16Clamp; case Intrinsic::nvvm_suld_1d_array_i32_clamp: return NVPTXISD::Suld1DArrayI32Clamp; case Intrinsic::nvvm_suld_1d_array_i64_clamp: return NVPTXISD::Suld1DArrayI64Clamp; case Intrinsic::nvvm_suld_1d_array_v2i8_clamp: return NVPTXISD::Suld1DArrayV2I8Clamp; case Intrinsic::nvvm_suld_1d_array_v2i16_clamp: return NVPTXISD::Suld1DArrayV2I16Clamp; case Intrinsic::nvvm_suld_1d_array_v2i32_clamp: return NVPTXISD::Suld1DArrayV2I32Clamp; case Intrinsic::nvvm_suld_1d_array_v2i64_clamp: return NVPTXISD::Suld1DArrayV2I64Clamp; case Intrinsic::nvvm_suld_1d_array_v4i8_clamp: return NVPTXISD::Suld1DArrayV4I8Clamp; case Intrinsic::nvvm_suld_1d_array_v4i16_clamp: return NVPTXISD::Suld1DArrayV4I16Clamp; case Intrinsic::nvvm_suld_1d_array_v4i32_clamp: return NVPTXISD::Suld1DArrayV4I32Clamp; case Intrinsic::nvvm_suld_2d_i8_clamp: return NVPTXISD::Suld2DI8Clamp; case Intrinsic::nvvm_suld_2d_i16_clamp: return NVPTXISD::Suld2DI16Clamp; case Intrinsic::nvvm_suld_2d_i32_clamp: return NVPTXISD::Suld2DI32Clamp; case Intrinsic::nvvm_suld_2d_i64_clamp: return NVPTXISD::Suld2DI64Clamp; case Intrinsic::nvvm_suld_2d_v2i8_clamp: return NVPTXISD::Suld2DV2I8Clamp; case Intrinsic::nvvm_suld_2d_v2i16_clamp: return NVPTXISD::Suld2DV2I16Clamp; case Intrinsic::nvvm_suld_2d_v2i32_clamp: return NVPTXISD::Suld2DV2I32Clamp; case Intrinsic::nvvm_suld_2d_v2i64_clamp: return NVPTXISD::Suld2DV2I64Clamp; case Intrinsic::nvvm_suld_2d_v4i8_clamp: return NVPTXISD::Suld2DV4I8Clamp; case Intrinsic::nvvm_suld_2d_v4i16_clamp: return NVPTXISD::Suld2DV4I16Clamp; case Intrinsic::nvvm_suld_2d_v4i32_clamp: return NVPTXISD::Suld2DV4I32Clamp; case Intrinsic::nvvm_suld_2d_array_i8_clamp: return NVPTXISD::Suld2DArrayI8Clamp; case Intrinsic::nvvm_suld_2d_array_i16_clamp: return NVPTXISD::Suld2DArrayI16Clamp; case Intrinsic::nvvm_suld_2d_array_i32_clamp: return NVPTXISD::Suld2DArrayI32Clamp; case Intrinsic::nvvm_suld_2d_array_i64_clamp: return NVPTXISD::Suld2DArrayI64Clamp; case Intrinsic::nvvm_suld_2d_array_v2i8_clamp: return NVPTXISD::Suld2DArrayV2I8Clamp; case Intrinsic::nvvm_suld_2d_array_v2i16_clamp: return NVPTXISD::Suld2DArrayV2I16Clamp; case Intrinsic::nvvm_suld_2d_array_v2i32_clamp: return NVPTXISD::Suld2DArrayV2I32Clamp; case Intrinsic::nvvm_suld_2d_array_v2i64_clamp: return NVPTXISD::Suld2DArrayV2I64Clamp; case Intrinsic::nvvm_suld_2d_array_v4i8_clamp: return NVPTXISD::Suld2DArrayV4I8Clamp; case Intrinsic::nvvm_suld_2d_array_v4i16_clamp: return NVPTXISD::Suld2DArrayV4I16Clamp; case Intrinsic::nvvm_suld_2d_array_v4i32_clamp: return NVPTXISD::Suld2DArrayV4I32Clamp; case Intrinsic::nvvm_suld_3d_i8_clamp: return NVPTXISD::Suld3DI8Clamp; case Intrinsic::nvvm_suld_3d_i16_clamp: return NVPTXISD::Suld3DI16Clamp; case Intrinsic::nvvm_suld_3d_i32_clamp: return NVPTXISD::Suld3DI32Clamp; case Intrinsic::nvvm_suld_3d_i64_clamp: return NVPTXISD::Suld3DI64Clamp; case Intrinsic::nvvm_suld_3d_v2i8_clamp: return NVPTXISD::Suld3DV2I8Clamp; case Intrinsic::nvvm_suld_3d_v2i16_clamp: return NVPTXISD::Suld3DV2I16Clamp; case Intrinsic::nvvm_suld_3d_v2i32_clamp: return NVPTXISD::Suld3DV2I32Clamp; case Intrinsic::nvvm_suld_3d_v2i64_clamp: return NVPTXISD::Suld3DV2I64Clamp; case Intrinsic::nvvm_suld_3d_v4i8_clamp: return NVPTXISD::Suld3DV4I8Clamp; case Intrinsic::nvvm_suld_3d_v4i16_clamp: return NVPTXISD::Suld3DV4I16Clamp; case Intrinsic::nvvm_suld_3d_v4i32_clamp: return NVPTXISD::Suld3DV4I32Clamp; case Intrinsic::nvvm_suld_1d_i8_trap: return NVPTXISD::Suld1DI8Trap; case Intrinsic::nvvm_suld_1d_i16_trap: return NVPTXISD::Suld1DI16Trap; case Intrinsic::nvvm_suld_1d_i32_trap: return NVPTXISD::Suld1DI32Trap; case Intrinsic::nvvm_suld_1d_i64_trap: return NVPTXISD::Suld1DI64Trap; case Intrinsic::nvvm_suld_1d_v2i8_trap: return NVPTXISD::Suld1DV2I8Trap; case Intrinsic::nvvm_suld_1d_v2i16_trap: return NVPTXISD::Suld1DV2I16Trap; case Intrinsic::nvvm_suld_1d_v2i32_trap: return NVPTXISD::Suld1DV2I32Trap; case Intrinsic::nvvm_suld_1d_v2i64_trap: return NVPTXISD::Suld1DV2I64Trap; case Intrinsic::nvvm_suld_1d_v4i8_trap: return NVPTXISD::Suld1DV4I8Trap; case Intrinsic::nvvm_suld_1d_v4i16_trap: return NVPTXISD::Suld1DV4I16Trap; case Intrinsic::nvvm_suld_1d_v4i32_trap: return NVPTXISD::Suld1DV4I32Trap; case Intrinsic::nvvm_suld_1d_array_i8_trap: return NVPTXISD::Suld1DArrayI8Trap; case Intrinsic::nvvm_suld_1d_array_i16_trap: return NVPTXISD::Suld1DArrayI16Trap; case Intrinsic::nvvm_suld_1d_array_i32_trap: return NVPTXISD::Suld1DArrayI32Trap; case Intrinsic::nvvm_suld_1d_array_i64_trap: return NVPTXISD::Suld1DArrayI64Trap; case Intrinsic::nvvm_suld_1d_array_v2i8_trap: return NVPTXISD::Suld1DArrayV2I8Trap; case Intrinsic::nvvm_suld_1d_array_v2i16_trap: return NVPTXISD::Suld1DArrayV2I16Trap; case Intrinsic::nvvm_suld_1d_array_v2i32_trap: return NVPTXISD::Suld1DArrayV2I32Trap; case Intrinsic::nvvm_suld_1d_array_v2i64_trap: return NVPTXISD::Suld1DArrayV2I64Trap; case Intrinsic::nvvm_suld_1d_array_v4i8_trap: return NVPTXISD::Suld1DArrayV4I8Trap; case Intrinsic::nvvm_suld_1d_array_v4i16_trap: return NVPTXISD::Suld1DArrayV4I16Trap; case Intrinsic::nvvm_suld_1d_array_v4i32_trap: return NVPTXISD::Suld1DArrayV4I32Trap; case Intrinsic::nvvm_suld_2d_i8_trap: return NVPTXISD::Suld2DI8Trap; case Intrinsic::nvvm_suld_2d_i16_trap: return NVPTXISD::Suld2DI16Trap; case Intrinsic::nvvm_suld_2d_i32_trap: return NVPTXISD::Suld2DI32Trap; case Intrinsic::nvvm_suld_2d_i64_trap: return NVPTXISD::Suld2DI64Trap; case Intrinsic::nvvm_suld_2d_v2i8_trap: return NVPTXISD::Suld2DV2I8Trap; case Intrinsic::nvvm_suld_2d_v2i16_trap: return NVPTXISD::Suld2DV2I16Trap; case Intrinsic::nvvm_suld_2d_v2i32_trap: return NVPTXISD::Suld2DV2I32Trap; case Intrinsic::nvvm_suld_2d_v2i64_trap: return NVPTXISD::Suld2DV2I64Trap; case Intrinsic::nvvm_suld_2d_v4i8_trap: return NVPTXISD::Suld2DV4I8Trap; case Intrinsic::nvvm_suld_2d_v4i16_trap: return NVPTXISD::Suld2DV4I16Trap; case Intrinsic::nvvm_suld_2d_v4i32_trap: return NVPTXISD::Suld2DV4I32Trap; case Intrinsic::nvvm_suld_2d_array_i8_trap: return NVPTXISD::Suld2DArrayI8Trap; case Intrinsic::nvvm_suld_2d_array_i16_trap: return NVPTXISD::Suld2DArrayI16Trap; case Intrinsic::nvvm_suld_2d_array_i32_trap: return NVPTXISD::Suld2DArrayI32Trap; case Intrinsic::nvvm_suld_2d_array_i64_trap: return NVPTXISD::Suld2DArrayI64Trap; case Intrinsic::nvvm_suld_2d_array_v2i8_trap: return NVPTXISD::Suld2DArrayV2I8Trap; case Intrinsic::nvvm_suld_2d_array_v2i16_trap: return NVPTXISD::Suld2DArrayV2I16Trap; case Intrinsic::nvvm_suld_2d_array_v2i32_trap: return NVPTXISD::Suld2DArrayV2I32Trap; case Intrinsic::nvvm_suld_2d_array_v2i64_trap: return NVPTXISD::Suld2DArrayV2I64Trap; case Intrinsic::nvvm_suld_2d_array_v4i8_trap: return NVPTXISD::Suld2DArrayV4I8Trap; case Intrinsic::nvvm_suld_2d_array_v4i16_trap: return NVPTXISD::Suld2DArrayV4I16Trap; case Intrinsic::nvvm_suld_2d_array_v4i32_trap: return NVPTXISD::Suld2DArrayV4I32Trap; case Intrinsic::nvvm_suld_3d_i8_trap: return NVPTXISD::Suld3DI8Trap; case Intrinsic::nvvm_suld_3d_i16_trap: return NVPTXISD::Suld3DI16Trap; case Intrinsic::nvvm_suld_3d_i32_trap: return NVPTXISD::Suld3DI32Trap; case Intrinsic::nvvm_suld_3d_i64_trap: return NVPTXISD::Suld3DI64Trap; case Intrinsic::nvvm_suld_3d_v2i8_trap: return NVPTXISD::Suld3DV2I8Trap; case Intrinsic::nvvm_suld_3d_v2i16_trap: return NVPTXISD::Suld3DV2I16Trap; case Intrinsic::nvvm_suld_3d_v2i32_trap: return NVPTXISD::Suld3DV2I32Trap; case Intrinsic::nvvm_suld_3d_v2i64_trap: return NVPTXISD::Suld3DV2I64Trap; case Intrinsic::nvvm_suld_3d_v4i8_trap: return NVPTXISD::Suld3DV4I8Trap; case Intrinsic::nvvm_suld_3d_v4i16_trap: return NVPTXISD::Suld3DV4I16Trap; case Intrinsic::nvvm_suld_3d_v4i32_trap: return NVPTXISD::Suld3DV4I32Trap; case Intrinsic::nvvm_suld_1d_i8_zero: return NVPTXISD::Suld1DI8Zero; case Intrinsic::nvvm_suld_1d_i16_zero: return NVPTXISD::Suld1DI16Zero; case Intrinsic::nvvm_suld_1d_i32_zero: return NVPTXISD::Suld1DI32Zero; case Intrinsic::nvvm_suld_1d_i64_zero: return NVPTXISD::Suld1DI64Zero; case Intrinsic::nvvm_suld_1d_v2i8_zero: return NVPTXISD::Suld1DV2I8Zero; case Intrinsic::nvvm_suld_1d_v2i16_zero: return NVPTXISD::Suld1DV2I16Zero; case Intrinsic::nvvm_suld_1d_v2i32_zero: return NVPTXISD::Suld1DV2I32Zero; case Intrinsic::nvvm_suld_1d_v2i64_zero: return NVPTXISD::Suld1DV2I64Zero; case Intrinsic::nvvm_suld_1d_v4i8_zero: return NVPTXISD::Suld1DV4I8Zero; case Intrinsic::nvvm_suld_1d_v4i16_zero: return NVPTXISD::Suld1DV4I16Zero; case Intrinsic::nvvm_suld_1d_v4i32_zero: return NVPTXISD::Suld1DV4I32Zero; case Intrinsic::nvvm_suld_1d_array_i8_zero: return NVPTXISD::Suld1DArrayI8Zero; case Intrinsic::nvvm_suld_1d_array_i16_zero: return NVPTXISD::Suld1DArrayI16Zero; case Intrinsic::nvvm_suld_1d_array_i32_zero: return NVPTXISD::Suld1DArrayI32Zero; case Intrinsic::nvvm_suld_1d_array_i64_zero: return NVPTXISD::Suld1DArrayI64Zero; case Intrinsic::nvvm_suld_1d_array_v2i8_zero: return NVPTXISD::Suld1DArrayV2I8Zero; case Intrinsic::nvvm_suld_1d_array_v2i16_zero: return NVPTXISD::Suld1DArrayV2I16Zero; case Intrinsic::nvvm_suld_1d_array_v2i32_zero: return NVPTXISD::Suld1DArrayV2I32Zero; case Intrinsic::nvvm_suld_1d_array_v2i64_zero: return NVPTXISD::Suld1DArrayV2I64Zero; case Intrinsic::nvvm_suld_1d_array_v4i8_zero: return NVPTXISD::Suld1DArrayV4I8Zero; case Intrinsic::nvvm_suld_1d_array_v4i16_zero: return NVPTXISD::Suld1DArrayV4I16Zero; case Intrinsic::nvvm_suld_1d_array_v4i32_zero: return NVPTXISD::Suld1DArrayV4I32Zero; case Intrinsic::nvvm_suld_2d_i8_zero: return NVPTXISD::Suld2DI8Zero; case Intrinsic::nvvm_suld_2d_i16_zero: return NVPTXISD::Suld2DI16Zero; case Intrinsic::nvvm_suld_2d_i32_zero: return NVPTXISD::Suld2DI32Zero; case Intrinsic::nvvm_suld_2d_i64_zero: return NVPTXISD::Suld2DI64Zero; case Intrinsic::nvvm_suld_2d_v2i8_zero: return NVPTXISD::Suld2DV2I8Zero; case Intrinsic::nvvm_suld_2d_v2i16_zero: return NVPTXISD::Suld2DV2I16Zero; case Intrinsic::nvvm_suld_2d_v2i32_zero: return NVPTXISD::Suld2DV2I32Zero; case Intrinsic::nvvm_suld_2d_v2i64_zero: return NVPTXISD::Suld2DV2I64Zero; case Intrinsic::nvvm_suld_2d_v4i8_zero: return NVPTXISD::Suld2DV4I8Zero; case Intrinsic::nvvm_suld_2d_v4i16_zero: return NVPTXISD::Suld2DV4I16Zero; case Intrinsic::nvvm_suld_2d_v4i32_zero: return NVPTXISD::Suld2DV4I32Zero; case Intrinsic::nvvm_suld_2d_array_i8_zero: return NVPTXISD::Suld2DArrayI8Zero; case Intrinsic::nvvm_suld_2d_array_i16_zero: return NVPTXISD::Suld2DArrayI16Zero; case Intrinsic::nvvm_suld_2d_array_i32_zero: return NVPTXISD::Suld2DArrayI32Zero; case Intrinsic::nvvm_suld_2d_array_i64_zero: return NVPTXISD::Suld2DArrayI64Zero; case Intrinsic::nvvm_suld_2d_array_v2i8_zero: return NVPTXISD::Suld2DArrayV2I8Zero; case Intrinsic::nvvm_suld_2d_array_v2i16_zero: return NVPTXISD::Suld2DArrayV2I16Zero; case Intrinsic::nvvm_suld_2d_array_v2i32_zero: return NVPTXISD::Suld2DArrayV2I32Zero; case Intrinsic::nvvm_suld_2d_array_v2i64_zero: return NVPTXISD::Suld2DArrayV2I64Zero; case Intrinsic::nvvm_suld_2d_array_v4i8_zero: return NVPTXISD::Suld2DArrayV4I8Zero; case Intrinsic::nvvm_suld_2d_array_v4i16_zero: return NVPTXISD::Suld2DArrayV4I16Zero; case Intrinsic::nvvm_suld_2d_array_v4i32_zero: return NVPTXISD::Suld2DArrayV4I32Zero; case Intrinsic::nvvm_suld_3d_i8_zero: return NVPTXISD::Suld3DI8Zero; case Intrinsic::nvvm_suld_3d_i16_zero: return NVPTXISD::Suld3DI16Zero; case Intrinsic::nvvm_suld_3d_i32_zero: return NVPTXISD::Suld3DI32Zero; case Intrinsic::nvvm_suld_3d_i64_zero: return NVPTXISD::Suld3DI64Zero; case Intrinsic::nvvm_suld_3d_v2i8_zero: return NVPTXISD::Suld3DV2I8Zero; case Intrinsic::nvvm_suld_3d_v2i16_zero: return NVPTXISD::Suld3DV2I16Zero; case Intrinsic::nvvm_suld_3d_v2i32_zero: return NVPTXISD::Suld3DV2I32Zero; case Intrinsic::nvvm_suld_3d_v2i64_zero: return NVPTXISD::Suld3DV2I64Zero; case Intrinsic::nvvm_suld_3d_v4i8_zero: return NVPTXISD::Suld3DV4I8Zero; case Intrinsic::nvvm_suld_3d_v4i16_zero: return NVPTXISD::Suld3DV4I16Zero; case Intrinsic::nvvm_suld_3d_v4i32_zero: return NVPTXISD::Suld3DV4I32Zero; } } // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as // TgtMemIntrinsic // because we need the information that is only available in the "Value" type // of destination // pointer. In particular, the address space information. bool NVPTXTargetLowering::getTgtMemIntrinsic( IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const { switch (Intrinsic) { default: return false; case Intrinsic::nvvm_match_all_sync_i32p: case Intrinsic::nvvm_match_all_sync_i64p: Info.opc = ISD::INTRINSIC_W_CHAIN; // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute // in order to model data exchange with other threads, but perform no real // memory accesses. Info.memVT = MVT::i1; // Our result depends on both our and other thread's arguments. Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; return true; case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col: case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row: case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col: case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row: case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col: case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row: case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col: case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row: case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col: case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row: case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col: case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row: case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::v8f16; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(16); return true; } case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col: case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col: case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row: case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row: case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col: case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col: case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row: case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::v2i32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(8); return true; } case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col: case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col: case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row: case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row: case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col: case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col: case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row: case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::v4i32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(16); return true; } case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col: case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col: case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row: case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row: case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col: case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col: case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row: case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row: case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row: case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride: case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col: case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride: case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row: case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride: case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride: case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row: case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col: case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride: case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride: case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(4); return true; } case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col: case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row: case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col: case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row: case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col: case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row: case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::v4f16; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(16); return true; } case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col: case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row: case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col: case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row: case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col: case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row: case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::v8f32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(16); return true; } case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col: case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row: case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col: case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row: case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col: case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row: case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::v8i32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(16); return true; } case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col: case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride: case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row: case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride: case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col: case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride: case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row: case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::v2i32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(8); return true; } case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col: case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row: case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col: case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row: case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col: case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row: case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: { Info.opc = ISD::INTRINSIC_VOID; Info.memVT = MVT::v4f16; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOStore; Info.align = Align(16); return true; } case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col: case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row: case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col: case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row: case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col: case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row: case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: { Info.opc = ISD::INTRINSIC_VOID; Info.memVT = MVT::v8f32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOStore; Info.align = Align(16); return true; } case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col: case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride: case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row: case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride: case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col: case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride: case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row: case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride: case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col: case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride: case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row: case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: { Info.opc = ISD::INTRINSIC_VOID; Info.memVT = MVT::v8i32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOStore; Info.align = Align(16); return true; } case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col: case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride: case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row: case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride: case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col: case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride: case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row: case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: { Info.opc = ISD::INTRINSIC_VOID; Info.memVT = MVT::v2i32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOStore; Info.align = Align(8); return true; } case Intrinsic::nvvm_atomic_load_inc_32: case Intrinsic::nvvm_atomic_load_dec_32: case Intrinsic::nvvm_atomic_add_gen_f_cta: case Intrinsic::nvvm_atomic_add_gen_f_sys: case Intrinsic::nvvm_atomic_add_gen_i_cta: case Intrinsic::nvvm_atomic_add_gen_i_sys: case Intrinsic::nvvm_atomic_and_gen_i_cta: case Intrinsic::nvvm_atomic_and_gen_i_sys: case Intrinsic::nvvm_atomic_cas_gen_i_cta: case Intrinsic::nvvm_atomic_cas_gen_i_sys: case Intrinsic::nvvm_atomic_dec_gen_i_cta: case Intrinsic::nvvm_atomic_dec_gen_i_sys: case Intrinsic::nvvm_atomic_inc_gen_i_cta: case Intrinsic::nvvm_atomic_inc_gen_i_sys: case Intrinsic::nvvm_atomic_max_gen_i_cta: case Intrinsic::nvvm_atomic_max_gen_i_sys: case Intrinsic::nvvm_atomic_min_gen_i_cta: case Intrinsic::nvvm_atomic_min_gen_i_sys: case Intrinsic::nvvm_atomic_or_gen_i_cta: case Intrinsic::nvvm_atomic_or_gen_i_sys: case Intrinsic::nvvm_atomic_exch_gen_i_cta: case Intrinsic::nvvm_atomic_exch_gen_i_sys: case Intrinsic::nvvm_atomic_xor_gen_i_cta: case Intrinsic::nvvm_atomic_xor_gen_i_sys: { auto &DL = I.getModule()->getDataLayout(); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = getValueType(DL, I.getType()); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; Info.align.reset(); return true; } case Intrinsic::nvvm_ldu_global_i: case Intrinsic::nvvm_ldu_global_f: case Intrinsic::nvvm_ldu_global_p: { auto &DL = I.getModule()->getDataLayout(); Info.opc = ISD::INTRINSIC_W_CHAIN; if (Intrinsic == Intrinsic::nvvm_ldu_global_i) Info.memVT = getValueType(DL, I.getType()); else if(Intrinsic == Intrinsic::nvvm_ldu_global_p) Info.memVT = getPointerTy(DL); else Info.memVT = getValueType(DL, I.getType()); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = cast(I.getArgOperand(1))->getMaybeAlignValue(); return true; } case Intrinsic::nvvm_ldg_global_i: case Intrinsic::nvvm_ldg_global_f: case Intrinsic::nvvm_ldg_global_p: { auto &DL = I.getModule()->getDataLayout(); Info.opc = ISD::INTRINSIC_W_CHAIN; if (Intrinsic == Intrinsic::nvvm_ldg_global_i) Info.memVT = getValueType(DL, I.getType()); else if(Intrinsic == Intrinsic::nvvm_ldg_global_p) Info.memVT = getPointerTy(DL); else Info.memVT = getValueType(DL, I.getType()); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = cast(I.getArgOperand(1))->getMaybeAlignValue(); return true; } case Intrinsic::nvvm_tex_1d_v4f32_s32: case Intrinsic::nvvm_tex_1d_v4f32_f32: case Intrinsic::nvvm_tex_1d_level_v4f32_f32: case Intrinsic::nvvm_tex_1d_grad_v4f32_f32: case Intrinsic::nvvm_tex_1d_array_v4f32_s32: case Intrinsic::nvvm_tex_1d_array_v4f32_f32: case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32: case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32: case Intrinsic::nvvm_tex_2d_v4f32_s32: case Intrinsic::nvvm_tex_2d_v4f32_f32: case Intrinsic::nvvm_tex_2d_level_v4f32_f32: case Intrinsic::nvvm_tex_2d_grad_v4f32_f32: case Intrinsic::nvvm_tex_2d_array_v4f32_s32: case Intrinsic::nvvm_tex_2d_array_v4f32_f32: case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32: case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32: case Intrinsic::nvvm_tex_3d_v4f32_s32: case Intrinsic::nvvm_tex_3d_v4f32_f32: case Intrinsic::nvvm_tex_3d_level_v4f32_f32: case Intrinsic::nvvm_tex_3d_grad_v4f32_f32: case Intrinsic::nvvm_tex_cube_v4f32_f32: case Intrinsic::nvvm_tex_cube_level_v4f32_f32: case Intrinsic::nvvm_tex_cube_array_v4f32_f32: case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32: case Intrinsic::nvvm_tld4_r_2d_v4f32_f32: case Intrinsic::nvvm_tld4_g_2d_v4f32_f32: case Intrinsic::nvvm_tld4_b_2d_v4f32_f32: case Intrinsic::nvvm_tld4_a_2d_v4f32_f32: case Intrinsic::nvvm_tex_unified_1d_v4f32_s32: case Intrinsic::nvvm_tex_unified_1d_v4f32_f32: case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32: case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32: case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32: case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32: case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32: case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32: case Intrinsic::nvvm_tex_unified_2d_v4f32_s32: case Intrinsic::nvvm_tex_unified_2d_v4f32_f32: case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32: case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32: case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32: case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32: case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32: case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32: case Intrinsic::nvvm_tex_unified_3d_v4f32_s32: case Intrinsic::nvvm_tex_unified_3d_v4f32_f32: case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32: case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32: case Intrinsic::nvvm_tex_unified_cube_v4f32_f32: case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32: case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32: case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32: case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32: case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32: case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32: case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: Info.opc = getOpcForTextureInstr(Intrinsic); Info.memVT = MVT::v4f32; Info.ptrVal = nullptr; Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(16); return true; case Intrinsic::nvvm_tex_1d_v4s32_s32: case Intrinsic::nvvm_tex_1d_v4s32_f32: case Intrinsic::nvvm_tex_1d_level_v4s32_f32: case Intrinsic::nvvm_tex_1d_grad_v4s32_f32: case Intrinsic::nvvm_tex_1d_array_v4s32_s32: case Intrinsic::nvvm_tex_1d_array_v4s32_f32: case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32: case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32: case Intrinsic::nvvm_tex_2d_v4s32_s32: case Intrinsic::nvvm_tex_2d_v4s32_f32: case Intrinsic::nvvm_tex_2d_level_v4s32_f32: case Intrinsic::nvvm_tex_2d_grad_v4s32_f32: case Intrinsic::nvvm_tex_2d_array_v4s32_s32: case Intrinsic::nvvm_tex_2d_array_v4s32_f32: case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32: case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32: case Intrinsic::nvvm_tex_3d_v4s32_s32: case Intrinsic::nvvm_tex_3d_v4s32_f32: case Intrinsic::nvvm_tex_3d_level_v4s32_f32: case Intrinsic::nvvm_tex_3d_grad_v4s32_f32: case Intrinsic::nvvm_tex_cube_v4s32_f32: case Intrinsic::nvvm_tex_cube_level_v4s32_f32: case Intrinsic::nvvm_tex_cube_array_v4s32_f32: case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32: case Intrinsic::nvvm_tex_cube_v4u32_f32: case Intrinsic::nvvm_tex_cube_level_v4u32_f32: case Intrinsic::nvvm_tex_cube_array_v4u32_f32: case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32: case Intrinsic::nvvm_tex_1d_v4u32_s32: case Intrinsic::nvvm_tex_1d_v4u32_f32: case Intrinsic::nvvm_tex_1d_level_v4u32_f32: case Intrinsic::nvvm_tex_1d_grad_v4u32_f32: case Intrinsic::nvvm_tex_1d_array_v4u32_s32: case Intrinsic::nvvm_tex_1d_array_v4u32_f32: case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32: case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32: case Intrinsic::nvvm_tex_2d_v4u32_s32: case Intrinsic::nvvm_tex_2d_v4u32_f32: case Intrinsic::nvvm_tex_2d_level_v4u32_f32: case Intrinsic::nvvm_tex_2d_grad_v4u32_f32: case Intrinsic::nvvm_tex_2d_array_v4u32_s32: case Intrinsic::nvvm_tex_2d_array_v4u32_f32: case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32: case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32: case Intrinsic::nvvm_tex_3d_v4u32_s32: case Intrinsic::nvvm_tex_3d_v4u32_f32: case Intrinsic::nvvm_tex_3d_level_v4u32_f32: case Intrinsic::nvvm_tex_3d_grad_v4u32_f32: case Intrinsic::nvvm_tld4_r_2d_v4s32_f32: case Intrinsic::nvvm_tld4_g_2d_v4s32_f32: case Intrinsic::nvvm_tld4_b_2d_v4s32_f32: case Intrinsic::nvvm_tld4_a_2d_v4s32_f32: case Intrinsic::nvvm_tld4_r_2d_v4u32_f32: case Intrinsic::nvvm_tld4_g_2d_v4u32_f32: case Intrinsic::nvvm_tld4_b_2d_v4u32_f32: case Intrinsic::nvvm_tld4_a_2d_v4u32_f32: case Intrinsic::nvvm_tex_unified_1d_v4s32_s32: case Intrinsic::nvvm_tex_unified_1d_v4s32_f32: case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32: case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32: case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32: case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32: case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32: case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32: case Intrinsic::nvvm_tex_unified_2d_v4s32_s32: case Intrinsic::nvvm_tex_unified_2d_v4s32_f32: case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32: case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32: case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32: case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32: case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32: case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32: case Intrinsic::nvvm_tex_unified_3d_v4s32_s32: case Intrinsic::nvvm_tex_unified_3d_v4s32_f32: case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32: case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32: case Intrinsic::nvvm_tex_unified_1d_v4u32_s32: case Intrinsic::nvvm_tex_unified_1d_v4u32_f32: case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32: case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32: case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32: case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32: case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32: case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32: case Intrinsic::nvvm_tex_unified_2d_v4u32_s32: case Intrinsic::nvvm_tex_unified_2d_v4u32_f32: case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32: case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32: case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32: case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32: case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32: case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32: case Intrinsic::nvvm_tex_unified_3d_v4u32_s32: case Intrinsic::nvvm_tex_unified_3d_v4u32_f32: case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32: case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32: case Intrinsic::nvvm_tex_unified_cube_v4s32_f32: case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32: case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32: case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32: case Intrinsic::nvvm_tex_unified_cube_v4u32_f32: case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32: case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32: case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32: case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32: case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32: case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32: case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32: case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32: case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32: case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32: case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: Info.opc = getOpcForTextureInstr(Intrinsic); Info.memVT = MVT::v4i32; Info.ptrVal = nullptr; Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(16); return true; case Intrinsic::nvvm_suld_1d_i8_clamp: case Intrinsic::nvvm_suld_1d_v2i8_clamp: case Intrinsic::nvvm_suld_1d_v4i8_clamp: case Intrinsic::nvvm_suld_1d_array_i8_clamp: case Intrinsic::nvvm_suld_1d_array_v2i8_clamp: case Intrinsic::nvvm_suld_1d_array_v4i8_clamp: case Intrinsic::nvvm_suld_2d_i8_clamp: case Intrinsic::nvvm_suld_2d_v2i8_clamp: case Intrinsic::nvvm_suld_2d_v4i8_clamp: case Intrinsic::nvvm_suld_2d_array_i8_clamp: case Intrinsic::nvvm_suld_2d_array_v2i8_clamp: case Intrinsic::nvvm_suld_2d_array_v4i8_clamp: case Intrinsic::nvvm_suld_3d_i8_clamp: case Intrinsic::nvvm_suld_3d_v2i8_clamp: case Intrinsic::nvvm_suld_3d_v4i8_clamp: case Intrinsic::nvvm_suld_1d_i8_trap: case Intrinsic::nvvm_suld_1d_v2i8_trap: case Intrinsic::nvvm_suld_1d_v4i8_trap: case Intrinsic::nvvm_suld_1d_array_i8_trap: case Intrinsic::nvvm_suld_1d_array_v2i8_trap: case Intrinsic::nvvm_suld_1d_array_v4i8_trap: case Intrinsic::nvvm_suld_2d_i8_trap: case Intrinsic::nvvm_suld_2d_v2i8_trap: case Intrinsic::nvvm_suld_2d_v4i8_trap: case Intrinsic::nvvm_suld_2d_array_i8_trap: case Intrinsic::nvvm_suld_2d_array_v2i8_trap: case Intrinsic::nvvm_suld_2d_array_v4i8_trap: case Intrinsic::nvvm_suld_3d_i8_trap: case Intrinsic::nvvm_suld_3d_v2i8_trap: case Intrinsic::nvvm_suld_3d_v4i8_trap: case Intrinsic::nvvm_suld_1d_i8_zero: case Intrinsic::nvvm_suld_1d_v2i8_zero: case Intrinsic::nvvm_suld_1d_v4i8_zero: case Intrinsic::nvvm_suld_1d_array_i8_zero: case Intrinsic::nvvm_suld_1d_array_v2i8_zero: case Intrinsic::nvvm_suld_1d_array_v4i8_zero: case Intrinsic::nvvm_suld_2d_i8_zero: case Intrinsic::nvvm_suld_2d_v2i8_zero: case Intrinsic::nvvm_suld_2d_v4i8_zero: case Intrinsic::nvvm_suld_2d_array_i8_zero: case Intrinsic::nvvm_suld_2d_array_v2i8_zero: case Intrinsic::nvvm_suld_2d_array_v4i8_zero: case Intrinsic::nvvm_suld_3d_i8_zero: case Intrinsic::nvvm_suld_3d_v2i8_zero: case Intrinsic::nvvm_suld_3d_v4i8_zero: Info.opc = getOpcForSurfaceInstr(Intrinsic); Info.memVT = MVT::i8; Info.ptrVal = nullptr; Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(16); return true; case Intrinsic::nvvm_suld_1d_i16_clamp: case Intrinsic::nvvm_suld_1d_v2i16_clamp: case Intrinsic::nvvm_suld_1d_v4i16_clamp: case Intrinsic::nvvm_suld_1d_array_i16_clamp: case Intrinsic::nvvm_suld_1d_array_v2i16_clamp: case Intrinsic::nvvm_suld_1d_array_v4i16_clamp: case Intrinsic::nvvm_suld_2d_i16_clamp: case Intrinsic::nvvm_suld_2d_v2i16_clamp: case Intrinsic::nvvm_suld_2d_v4i16_clamp: case Intrinsic::nvvm_suld_2d_array_i16_clamp: case Intrinsic::nvvm_suld_2d_array_v2i16_clamp: case Intrinsic::nvvm_suld_2d_array_v4i16_clamp: case Intrinsic::nvvm_suld_3d_i16_clamp: case Intrinsic::nvvm_suld_3d_v2i16_clamp: case Intrinsic::nvvm_suld_3d_v4i16_clamp: case Intrinsic::nvvm_suld_1d_i16_trap: case Intrinsic::nvvm_suld_1d_v2i16_trap: case Intrinsic::nvvm_suld_1d_v4i16_trap: case Intrinsic::nvvm_suld_1d_array_i16_trap: case Intrinsic::nvvm_suld_1d_array_v2i16_trap: case Intrinsic::nvvm_suld_1d_array_v4i16_trap: case Intrinsic::nvvm_suld_2d_i16_trap: case Intrinsic::nvvm_suld_2d_v2i16_trap: case Intrinsic::nvvm_suld_2d_v4i16_trap: case Intrinsic::nvvm_suld_2d_array_i16_trap: case Intrinsic::nvvm_suld_2d_array_v2i16_trap: case Intrinsic::nvvm_suld_2d_array_v4i16_trap: case Intrinsic::nvvm_suld_3d_i16_trap: case Intrinsic::nvvm_suld_3d_v2i16_trap: case Intrinsic::nvvm_suld_3d_v4i16_trap: case Intrinsic::nvvm_suld_1d_i16_zero: case Intrinsic::nvvm_suld_1d_v2i16_zero: case Intrinsic::nvvm_suld_1d_v4i16_zero: case Intrinsic::nvvm_suld_1d_array_i16_zero: case Intrinsic::nvvm_suld_1d_array_v2i16_zero: case Intrinsic::nvvm_suld_1d_array_v4i16_zero: case Intrinsic::nvvm_suld_2d_i16_zero: case Intrinsic::nvvm_suld_2d_v2i16_zero: case Intrinsic::nvvm_suld_2d_v4i16_zero: case Intrinsic::nvvm_suld_2d_array_i16_zero: case Intrinsic::nvvm_suld_2d_array_v2i16_zero: case Intrinsic::nvvm_suld_2d_array_v4i16_zero: case Intrinsic::nvvm_suld_3d_i16_zero: case Intrinsic::nvvm_suld_3d_v2i16_zero: case Intrinsic::nvvm_suld_3d_v4i16_zero: Info.opc = getOpcForSurfaceInstr(Intrinsic); Info.memVT = MVT::i16; Info.ptrVal = nullptr; Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(16); return true; case Intrinsic::nvvm_suld_1d_i32_clamp: case Intrinsic::nvvm_suld_1d_v2i32_clamp: case Intrinsic::nvvm_suld_1d_v4i32_clamp: case Intrinsic::nvvm_suld_1d_array_i32_clamp: case Intrinsic::nvvm_suld_1d_array_v2i32_clamp: case Intrinsic::nvvm_suld_1d_array_v4i32_clamp: case Intrinsic::nvvm_suld_2d_i32_clamp: case Intrinsic::nvvm_suld_2d_v2i32_clamp: case Intrinsic::nvvm_suld_2d_v4i32_clamp: case Intrinsic::nvvm_suld_2d_array_i32_clamp: case Intrinsic::nvvm_suld_2d_array_v2i32_clamp: case Intrinsic::nvvm_suld_2d_array_v4i32_clamp: case Intrinsic::nvvm_suld_3d_i32_clamp: case Intrinsic::nvvm_suld_3d_v2i32_clamp: case Intrinsic::nvvm_suld_3d_v4i32_clamp: case Intrinsic::nvvm_suld_1d_i32_trap: case Intrinsic::nvvm_suld_1d_v2i32_trap: case Intrinsic::nvvm_suld_1d_v4i32_trap: case Intrinsic::nvvm_suld_1d_array_i32_trap: case Intrinsic::nvvm_suld_1d_array_v2i32_trap: case Intrinsic::nvvm_suld_1d_array_v4i32_trap: case Intrinsic::nvvm_suld_2d_i32_trap: case Intrinsic::nvvm_suld_2d_v2i32_trap: case Intrinsic::nvvm_suld_2d_v4i32_trap: case Intrinsic::nvvm_suld_2d_array_i32_trap: case Intrinsic::nvvm_suld_2d_array_v2i32_trap: case Intrinsic::nvvm_suld_2d_array_v4i32_trap: case Intrinsic::nvvm_suld_3d_i32_trap: case Intrinsic::nvvm_suld_3d_v2i32_trap: case Intrinsic::nvvm_suld_3d_v4i32_trap: case Intrinsic::nvvm_suld_1d_i32_zero: case Intrinsic::nvvm_suld_1d_v2i32_zero: case Intrinsic::nvvm_suld_1d_v4i32_zero: case Intrinsic::nvvm_suld_1d_array_i32_zero: case Intrinsic::nvvm_suld_1d_array_v2i32_zero: case Intrinsic::nvvm_suld_1d_array_v4i32_zero: case Intrinsic::nvvm_suld_2d_i32_zero: case Intrinsic::nvvm_suld_2d_v2i32_zero: case Intrinsic::nvvm_suld_2d_v4i32_zero: case Intrinsic::nvvm_suld_2d_array_i32_zero: case Intrinsic::nvvm_suld_2d_array_v2i32_zero: case Intrinsic::nvvm_suld_2d_array_v4i32_zero: case Intrinsic::nvvm_suld_3d_i32_zero: case Intrinsic::nvvm_suld_3d_v2i32_zero: case Intrinsic::nvvm_suld_3d_v4i32_zero: Info.opc = getOpcForSurfaceInstr(Intrinsic); Info.memVT = MVT::i32; Info.ptrVal = nullptr; Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(16); return true; case Intrinsic::nvvm_suld_1d_i64_clamp: case Intrinsic::nvvm_suld_1d_v2i64_clamp: case Intrinsic::nvvm_suld_1d_array_i64_clamp: case Intrinsic::nvvm_suld_1d_array_v2i64_clamp: case Intrinsic::nvvm_suld_2d_i64_clamp: case Intrinsic::nvvm_suld_2d_v2i64_clamp: case Intrinsic::nvvm_suld_2d_array_i64_clamp: case Intrinsic::nvvm_suld_2d_array_v2i64_clamp: case Intrinsic::nvvm_suld_3d_i64_clamp: case Intrinsic::nvvm_suld_3d_v2i64_clamp: case Intrinsic::nvvm_suld_1d_i64_trap: case Intrinsic::nvvm_suld_1d_v2i64_trap: case Intrinsic::nvvm_suld_1d_array_i64_trap: case Intrinsic::nvvm_suld_1d_array_v2i64_trap: case Intrinsic::nvvm_suld_2d_i64_trap: case Intrinsic::nvvm_suld_2d_v2i64_trap: case Intrinsic::nvvm_suld_2d_array_i64_trap: case Intrinsic::nvvm_suld_2d_array_v2i64_trap: case Intrinsic::nvvm_suld_3d_i64_trap: case Intrinsic::nvvm_suld_3d_v2i64_trap: case Intrinsic::nvvm_suld_1d_i64_zero: case Intrinsic::nvvm_suld_1d_v2i64_zero: case Intrinsic::nvvm_suld_1d_array_i64_zero: case Intrinsic::nvvm_suld_1d_array_v2i64_zero: case Intrinsic::nvvm_suld_2d_i64_zero: case Intrinsic::nvvm_suld_2d_v2i64_zero: case Intrinsic::nvvm_suld_2d_array_i64_zero: case Intrinsic::nvvm_suld_2d_array_v2i64_zero: case Intrinsic::nvvm_suld_3d_i64_zero: case Intrinsic::nvvm_suld_3d_v2i64_zero: Info.opc = getOpcForSurfaceInstr(Intrinsic); Info.memVT = MVT::i64; Info.ptrVal = nullptr; Info.offset = 0; Info.flags = MachineMemOperand::MOLoad; Info.align = Align(16); return true; } return false; } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. /// Used to guide target specific optimizations, like loop strength reduction /// (LoopStrengthReduce.cpp) and memory optimization for address mode /// (CodeGenPrepare.cpp) bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // AddrMode - This represents an addressing mode of: // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg // // The legal address modes are // - [avar] // - [areg] // - [areg+immoff] // - [immAddr] if (AM.BaseGV) { return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale; } switch (AM.Scale) { case 0: // "r", "r+i" or "i" is allowed break; case 1: if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed. return false; // Otherwise we have r+i. break; default: // No scale > 1 is allowed return false; } return true; } //===----------------------------------------------------------------------===// // NVPTX Inline Assembly Support //===----------------------------------------------------------------------===// /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. NVPTXTargetLowering::ConstraintType NVPTXTargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'b': case 'r': case 'h': case 'c': case 'l': case 'f': case 'd': case '0': case 'N': return C_RegisterClass; } } return TargetLowering::getConstraintType(Constraint); } std::pair NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'b': return std::make_pair(0U, &NVPTX::Int1RegsRegClass); case 'c': return std::make_pair(0U, &NVPTX::Int16RegsRegClass); case 'h': return std::make_pair(0U, &NVPTX::Int16RegsRegClass); case 'r': return std::make_pair(0U, &NVPTX::Int32RegsRegClass); case 'l': case 'N': return std::make_pair(0U, &NVPTX::Int64RegsRegClass); case 'f': return std::make_pair(0U, &NVPTX::Float32RegsRegClass); case 'd': return std::make_pair(0U, &NVPTX::Float64RegsRegClass); } } return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } //===----------------------------------------------------------------------===// // NVPTX DAG Combining //===----------------------------------------------------------------------===// bool NVPTXTargetLowering::allowFMA(MachineFunction &MF, CodeGenOpt::Level OptLevel) const { // Always honor command-line argument if (FMAContractLevelOpt.getNumOccurrences() > 0) return FMAContractLevelOpt > 0; // Do not contract if we're not optimizing the code. if (OptLevel == 0) return false; // Honor TargetOptions flags that explicitly say fusion is okay. if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast) return true; return allowUnsafeFPMath(MF); } bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const { // Honor TargetOptions flags that explicitly say unsafe math is okay. if (MF.getTarget().Options.UnsafeFPMath) return true; // Allow unsafe math if unsafe-fp-math attribute explicitly says so. const Function &F = MF.getFunction(); if (F.hasFnAttribute("unsafe-fp-math")) { Attribute Attr = F.getFnAttribute("unsafe-fp-math"); StringRef Val = Attr.getValueAsString(); if (Val == "true") return true; } return false; } /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with /// operands N0 and N1. This is a helper for PerformADDCombine that is /// called with the default operands, and if that fails, with commuted /// operands. static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const NVPTXSubtarget &Subtarget, CodeGenOpt::Level OptLevel) { SelectionDAG &DAG = DCI.DAG; // Skip non-integer, non-scalar case EVT VT=N0.getValueType(); if (VT.isVector()) return SDValue(); // fold (add (mul a, b), c) -> (mad a, b, c) // if (N0.getOpcode() == ISD::MUL) { assert (VT.isInteger()); // For integer: // Since integer multiply-add costs the same as integer multiply // but is more costly than integer add, do the fusion only when // the mul is only used in the add. if (OptLevel==CodeGenOpt::None || VT != MVT::i32 || !N0.getNode()->hasOneUse()) return SDValue(); // Do the folding return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1), N1); } else if (N0.getOpcode() == ISD::FMUL) { if (VT == MVT::f32 || VT == MVT::f64) { const auto *TLI = static_cast( &DAG.getTargetLoweringInfo()); if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel)) return SDValue(); // For floating point: // Do the fusion only when the mul has less than 5 uses and all // are add. // The heuristic is that if a use is not an add, then that use // cannot be fused into fma, therefore mul is still needed anyway. // If there are more than 4 uses, even if they are all add, fusing // them will increase register pressue. // int numUses = 0; int nonAddCount = 0; for (SDNode::use_iterator UI = N0.getNode()->use_begin(), UE = N0.getNode()->use_end(); UI != UE; ++UI) { numUses++; SDNode *User = *UI; if (User->getOpcode() != ISD::FADD) ++nonAddCount; } if (numUses >= 5) return SDValue(); if (nonAddCount) { int orderNo = N->getIROrder(); int orderNo2 = N0.getNode()->getIROrder(); // simple heuristics here for considering potential register // pressure, the logics here is that the differnce are used // to measure the distance between def and use, the longer distance // more likely cause register pressure. if (orderNo - orderNo2 < 500) return SDValue(); // Now, check if at least one of the FMUL's operands is live beyond the node N, // which guarantees that the FMA will not increase register pressure at node N. bool opIsLive = false; const SDNode *left = N0.getOperand(0).getNode(); const SDNode *right = N0.getOperand(1).getNode(); if (isa(left) || isa(right)) opIsLive = true; if (!opIsLive) for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) { SDNode *User = *UI; int orderNo3 = User->getIROrder(); if (orderNo3 > orderNo) { opIsLive = true; break; } } if (!opIsLive) for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) { SDNode *User = *UI; int orderNo3 = User->getIROrder(); if (orderNo3 > orderNo) { opIsLive = true; break; } } if (!opIsLive) return SDValue(); } return DAG.getNode(ISD::FMA, SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1), N1); } } return SDValue(); } /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. /// static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const NVPTXSubtarget &Subtarget, CodeGenOpt::Level OptLevel) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // First try with the default operand order. if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel)) return Result; // If that didn't work, try again with the operands commuted. return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel); } static SDValue PerformANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // The type legalizer turns a vector load of i8 values into a zextload to i16 // registers, optionally ANY_EXTENDs it (if target type is integer), // and ANDs off the high 8 bits. Since we turn this load into a // target-specific DAG node, the DAG combiner fails to eliminate these AND // nodes. Do that here. SDValue Val = N->getOperand(0); SDValue Mask = N->getOperand(1); if (isa(Val)) { std::swap(Val, Mask); } SDValue AExt; // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and if (Val.getOpcode() == ISD::ANY_EXTEND) { AExt = Val; Val = Val->getOperand(0); } if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) { Val = Val->getOperand(0); } if (Val->getOpcode() == NVPTXISD::LoadV2 || Val->getOpcode() == NVPTXISD::LoadV4) { ConstantSDNode *MaskCnst = dyn_cast(Mask); if (!MaskCnst) { // Not an AND with a constant return SDValue(); } uint64_t MaskVal = MaskCnst->getZExtValue(); if (MaskVal != 0xff) { // Not an AND that chops off top 8 bits return SDValue(); } MemSDNode *Mem = dyn_cast(Val); if (!Mem) { // Not a MemSDNode?!? return SDValue(); } EVT MemVT = Mem->getMemoryVT(); if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) { // We only handle the i8 case return SDValue(); } unsigned ExtType = cast(Val->getOperand(Val->getNumOperands()-1))-> getZExtValue(); if (ExtType == ISD::SEXTLOAD) { // If for some reason the load is a sextload, the and is needed to zero // out the high 8 bits return SDValue(); } bool AddTo = false; if (AExt.getNode() != nullptr) { // Re-insert the ext as a zext. Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), AExt.getValueType(), Val); AddTo = true; } // If we get here, the AND is unnecessary. Just replace it with the load DCI.CombineTo(N, Val, AddTo); } return SDValue(); } static SDValue PerformREMCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOpt::Level OptLevel) { assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM); // Don't do anything at less than -O2. if (OptLevel < CodeGenOpt::Default) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); EVT VT = N->getValueType(0); bool IsSigned = N->getOpcode() == ISD::SREM; unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV; const SDValue &Num = N->getOperand(0); const SDValue &Den = N->getOperand(1); for (const SDNode *U : Num->uses()) { if (U->getOpcode() == DivOpc && U->getOperand(0) == Num && U->getOperand(1) == Den) { // Num % Den -> Num - (Num / Den) * Den return DAG.getNode(ISD::SUB, DL, VT, Num, DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(DivOpc, DL, VT, Num, Den), Den)); } } return SDValue(); } enum OperandSignedness { Signed = 0, Unsigned, Unknown }; /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand /// that can be demoted to \p OptSize bits without loss of information. The /// signedness of the operand, if determinable, is placed in \p S. static bool IsMulWideOperandDemotable(SDValue Op, unsigned OptSize, OperandSignedness &S) { S = Unknown; if (Op.getOpcode() == ISD::SIGN_EXTEND || Op.getOpcode() == ISD::SIGN_EXTEND_INREG) { EVT OrigVT = Op.getOperand(0).getValueType(); if (OrigVT.getFixedSizeInBits() <= OptSize) { S = Signed; return true; } } else if (Op.getOpcode() == ISD::ZERO_EXTEND) { EVT OrigVT = Op.getOperand(0).getValueType(); if (OrigVT.getFixedSizeInBits() <= OptSize) { S = Unsigned; return true; } } return false; } /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can /// be demoted to \p OptSize bits without loss of information. If the operands /// contain a constant, it should appear as the RHS operand. The signedness of /// the operands is placed in \p IsSigned. static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, unsigned OptSize, bool &IsSigned) { OperandSignedness LHSSign; // The LHS operand must be a demotable op if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign)) return false; // We should have been able to determine the signedness from the LHS if (LHSSign == Unknown) return false; IsSigned = (LHSSign == Signed); // The RHS can be a demotable op or a constant if (ConstantSDNode *CI = dyn_cast(RHS)) { const APInt &Val = CI->getAPIntValue(); if (LHSSign == Unsigned) { return Val.isIntN(OptSize); } else { return Val.isSignedIntN(OptSize); } } else { OperandSignedness RHSSign; if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign)) return false; return LHSSign == RHSSign; } } /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift /// amount. static SDValue TryMULWIDECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { EVT MulType = N->getValueType(0); if (MulType != MVT::i32 && MulType != MVT::i64) { return SDValue(); } SDLoc DL(N); unsigned OptSize = MulType.getSizeInBits() >> 1; SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // Canonicalize the multiply so the constant (if any) is on the right if (N->getOpcode() == ISD::MUL) { if (isa(LHS)) { std::swap(LHS, RHS); } } // If we have a SHL, determine the actual multiply amount if (N->getOpcode() == ISD::SHL) { ConstantSDNode *ShlRHS = dyn_cast(RHS); if (!ShlRHS) { return SDValue(); } APInt ShiftAmt = ShlRHS->getAPIntValue(); unsigned BitWidth = MulType.getSizeInBits(); if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) { APInt MulVal = APInt(BitWidth, 1) << ShiftAmt; RHS = DCI.DAG.getConstant(MulVal, DL, MulType); } else { return SDValue(); } } bool Signed; // Verify that our operands are demotable if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) { return SDValue(); } EVT DemotedVT; if (MulType == MVT::i32) { DemotedVT = MVT::i16; } else { DemotedVT = MVT::i32; } // Truncate the operands to the correct size. Note that these are just for // type consistency and will (likely) be eliminated in later phases. SDValue TruncLHS = DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS); SDValue TruncRHS = DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS); unsigned Opc; if (Signed) { Opc = NVPTXISD::MUL_WIDE_SIGNED; } else { Opc = NVPTXISD::MUL_WIDE_UNSIGNED; } return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS); } /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes. static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOpt::Level OptLevel) { if (OptLevel > 0) { // Try mul.wide combining at OptLevel > 0 if (SDValue Ret = TryMULWIDECombine(N, DCI)) return Ret; } return SDValue(); } /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes. static SDValue PerformSHLCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOpt::Level OptLevel) { if (OptLevel > 0) { // Try mul.wide combining at OptLevel > 0 if (SDValue Ret = TryMULWIDECombine(N, DCI)) return Ret; } return SDValue(); } static SDValue PerformSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { EVT CCType = N->getValueType(0); SDValue A = N->getOperand(0); SDValue B = N->getOperand(1); if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16) return SDValue(); SDLoc DL(N); // setp.f16x2 returns two scalar predicates, which we need to // convert back to v2i1. The returned result will be scalarized by // the legalizer, but the comparison will remain a single vector // instruction. SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL, DCI.DAG.getVTList(MVT::i1, MVT::i1), {A, B, N->getOperand(2)}); return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0), CCNode.getValue(1)); } SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel(); switch (N->getOpcode()) { default: break; case ISD::ADD: case ISD::FADD: return PerformADDCombine(N, DCI, STI, OptLevel); case ISD::MUL: return PerformMULCombine(N, DCI, OptLevel); case ISD::SHL: return PerformSHLCombine(N, DCI, OptLevel); case ISD::AND: return PerformANDCombine(N, DCI); case ISD::UREM: case ISD::SREM: return PerformREMCombine(N, DCI, OptLevel); case ISD::SETCC: return PerformSETCCCombine(N, DCI); } return SDValue(); } /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads. static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG, SmallVectorImpl &Results) { EVT ResVT = N->getValueType(0); SDLoc DL(N); assert(ResVT.isVector() && "Vector load must have vector type"); // We only handle "native" vector sizes for now, e.g. <4 x double> is not // legal. We can (and should) split that into 2 loads of <2 x double> here // but I'm leaving that as a TODO for now. assert(ResVT.isSimple() && "Can only handle simple types"); switch (ResVT.getSimpleVT().SimpleTy) { default: return; case MVT::v2i8: case MVT::v2i16: case MVT::v2i32: case MVT::v2i64: case MVT::v2f16: case MVT::v2f32: case MVT::v2f64: case MVT::v4i8: case MVT::v4i16: case MVT::v4i32: case MVT::v4f16: case MVT::v4f32: case MVT::v8f16: // <4 x f16x2> // This is a "native" vector type break; } LoadSDNode *LD = cast(N); Align Alignment = LD->getAlign(); auto &TD = DAG.getDataLayout(); Align PrefAlign = TD.getPrefTypeAlign(ResVT.getTypeForEVT(*DAG.getContext())); if (Alignment < PrefAlign) { // This load is not sufficiently aligned, so bail out and let this vector // load be scalarized. Note that we may still be able to emit smaller // vector loads. For example, if we are loading a <4 x float> with an // alignment of 8, this check will fail but the legalizer will try again // with 2 x <2 x float>, which will succeed with an alignment of 8. return; } EVT EltVT = ResVT.getVectorElementType(); unsigned NumElts = ResVT.getVectorNumElements(); // Since LoadV2 is a target node, we cannot rely on DAG type legalization. // Therefore, we must ensure the type is legal. For i1 and i8, we set the // loaded type to i16 and propagate the "real" type as the memory type. bool NeedTrunc = false; if (EltVT.getSizeInBits() < 16) { EltVT = MVT::i16; NeedTrunc = true; } unsigned Opcode = 0; SDVTList LdResVTs; bool LoadF16x2 = false; switch (NumElts) { default: return; case 2: Opcode = NVPTXISD::LoadV2; LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other); break; case 4: { Opcode = NVPTXISD::LoadV4; EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other }; LdResVTs = DAG.getVTList(ListVTs); break; } case 8: { // v8f16 is a special case. PTX doesn't have ld.v8.f16 // instruction. Instead, we split the vector into v2f16 chunks and // load them with ld.v4.b32. assert(EltVT == MVT::f16 && "Unsupported v8 vector type."); LoadF16x2 = true; Opcode = NVPTXISD::LoadV4; EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::Other}; LdResVTs = DAG.getVTList(ListVTs); break; } } // Copy regular operands SmallVector OtherOps(N->op_begin(), N->op_end()); // The select routine does not have access to the LoadSDNode instance, so // pass along the extension information OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL)); SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, LD->getMemoryVT(), LD->getMemOperand()); SmallVector ScalarRes; if (LoadF16x2) { // Split v2f16 subvectors back into individual elements. NumElts /= 2; for (unsigned i = 0; i < NumElts; ++i) { SDValue SubVector = NewLD.getValue(i); SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector, DAG.getIntPtrConstant(0, DL)); SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector, DAG.getIntPtrConstant(1, DL)); ScalarRes.push_back(E0); ScalarRes.push_back(E1); } } else { for (unsigned i = 0; i < NumElts; ++i) { SDValue Res = NewLD.getValue(i); if (NeedTrunc) Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res); ScalarRes.push_back(Res); } } SDValue LoadChain = NewLD.getValue(NumElts); SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes); Results.push_back(BuildVec); Results.push_back(LoadChain); } static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, SmallVectorImpl &Results) { SDValue Chain = N->getOperand(0); SDValue Intrin = N->getOperand(1); SDLoc DL(N); // Get the intrinsic ID unsigned IntrinNo = cast(Intrin.getNode())->getZExtValue(); switch (IntrinNo) { default: return; case Intrinsic::nvvm_ldg_global_i: case Intrinsic::nvvm_ldg_global_f: case Intrinsic::nvvm_ldg_global_p: case Intrinsic::nvvm_ldu_global_i: case Intrinsic::nvvm_ldu_global_f: case Intrinsic::nvvm_ldu_global_p: { EVT ResVT = N->getValueType(0); if (ResVT.isVector()) { // Vector LDG/LDU unsigned NumElts = ResVT.getVectorNumElements(); EVT EltVT = ResVT.getVectorElementType(); // Since LDU/LDG are target nodes, we cannot rely on DAG type // legalization. // Therefore, we must ensure the type is legal. For i1 and i8, we set the // loaded type to i16 and propagate the "real" type as the memory type. bool NeedTrunc = false; if (EltVT.getSizeInBits() < 16) { EltVT = MVT::i16; NeedTrunc = true; } unsigned Opcode = 0; SDVTList LdResVTs; switch (NumElts) { default: return; case 2: switch (IntrinNo) { default: return; case Intrinsic::nvvm_ldg_global_i: case Intrinsic::nvvm_ldg_global_f: case Intrinsic::nvvm_ldg_global_p: Opcode = NVPTXISD::LDGV2; break; case Intrinsic::nvvm_ldu_global_i: case Intrinsic::nvvm_ldu_global_f: case Intrinsic::nvvm_ldu_global_p: Opcode = NVPTXISD::LDUV2; break; } LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other); break; case 4: { switch (IntrinNo) { default: return; case Intrinsic::nvvm_ldg_global_i: case Intrinsic::nvvm_ldg_global_f: case Intrinsic::nvvm_ldg_global_p: Opcode = NVPTXISD::LDGV4; break; case Intrinsic::nvvm_ldu_global_i: case Intrinsic::nvvm_ldu_global_f: case Intrinsic::nvvm_ldu_global_p: Opcode = NVPTXISD::LDUV4; break; } EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other }; LdResVTs = DAG.getVTList(ListVTs); break; } } SmallVector OtherOps; // Copy regular operands OtherOps.push_back(Chain); // Chain // Skip operand 1 (intrinsic ID) // Others OtherOps.append(N->op_begin() + 2, N->op_end()); MemIntrinsicSDNode *MemSD = cast(N); SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, MemSD->getMemoryVT(), MemSD->getMemOperand()); SmallVector ScalarRes; for (unsigned i = 0; i < NumElts; ++i) { SDValue Res = NewLD.getValue(i); if (NeedTrunc) Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res); ScalarRes.push_back(Res); } SDValue LoadChain = NewLD.getValue(NumElts); SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes); Results.push_back(BuildVec); Results.push_back(LoadChain); } else { // i8 LDG/LDU assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 && "Custom handling of non-i8 ldu/ldg?"); // Just copy all operands as-is SmallVector Ops(N->op_begin(), N->op_end()); // Force output to i16 SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other); MemIntrinsicSDNode *MemSD = cast(N); // We make sure the memory type is i8, which will be used during isel // to select the proper instruction. SDValue NewLD = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops, MVT::i8, MemSD->getMemOperand()); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, NewLD.getValue(0))); Results.push_back(NewLD.getValue(1)); } } } } void NVPTXTargetLowering::ReplaceNodeResults( SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { default: report_fatal_error("Unhandled custom legalization"); case ISD::LOAD: ReplaceLoadVector(N, DAG, Results); return; case ISD::INTRINSIC_W_CHAIN: ReplaceINTRINSIC_W_CHAIN(N, DAG, Results); return; } } // Pin NVPTXTargetObjectFile's vtables to this file. NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {} MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal( const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { return getDataSection(); }