//===- HexagonDisassembler.cpp - Disassembler for Hexagon ISA -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "hexagon-disassembler" #include "MCTargetDesc/HexagonBaseInfo.h" #include "MCTargetDesc/HexagonMCChecker.h" #include "MCTargetDesc/HexagonMCInstrInfo.h" #include "MCTargetDesc/HexagonMCTargetDesc.h" #include "TargetInfo/HexagonTargetInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixedLenDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; using namespace Hexagon; using DecodeStatus = MCDisassembler::DecodeStatus; namespace { /// Hexagon disassembler for all Hexagon platforms. class HexagonDisassembler : public MCDisassembler { public: std::unique_ptr const MCII; std::unique_ptr CurrentBundle; mutable MCInst const *CurrentExtender; HexagonDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, MCInstrInfo const *MCII) : MCDisassembler(STI, Ctx), MCII(MCII), CurrentBundle(new MCInst *), CurrentExtender(nullptr) {} DecodeStatus getSingleInstruction(MCInst &Instr, MCInst &MCB, ArrayRef Bytes, uint64_t Address, raw_ostream &CStream, bool &Complete) const; DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size, ArrayRef Bytes, uint64_t Address, raw_ostream &CStream) const override; void remapInstruction(MCInst &Instr) const; }; static uint64_t fullValue(HexagonDisassembler const &Disassembler, MCInst &MI, int64_t Value) { MCInstrInfo MCII = *Disassembler.MCII; if (!Disassembler.CurrentExtender || MI.size() != HexagonMCInstrInfo::getExtendableOp(MCII, MI)) return Value; unsigned Alignment = HexagonMCInstrInfo::getExtentAlignment(MCII, MI); uint32_t Lower6 = static_cast(Value >> Alignment) & 0x3f; int64_t Bits; bool Success = Disassembler.CurrentExtender->getOperand(0).getExpr()->evaluateAsAbsolute( Bits); assert(Success); (void)Success; uint64_t Upper26 = static_cast(Bits); uint64_t Operand = Upper26 | Lower6; return Operand; } static HexagonDisassembler const &disassembler(void const *Decoder) { return *static_cast(Decoder); } template static void signedDecoder(MCInst &MI, unsigned tmp, const void *Decoder) { HexagonDisassembler const &Disassembler = disassembler(Decoder); int64_t FullValue = fullValue(Disassembler, MI, SignExtend64(tmp)); int64_t Extended = SignExtend64<32>(FullValue); HexagonMCInstrInfo::addConstant(MI, Extended, Disassembler.getContext()); } } // Forward declare these because the auto-generated code will reference them. // Definitions are further down. static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeGeneralSubRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeIntRegsLow8RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeHvxVRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeGeneralDoubleLow8RegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeHvxWRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeHvxVQRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeHvxQRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeGuestRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus DecodeGuestRegs64RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder); static DecodeStatus unsignedImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address, const void *Decoder); static DecodeStatus s32_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t /*Address*/, const void *Decoder); static DecodeStatus brtargetDecoder(MCInst &MI, unsigned tmp, uint64_t Address, const void *Decoder); #include "HexagonDepDecoders.inc" #include "HexagonGenDisassemblerTables.inc" static MCDisassembler *createHexagonDisassembler(const Target &T, const MCSubtargetInfo &STI, MCContext &Ctx) { return new HexagonDisassembler(STI, Ctx, T.createMCInstrInfo()); } extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeHexagonDisassembler() { TargetRegistry::RegisterMCDisassembler(getTheHexagonTarget(), createHexagonDisassembler); } DecodeStatus HexagonDisassembler::getInstruction(MCInst &MI, uint64_t &Size, ArrayRef Bytes, uint64_t Address, raw_ostream &cs) const { DecodeStatus Result = DecodeStatus::Success; bool Complete = false; Size = 0; *CurrentBundle = &MI; MI.setOpcode(Hexagon::BUNDLE); MI.addOperand(MCOperand::createImm(0)); while (Result == Success && !Complete) { if (Bytes.size() < HEXAGON_INSTR_SIZE) return MCDisassembler::Fail; MCInst *Inst = getContext().createMCInst(); Result = getSingleInstruction(*Inst, MI, Bytes, Address, cs, Complete); MI.addOperand(MCOperand::createInst(Inst)); Size += HEXAGON_INSTR_SIZE; Bytes = Bytes.slice(HEXAGON_INSTR_SIZE); } if (Result == MCDisassembler::Fail) return Result; if (Size > HEXAGON_MAX_PACKET_SIZE) return MCDisassembler::Fail; const auto ArchSTI = Hexagon_MC::getArchSubtarget(&STI); const auto STI_ = (ArchSTI != nullptr) ? *ArchSTI : STI; HexagonMCChecker Checker(getContext(), *MCII, STI_, MI, *getContext().getRegisterInfo(), false); if (!Checker.check()) return MCDisassembler::Fail; remapInstruction(MI); return MCDisassembler::Success; } void HexagonDisassembler::remapInstruction(MCInst &Instr) const { for (auto I: HexagonMCInstrInfo::bundleInstructions(Instr)) { auto &MI = const_cast(*I.getInst()); switch (MI.getOpcode()) { case Hexagon::S2_allocframe: if (MI.getOperand(0).getReg() == Hexagon::R29) { MI.setOpcode(Hexagon::S6_allocframe_to_raw); MI.erase(MI.begin () + 1); MI.erase(MI.begin ()); } break; case Hexagon::L2_deallocframe: if (MI.getOperand(0).getReg() == Hexagon::D15 && MI.getOperand(1).getReg() == Hexagon::R30) { MI.setOpcode(L6_deallocframe_map_to_raw); MI.erase(MI.begin () + 1); MI.erase(MI.begin ()); } break; case Hexagon::L4_return: if (MI.getOperand(0).getReg() == Hexagon::D15 && MI.getOperand(1).getReg() == Hexagon::R30) { MI.setOpcode(L6_return_map_to_raw); MI.erase(MI.begin () + 1); MI.erase(MI.begin ()); } break; case Hexagon::L4_return_t: if (MI.getOperand(0).getReg() == Hexagon::D15 && MI.getOperand(2).getReg() == Hexagon::R30) { MI.setOpcode(L4_return_map_to_raw_t); MI.erase(MI.begin () + 2); MI.erase(MI.begin ()); } break; case Hexagon::L4_return_f: if (MI.getOperand(0).getReg() == Hexagon::D15 && MI.getOperand(2).getReg() == Hexagon::R30) { MI.setOpcode(L4_return_map_to_raw_f); MI.erase(MI.begin () + 2); MI.erase(MI.begin ()); } break; case Hexagon::L4_return_tnew_pt: if (MI.getOperand(0).getReg() == Hexagon::D15 && MI.getOperand(2).getReg() == Hexagon::R30) { MI.setOpcode(L4_return_map_to_raw_tnew_pt); MI.erase(MI.begin () + 2); MI.erase(MI.begin ()); } break; case Hexagon::L4_return_fnew_pt: if (MI.getOperand(0).getReg() == Hexagon::D15 && MI.getOperand(2).getReg() == Hexagon::R30) { MI.setOpcode(L4_return_map_to_raw_fnew_pt); MI.erase(MI.begin () + 2); MI.erase(MI.begin ()); } break; case Hexagon::L4_return_tnew_pnt: if (MI.getOperand(0).getReg() == Hexagon::D15 && MI.getOperand(2).getReg() == Hexagon::R30) { MI.setOpcode(L4_return_map_to_raw_tnew_pnt); MI.erase(MI.begin () + 2); MI.erase(MI.begin ()); } break; case Hexagon::L4_return_fnew_pnt: if (MI.getOperand(0).getReg() == Hexagon::D15 && MI.getOperand(2).getReg() == Hexagon::R30) { MI.setOpcode(L4_return_map_to_raw_fnew_pnt); MI.erase(MI.begin () + 2); MI.erase(MI.begin ()); } break; } } } static void adjustDuplex(MCInst &MI, MCContext &Context) { switch (MI.getOpcode()) { case Hexagon::SA1_setin1: MI.insert(MI.begin() + 1, MCOperand::createExpr(MCConstantExpr::create(-1, Context))); break; case Hexagon::SA1_dec: MI.insert(MI.begin() + 2, MCOperand::createExpr(MCConstantExpr::create(-1, Context))); break; default: break; } } DecodeStatus HexagonDisassembler::getSingleInstruction(MCInst &MI, MCInst &MCB, ArrayRef Bytes, uint64_t Address, raw_ostream &cs, bool &Complete) const { assert(Bytes.size() >= HEXAGON_INSTR_SIZE); uint32_t Instruction = support::endian::read32le(Bytes.data()); auto BundleSize = HexagonMCInstrInfo::bundleSize(MCB); if ((Instruction & HexagonII::INST_PARSE_MASK) == HexagonII::INST_PARSE_LOOP_END) { if (BundleSize == 0) HexagonMCInstrInfo::setInnerLoop(MCB); else if (BundleSize == 1) HexagonMCInstrInfo::setOuterLoop(MCB); else return DecodeStatus::Fail; } CurrentExtender = HexagonMCInstrInfo::extenderForIndex( MCB, HexagonMCInstrInfo::bundleSize(MCB)); DecodeStatus Result = DecodeStatus::Fail; if ((Instruction & HexagonII::INST_PARSE_MASK) == HexagonII::INST_PARSE_DUPLEX) { unsigned duplexIClass; uint8_t const *DecodeLow, *DecodeHigh; duplexIClass = ((Instruction >> 28) & 0xe) | ((Instruction >> 13) & 0x1); switch (duplexIClass) { default: return MCDisassembler::Fail; case 0: DecodeLow = DecoderTableSUBINSN_L132; DecodeHigh = DecoderTableSUBINSN_L132; break; case 1: DecodeLow = DecoderTableSUBINSN_L232; DecodeHigh = DecoderTableSUBINSN_L132; break; case 2: DecodeLow = DecoderTableSUBINSN_L232; DecodeHigh = DecoderTableSUBINSN_L232; break; case 3: DecodeLow = DecoderTableSUBINSN_A32; DecodeHigh = DecoderTableSUBINSN_A32; break; case 4: DecodeLow = DecoderTableSUBINSN_L132; DecodeHigh = DecoderTableSUBINSN_A32; break; case 5: DecodeLow = DecoderTableSUBINSN_L232; DecodeHigh = DecoderTableSUBINSN_A32; break; case 6: DecodeLow = DecoderTableSUBINSN_S132; DecodeHigh = DecoderTableSUBINSN_A32; break; case 7: DecodeLow = DecoderTableSUBINSN_S232; DecodeHigh = DecoderTableSUBINSN_A32; break; case 8: DecodeLow = DecoderTableSUBINSN_S132; DecodeHigh = DecoderTableSUBINSN_L132; break; case 9: DecodeLow = DecoderTableSUBINSN_S132; DecodeHigh = DecoderTableSUBINSN_L232; break; case 10: DecodeLow = DecoderTableSUBINSN_S132; DecodeHigh = DecoderTableSUBINSN_S132; break; case 11: DecodeLow = DecoderTableSUBINSN_S232; DecodeHigh = DecoderTableSUBINSN_S132; break; case 12: DecodeLow = DecoderTableSUBINSN_S232; DecodeHigh = DecoderTableSUBINSN_L132; break; case 13: DecodeLow = DecoderTableSUBINSN_S232; DecodeHigh = DecoderTableSUBINSN_L232; break; case 14: DecodeLow = DecoderTableSUBINSN_S232; DecodeHigh = DecoderTableSUBINSN_S232; break; } MI.setOpcode(Hexagon::DuplexIClass0 + duplexIClass); MCInst *MILow = getContext().createMCInst(); MCInst *MIHigh = getContext().createMCInst(); auto TmpExtender = CurrentExtender; CurrentExtender = nullptr; // constant extenders in duplex must always be in slot 1 Result = decodeInstruction(DecodeLow, *MILow, Instruction & 0x1fff, Address, this, STI); CurrentExtender = TmpExtender; if (Result != DecodeStatus::Success) return DecodeStatus::Fail; adjustDuplex(*MILow, getContext()); Result = decodeInstruction( DecodeHigh, *MIHigh, (Instruction >> 16) & 0x1fff, Address, this, STI); if (Result != DecodeStatus::Success) return DecodeStatus::Fail; adjustDuplex(*MIHigh, getContext()); MCOperand OPLow = MCOperand::createInst(MILow); MCOperand OPHigh = MCOperand::createInst(MIHigh); MI.addOperand(OPLow); MI.addOperand(OPHigh); Complete = true; } else { if ((Instruction & HexagonII::INST_PARSE_MASK) == HexagonII::INST_PARSE_PACKET_END) Complete = true; if (CurrentExtender != nullptr) Result = decodeInstruction(DecoderTableMustExtend32, MI, Instruction, Address, this, STI); if (Result != MCDisassembler::Success) Result = decodeInstruction(DecoderTable32, MI, Instruction, Address, this, STI); if (Result != MCDisassembler::Success && STI.getFeatureBits()[Hexagon::ExtensionHVX]) Result = decodeInstruction(DecoderTableEXT_mmvec32, MI, Instruction, Address, this, STI); } switch (MI.getOpcode()) { case Hexagon::J4_cmpeqn1_f_jumpnv_nt: case Hexagon::J4_cmpeqn1_f_jumpnv_t: case Hexagon::J4_cmpeqn1_fp0_jump_nt: case Hexagon::J4_cmpeqn1_fp0_jump_t: case Hexagon::J4_cmpeqn1_fp1_jump_nt: case Hexagon::J4_cmpeqn1_fp1_jump_t: case Hexagon::J4_cmpeqn1_t_jumpnv_nt: case Hexagon::J4_cmpeqn1_t_jumpnv_t: case Hexagon::J4_cmpeqn1_tp0_jump_nt: case Hexagon::J4_cmpeqn1_tp0_jump_t: case Hexagon::J4_cmpeqn1_tp1_jump_nt: case Hexagon::J4_cmpeqn1_tp1_jump_t: case Hexagon::J4_cmpgtn1_f_jumpnv_nt: case Hexagon::J4_cmpgtn1_f_jumpnv_t: case Hexagon::J4_cmpgtn1_fp0_jump_nt: case Hexagon::J4_cmpgtn1_fp0_jump_t: case Hexagon::J4_cmpgtn1_fp1_jump_nt: case Hexagon::J4_cmpgtn1_fp1_jump_t: case Hexagon::J4_cmpgtn1_t_jumpnv_nt: case Hexagon::J4_cmpgtn1_t_jumpnv_t: case Hexagon::J4_cmpgtn1_tp0_jump_nt: case Hexagon::J4_cmpgtn1_tp0_jump_t: case Hexagon::J4_cmpgtn1_tp1_jump_nt: case Hexagon::J4_cmpgtn1_tp1_jump_t: MI.insert(MI.begin() + 1, MCOperand::createExpr(MCConstantExpr::create(-1, getContext()))); break; default: break; } if (HexagonMCInstrInfo::isNewValue(*MCII, MI)) { unsigned OpIndex = HexagonMCInstrInfo::getNewValueOp(*MCII, MI); MCOperand &MCO = MI.getOperand(OpIndex); assert(MCO.isReg() && "New value consumers must be registers"); unsigned Register = getContext().getRegisterInfo()->getEncodingValue(MCO.getReg()); if ((Register & 0x6) == 0) // HexagonPRM 10.11 Bit 1-2 == 0 is reserved return MCDisassembler::Fail; unsigned Lookback = (Register & 0x6) >> 1; unsigned Offset = 1; bool Vector = HexagonMCInstrInfo::isVector(*MCII, MI); bool PrevVector = false; auto Instructions = HexagonMCInstrInfo::bundleInstructions(**CurrentBundle); auto i = Instructions.end() - 1; for (auto n = Instructions.begin() - 1;; --i, ++Offset) { if (i == n) // Couldn't find producer return MCDisassembler::Fail; bool CurrentVector = HexagonMCInstrInfo::isVector(*MCII, *i->getInst()); if (Vector && !CurrentVector) // Skip scalars when calculating distances for vectors ++Lookback; if (HexagonMCInstrInfo::isImmext(*i->getInst()) && (Vector == PrevVector)) ++Lookback; PrevVector = CurrentVector; if (Offset == Lookback) break; } auto const &Inst = *i->getInst(); bool SubregBit = (Register & 0x1) != 0; if (HexagonMCInstrInfo::hasNewValue2(*MCII, Inst)) { // If subreg bit is set we're selecting the second produced newvalue unsigned Producer = SubregBit ? HexagonMCInstrInfo::getNewValueOperand(*MCII, Inst).getReg() : HexagonMCInstrInfo::getNewValueOperand2(*MCII, Inst).getReg(); assert(Producer != Hexagon::NoRegister); MCO.setReg(Producer); } else if (HexagonMCInstrInfo::hasNewValue(*MCII, Inst)) { unsigned Producer = HexagonMCInstrInfo::getNewValueOperand(*MCII, Inst).getReg(); if (HexagonMCInstrInfo::IsVecRegPair(Producer)) { const bool Rev = HexagonMCInstrInfo::IsReverseVecRegPair(Producer); const unsigned ProdPairIndex = Rev ? Producer - Hexagon::WR0 : Producer - Hexagon::W0; Producer = (ProdPairIndex << 1) + SubregBit + Hexagon::V0; } else if (SubregBit) // Hexagon PRM 10.11 New-value operands // Nt[0] is reserved and should always be encoded as zero. return MCDisassembler::Fail; assert(Producer != Hexagon::NoRegister); MCO.setReg(Producer); } else return MCDisassembler::Fail; } if (CurrentExtender != nullptr) { MCInst const &Inst = HexagonMCInstrInfo::isDuplex(*MCII, MI) ? *MI.getOperand(1).getInst() : MI; if (!HexagonMCInstrInfo::isExtendable(*MCII, Inst) && !HexagonMCInstrInfo::isExtended(*MCII, Inst)) return MCDisassembler::Fail; } return Result; } static DecodeStatus DecodeRegisterClass(MCInst &Inst, unsigned RegNo, ArrayRef Table) { if (RegNo < Table.size()) { Inst.addOperand(MCOperand::createReg(Table[RegNo])); return MCDisassembler::Success; } return MCDisassembler::Fail; } static DecodeStatus DecodeIntRegsLow8RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder) { return DecodeIntRegsRegisterClass(Inst, RegNo, Address, Decoder); } static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder) { static const MCPhysReg IntRegDecoderTable[] = { Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4, Hexagon::R5, Hexagon::R6, Hexagon::R7, Hexagon::R8, Hexagon::R9, Hexagon::R10, Hexagon::R11, Hexagon::R12, Hexagon::R13, Hexagon::R14, Hexagon::R15, Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19, Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23, Hexagon::R24, Hexagon::R25, Hexagon::R26, Hexagon::R27, Hexagon::R28, Hexagon::R29, Hexagon::R30, Hexagon::R31}; return DecodeRegisterClass(Inst, RegNo, IntRegDecoderTable); } static DecodeStatus DecodeGeneralSubRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t Address, const void *Decoder) { static const MCPhysReg GeneralSubRegDecoderTable[] = { Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4, Hexagon::R5, Hexagon::R6, Hexagon::R7, Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19, Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23, }; return DecodeRegisterClass(Inst, RegNo, GeneralSubRegDecoderTable); } static DecodeStatus DecodeHvxVRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { static const MCPhysReg HvxVRDecoderTable[] = { Hexagon::V0, Hexagon::V1, Hexagon::V2, Hexagon::V3, Hexagon::V4, Hexagon::V5, Hexagon::V6, Hexagon::V7, Hexagon::V8, Hexagon::V9, Hexagon::V10, Hexagon::V11, Hexagon::V12, Hexagon::V13, Hexagon::V14, Hexagon::V15, Hexagon::V16, Hexagon::V17, Hexagon::V18, Hexagon::V19, Hexagon::V20, Hexagon::V21, Hexagon::V22, Hexagon::V23, Hexagon::V24, Hexagon::V25, Hexagon::V26, Hexagon::V27, Hexagon::V28, Hexagon::V29, Hexagon::V30, Hexagon::V31}; return DecodeRegisterClass(Inst, RegNo, HvxVRDecoderTable); } static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { static const MCPhysReg DoubleRegDecoderTable[] = { Hexagon::D0, Hexagon::D1, Hexagon::D2, Hexagon::D3, Hexagon::D4, Hexagon::D5, Hexagon::D6, Hexagon::D7, Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, Hexagon::D14, Hexagon::D15}; return DecodeRegisterClass(Inst, RegNo >> 1, DoubleRegDecoderTable); } static DecodeStatus DecodeGeneralDoubleLow8RegsRegisterClass( MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { static const MCPhysReg GeneralDoubleLow8RegDecoderTable[] = { Hexagon::D0, Hexagon::D1, Hexagon::D2, Hexagon::D3, Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11}; return DecodeRegisterClass(Inst, RegNo, GeneralDoubleLow8RegDecoderTable); } static DecodeStatus DecodeHvxWRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { static const MCPhysReg HvxWRDecoderTable[] = { Hexagon::W0, Hexagon::WR0, Hexagon::W1, Hexagon::WR1, Hexagon::W2, Hexagon::WR2, Hexagon::W3, Hexagon::WR3, Hexagon::W4, Hexagon::WR4, Hexagon::W5, Hexagon::WR5, Hexagon::W6, Hexagon::WR6, Hexagon::W7, Hexagon::WR7, Hexagon::W8, Hexagon::WR8, Hexagon::W9, Hexagon::WR9, Hexagon::W10, Hexagon::WR10, Hexagon::W11, Hexagon::WR11, Hexagon::W12, Hexagon::WR12, Hexagon::W13, Hexagon::WR13, Hexagon::W14, Hexagon::WR14, Hexagon::W15, Hexagon::WR15, }; return DecodeRegisterClass(Inst, RegNo, HvxWRDecoderTable); } LLVM_ATTRIBUTE_UNUSED // Suppress warning temporarily. static DecodeStatus DecodeHvxVQRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { static const MCPhysReg HvxVQRDecoderTable[] = { Hexagon::VQ0, Hexagon::VQ1, Hexagon::VQ2, Hexagon::VQ3, Hexagon::VQ4, Hexagon::VQ5, Hexagon::VQ6, Hexagon::VQ7}; return DecodeRegisterClass(Inst, RegNo >> 2, HvxVQRDecoderTable); } static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { static const MCPhysReg PredRegDecoderTable[] = {Hexagon::P0, Hexagon::P1, Hexagon::P2, Hexagon::P3}; return DecodeRegisterClass(Inst, RegNo, PredRegDecoderTable); } static DecodeStatus DecodeHvxQRRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { static const MCPhysReg HvxQRDecoderTable[] = {Hexagon::Q0, Hexagon::Q1, Hexagon::Q2, Hexagon::Q3}; return DecodeRegisterClass(Inst, RegNo, HvxQRDecoderTable); } static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { using namespace Hexagon; static const MCPhysReg CtrlRegDecoderTable[] = { /* 0 */ SA0, LC0, SA1, LC1, /* 4 */ P3_0, C5, M0, M1, /* 8 */ USR, PC, UGP, GP, /* 12 */ CS0, CS1, UPCYCLELO, UPCYCLEHI, /* 16 */ FRAMELIMIT, FRAMEKEY, PKTCOUNTLO, PKTCOUNTHI, /* 20 */ 0, 0, 0, 0, /* 24 */ 0, 0, 0, 0, /* 28 */ 0, 0, UTIMERLO, UTIMERHI }; if (RegNo >= array_lengthof(CtrlRegDecoderTable)) return MCDisassembler::Fail; static_assert(NoRegister == 0, "Expecting NoRegister to be 0"); if (CtrlRegDecoderTable[RegNo] == NoRegister) return MCDisassembler::Fail; unsigned Register = CtrlRegDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { using namespace Hexagon; static const MCPhysReg CtrlReg64DecoderTable[] = { /* 0 */ C1_0, 0, C3_2, 0, /* 4 */ C5_4, 0, C7_6, 0, /* 8 */ C9_8, 0, C11_10, 0, /* 12 */ CS, 0, UPCYCLE, 0, /* 16 */ C17_16, 0, PKTCOUNT, 0, /* 20 */ 0, 0, 0, 0, /* 24 */ 0, 0, 0, 0, /* 28 */ 0, 0, UTIMER, 0 }; if (RegNo >= array_lengthof(CtrlReg64DecoderTable)) return MCDisassembler::Fail; static_assert(NoRegister == 0, "Expecting NoRegister to be 0"); if (CtrlReg64DecoderTable[RegNo] == NoRegister) return MCDisassembler::Fail; unsigned Register = CtrlReg64DecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { unsigned Register = 0; switch (RegNo) { case 0: Register = Hexagon::M0; break; case 1: Register = Hexagon::M1; break; default: return MCDisassembler::Fail; } Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus unsignedImmDecoder(MCInst &MI, unsigned tmp, uint64_t /*Address*/, const void *Decoder) { HexagonDisassembler const &Disassembler = disassembler(Decoder); int64_t FullValue = fullValue(Disassembler, MI, tmp); assert(FullValue >= 0 && "Negative in unsigned decoder"); HexagonMCInstrInfo::addConstant(MI, FullValue, Disassembler.getContext()); return MCDisassembler::Success; } static DecodeStatus s32_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t /*Address*/, const void *Decoder) { HexagonDisassembler const &Disassembler = disassembler(Decoder); unsigned Bits = HexagonMCInstrInfo::getExtentBits(*Disassembler.MCII, MI); tmp = SignExtend64(tmp, Bits); signedDecoder<32>(MI, tmp, Decoder); return MCDisassembler::Success; } // custom decoder for various jump/call immediates static DecodeStatus brtargetDecoder(MCInst &MI, unsigned tmp, uint64_t Address, const void *Decoder) { HexagonDisassembler const &Disassembler = disassembler(Decoder); unsigned Bits = HexagonMCInstrInfo::getExtentBits(*Disassembler.MCII, MI); // r13_2 is not extendable, so if there are no extent bits, it's r13_2 if (Bits == 0) Bits = 15; uint64_t FullValue = fullValue(Disassembler, MI, SignExtend64(tmp, Bits)); uint32_t Extended = FullValue + Address; if (!Disassembler.tryAddingSymbolicOperand(MI, Extended, Address, true, 0, 4)) HexagonMCInstrInfo::addConstant(MI, Extended, Disassembler.getContext()); return MCDisassembler::Success; } static DecodeStatus DecodeGuestRegsRegisterClass(MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { using namespace Hexagon; static const MCPhysReg GuestRegDecoderTable[] = { /* 0 */ GELR, GSR, GOSP, G3, /* 4 */ G4, G5, G6, G7, /* 8 */ G8, G9, G10, G11, /* 12 */ G12, G13, G14, G15, /* 16 */ GPMUCNT4, GPMUCNT5, GPMUCNT6, GPMUCNT7, /* 20 */ G20, G21, G22, G23, /* 24 */ GPCYCLELO, GPCYCLEHI, GPMUCNT0, GPMUCNT1, /* 28 */ GPMUCNT2, GPMUCNT3, G30, G31 }; if (RegNo >= array_lengthof(GuestRegDecoderTable)) return MCDisassembler::Fail; if (GuestRegDecoderTable[RegNo] == Hexagon::NoRegister) return MCDisassembler::Fail; unsigned Register = GuestRegDecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; } static DecodeStatus DecodeGuestRegs64RegisterClass(MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) { using namespace Hexagon; static const MCPhysReg GuestReg64DecoderTable[] = { /* 0 */ G1_0, 0, G3_2, 0, /* 4 */ G5_4, 0, G7_6, 0, /* 8 */ G9_8, 0, G11_10, 0, /* 12 */ G13_12, 0, G15_14, 0, /* 16 */ G17_16, 0, G19_18, 0, /* 20 */ G21_20, 0, G23_22, 0, /* 24 */ G25_24, 0, G27_26, 0, /* 28 */ G29_28, 0, G31_30, 0 }; if (RegNo >= array_lengthof(GuestReg64DecoderTable)) return MCDisassembler::Fail; if (GuestReg64DecoderTable[RegNo] == Hexagon::NoRegister) return MCDisassembler::Fail; unsigned Register = GuestReg64DecoderTable[RegNo]; Inst.addOperand(MCOperand::createReg(Register)); return MCDisassembler::Success; }