//==- AArch64SchedCortexA55.td - ARM Cortex-A55 Scheduling Definitions -*- tablegen -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the machine model for the ARM Cortex-A55 processors. // //===----------------------------------------------------------------------===// // ===---------------------------------------------------------------------===// // The following definitions describe the per-operand machine model. // This works with MachineScheduler. See MCSchedModel.h for details. // Cortex-A55 machine model for scheduling and other instruction cost heuristics. def CortexA55Model : SchedMachineModel { let MicroOpBufferSize = 0; // The Cortex-A55 is an in-order processor let IssueWidth = 2; // It dual-issues under most circumstances let LoadLatency = 4; // Cycles for loads to access the cache. The // optimisation guide shows that most loads have // a latency of 3, but some have a latency of 4 // or 5. Setting it 4 looked to be good trade-off. let MispredictPenalty = 8; // A branch direction mispredict. let PostRAScheduler = 1; // Enable PostRA scheduler pass. let CompleteModel = 0; // Covers instructions applicable to Cortex-A55. list UnsupportedFeatures = [HasSVE]; // FIXME: Remove when all errors have been fixed. let FullInstRWOverlapCheck = 0; } //===----------------------------------------------------------------------===// // Define each kind of processor resource and number available. // Modeling each pipeline as a ProcResource using the BufferSize = 0 since the // Cortex-A55 is in-order. def CortexA55UnitALU : ProcResource<2> { let BufferSize = 0; } // Int ALU def CortexA55UnitMAC : ProcResource<1> { let BufferSize = 0; } // Int MAC, 64-bi wide def CortexA55UnitDiv : ProcResource<1> { let BufferSize = 0; } // Int Division, not pipelined def CortexA55UnitLd : ProcResource<1> { let BufferSize = 0; } // Load pipe def CortexA55UnitSt : ProcResource<1> { let BufferSize = 0; } // Store pipe def CortexA55UnitB : ProcResource<1> { let BufferSize = 0; } // Branch // The FP DIV/SQRT instructions execute totally differently from the FP ALU // instructions, which can mostly be dual-issued; that's why for now we model // them with 2 resources. def CortexA55UnitFPALU : ProcResource<2> { let BufferSize = 0; } // FP ALU def CortexA55UnitFPMAC : ProcResource<2> { let BufferSize = 0; } // FP MAC def CortexA55UnitFPDIV : ProcResource<1> { let BufferSize = 0; } // FP Div/SQRT, 64/128 //===----------------------------------------------------------------------===// // Subtarget-specific SchedWrite types let SchedModel = CortexA55Model in { // These latencies are modeled without taking into account forwarding paths // (the software optimisation guide lists latencies taking into account // typical forwarding paths). def : WriteRes { let Latency = 3; } // MOVN, MOVZ def : WriteRes { let Latency = 3; } // ALU def : WriteRes { let Latency = 3; } // ALU of Shifted-Reg def : WriteRes { let Latency = 3; } // ALU of Extended-Reg def : WriteRes { let Latency = 3; } // EXTR from a reg pair def : WriteRes { let Latency = 3; } // Shift/Scale // MAC def : WriteRes { let Latency = 4; } // 32-bit Multiply def : WriteRes { let Latency = 4; } // 64-bit Multiply // Div def : WriteRes { let Latency = 8; let ResourceCycles = [8]; } def : WriteRes { let Latency = 8; let ResourceCycles = [8]; } // Load def : WriteRes { let Latency = 3; } def : WriteRes { let Latency = 4; } def : WriteRes { let Latency = 5; } // Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd // below, choosing the median of 3 which makes the latency 6. // An extra cycle is needed to get the swizzling right. def : WriteRes { let Latency = 6; let ResourceCycles = [3]; } def CortexA55WriteVLD1 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; } def CortexA55WriteVLD2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; let ResourceCycles = [2]; } def CortexA55WriteVLD3 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 6; let ResourceCycles = [3]; } def CortexA55WriteVLD4 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 7; let ResourceCycles = [4]; } def CortexA55WriteVLD5 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 8; let ResourceCycles = [5]; } def CortexA55WriteVLD6 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 9; let ResourceCycles = [6]; } def CortexA55WriteVLD7 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 10; let ResourceCycles = [7]; } def CortexA55WriteVLD8 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 11; let ResourceCycles = [8]; } // Pre/Post Indexing - Performed as part of address generation def : WriteRes { let Latency = 0; } // Store def : WriteRes { let Latency = 4; } def : WriteRes { let Latency = 4; } def : WriteRes { let Latency = 4; } def : WriteRes { let Latency = 4; } // Vector Store - Similar to vector loads, can take 1-3 cycles to issue. def : WriteRes { let Latency = 5; let ResourceCycles = [2];} def CortexA55WriteVST1 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 4; } def CortexA55WriteVST2 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; let ResourceCycles = [2]; } def CortexA55WriteVST3 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 6; let ResourceCycles = [3]; } def CortexA55WriteVST4 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; let ResourceCycles = [4]; } def : WriteRes { let Unsupported = 1; } // Branch def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; // FP ALU // As WriteF result is produced in F5 and it can be mostly forwarded // to consumer at F1, the effectively latency is set as 4. def : WriteRes { let Latency = 4; } def : WriteRes { let Latency = 3; } def : WriteRes { let Latency = 4; } def : WriteRes { let Latency = 3; } def : WriteRes { let Latency = 3; } def : WriteRes { let Latency = 4; } // FP ALU specific new schedwrite definitions def CortexA55WriteFPALU_F3 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 3;} def CortexA55WriteFPALU_F4 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 4;} def CortexA55WriteFPALU_F5 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 5;} // FP Mul, Div, Sqrt. Div/Sqrt are not pipelined def : WriteRes { let Latency = 4; } def : WriteRes { let Latency = 22; let ResourceCycles = [29]; } def CortexA55WriteFMAC : SchedWriteRes<[CortexA55UnitFPMAC]> { let Latency = 4; } def CortexA55WriteFDivHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; let ResourceCycles = [5]; } def CortexA55WriteFDivSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 13; let ResourceCycles = [10]; } def CortexA55WriteFDivDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; let ResourceCycles = [19]; } def CortexA55WriteFSqrtHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; let ResourceCycles = [5]; } def CortexA55WriteFSqrtSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 12; let ResourceCycles = [9]; } def CortexA55WriteFSqrtDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; let ResourceCycles = [19]; } //===----------------------------------------------------------------------===// // Subtarget-specific SchedRead types. def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; // ALU - ALU input operands are generally needed in EX1. An operand produced in // in say EX2 can be forwarded for consumption to ALU in EX1, thereby // allowing back-to-back ALU operations such as add. If an operand requires // a shift, it will, however, be required in ISS stage. def : ReadAdvance; // Shifted operand def CortexA55ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI, WriteISReg, WriteIEReg,WriteIS, WriteID32,WriteID64, WriteIM32,WriteIM64]>; def CortexA55ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI, WriteISReg, WriteIEReg,WriteIS, WriteID32,WriteID64, WriteIM32,WriteIM64]>; def CortexA55ReadISReg : SchedReadVariant<[ SchedVar, SchedVar]>; def : SchedAlias; def CortexA55ReadIEReg : SchedReadVariant<[ SchedVar, SchedVar]>; def : SchedAlias; // MUL def : ReadAdvance; def : ReadAdvance; // Div def : ReadAdvance; //===----------------------------------------------------------------------===// // Subtarget-specific InstRWs. //--- // Miscellaneous //--- def : InstRW<[CortexA55WriteVLD2,CortexA55WriteVLD1], (instregex "LDP.*")>; def : InstRW<[WriteI], (instrs COPY)>; //--- // Vector Loads - 64-bit per cycle //--- // 1-element structures def : InstRW<[CortexA55WriteVLD1], (instregex "LD1i(8|16|32|64)$")>; // single element def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // replicate def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d)$")>; def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Onev(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d)$")>; // multiple structures def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Twov(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d)$")>; def : InstRW<[CortexA55WriteVLD6], (instregex "LD1Threev(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d)$")>; def : InstRW<[CortexA55WriteVLD8], (instregex "LD1Fourv(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Onev(16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Twov(16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD1Threev(16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD1Fourv(16b|8h|4s|2d)_POST$")>; // 2-element structures def : InstRW<[CortexA55WriteVLD2], (instregex "LD2i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>; def : InstRW<[CortexA55WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2i(8|16|32|64)(_POST)?$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>; def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>; // 3-element structures def : InstRW<[CortexA55WriteVLD2], (instregex "LD3i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD3], (instregex "LD3Threev(8b|4h|2s|1d)$")>; def : InstRW<[CortexA55WriteVLD6], (instregex "LD3Threev(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD3Threev(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD3Threev(16b|8h|4s|2d)_POST$")>; // 4-element structures def : InstRW<[CortexA55WriteVLD2], (instregex "LD4i(8|16|32|64)$")>; // load single 4-el structure to one lane of 4 regs. def : InstRW<[CortexA55WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // load single 4-el structure, replicate to all lanes of 4 regs. def : InstRW<[CortexA55WriteVLD4], (instregex "LD4Fourv(8b|4h|2s|1d)$")>; // load multiple 4-el structures to 4 regs. def : InstRW<[CortexA55WriteVLD8], (instregex "LD4Fourv(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD4Fourv(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD4Fourv(16b|8h|4s|2d)_POST$")>; //--- // Vector Stores //--- def : InstRW<[CortexA55WriteVST1], (instregex "ST1i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST4], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVST2], (instregex "ST2i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVST2], (instregex "ST2Twov(8b|4h|2s)$")>; def : InstRW<[CortexA55WriteVST4], (instregex "ST2Twov(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>; def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVST2], (instregex "ST3i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVST4], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST3i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST3Threev(8b|4h|2s|1d|2d|16b|8h|4s|4d)_POST$")>; def : InstRW<[CortexA55WriteVST2], (instregex "ST4i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVST4], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST4i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; //--- // Floating Point Conversions, MAC, DIV, SQRT //--- def : InstRW<[CortexA55WriteFPALU_F3], (instregex "^FCVT[ALMNPZ][SU](S|U)?(W|X)")>; def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^FCVT(X)?[ALMNPXZ](S|U|N)?v")>; def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(S|U)(W|X)(H|S|D)")>; def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(h|s|d)")>; def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTFv")>; def : InstRW<[CortexA55WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>; def : InstRW<[CortexA55WriteFMAC], (instregex "^FML(A|S).*")>; def : InstRW<[CortexA55WriteFDivHP], (instrs FDIVHrr)>; def : InstRW<[CortexA55WriteFDivSP], (instrs FDIVSrr)>; def : InstRW<[CortexA55WriteFDivDP], (instrs FDIVDrr)>; def : InstRW<[CortexA55WriteFDivHP], (instregex "^FDIVv.*16$")>; def : InstRW<[CortexA55WriteFDivSP], (instregex "^FDIVv.*32$")>; def : InstRW<[CortexA55WriteFDivDP], (instregex "^FDIVv.*64$")>; def : InstRW<[CortexA55WriteFSqrtHP], (instregex "^.*SQRT.*16$")>; def : InstRW<[CortexA55WriteFSqrtSP], (instregex "^.*SQRT.*32$")>; def : InstRW<[CortexA55WriteFSqrtDP], (instregex "^.*SQRT.*64$")>; }