//=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // // This pass removes unnecessary copies/moves in BBs based on a dominating // condition. // // We handle three cases: // 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of // the CBZ/CBNZ source register is zero on the taken/not-taken path. For // instance, the copy instruction in the code below can be removed because // the CBZW jumps to %bb.2 when w0 is zero. // // %bb.1: // cbz w0, .LBB0_2 // .LBB0_2: // mov w0, wzr ; <-- redundant // // 2. If the flag setting instruction defines a register other than WZR/XZR, we // can remove a zero copy in some cases. // // %bb.0: // subs w0, w1, w2 // str w0, [x1] // b.ne .LBB0_2 // %bb.1: // mov w0, wzr ; <-- redundant // str w0, [x2] // .LBB0_2 // // 3. Finally, if the flag setting instruction is a comparison against a // constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate // in some cases. // // %bb.0: // subs xzr, x0, #1 // b.eq .LBB0_1 // .LBB0_1: // orr x0, xzr, #0x1 ; <-- redundant // // This pass should be run after register allocation. // // FIXME: This could also be extended to check the whole dominance subtree below // the comparison if the compile time regression is acceptable. // // FIXME: Add support for handling CCMP instructions. // FIXME: If the known register value is zero, we should be able to rewrite uses // to use WZR/XZR directly in some cases. //===----------------------------------------------------------------------===// #include "AArch64.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/LiveRegUnits.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "aarch64-copyelim" STATISTIC(NumCopiesRemoved, "Number of copies removed."); namespace { class AArch64RedundantCopyElimination : public MachineFunctionPass { const MachineRegisterInfo *MRI; const TargetRegisterInfo *TRI; // DomBBClobberedRegs is used when computing known values in the dominating // BB. LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs; // OptBBClobberedRegs is used when optimizing away redundant copies/moves. LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs; public: static char ID; AArch64RedundantCopyElimination() : MachineFunctionPass(ID) { initializeAArch64RedundantCopyEliminationPass( *PassRegistry::getPassRegistry()); } struct RegImm { MCPhysReg Reg; int32_t Imm; RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {} }; bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB, SmallVectorImpl &KnownRegs, MachineBasicBlock::iterator &FirstUse); bool optimizeBlock(MachineBasicBlock *MBB); bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } StringRef getPassName() const override { return "AArch64 Redundant Copy Elimination"; } }; char AArch64RedundantCopyElimination::ID = 0; } INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim", "AArch64 redundant copy elimination pass", false, false) /// It's possible to determine the value of a register based on a dominating /// condition. To do so, this function checks to see if the basic block \p MBB /// is the target of a conditional branch \p CondBr with an equality comparison. /// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero /// in \p MBB for some cases. Otherwise, we find and inspect the NZCV setting /// instruction (e.g., SUBS, ADDS). If this instruction defines a register /// other than WZR/XZR, we know the value of the destination register is zero in /// \p MMB for some cases. In addition, if the NZCV setting instruction is /// comparing against a constant we know the other source register is equal to /// the constant in \p MBB for some cases. If we find any constant values, push /// a physical register and constant value pair onto the KnownRegs vector and /// return true. Otherwise, return false if no known values were found. bool AArch64RedundantCopyElimination::knownRegValInBlock( MachineInstr &CondBr, MachineBasicBlock *MBB, SmallVectorImpl &KnownRegs, MachineBasicBlock::iterator &FirstUse) { unsigned Opc = CondBr.getOpcode(); // Check if the current basic block is the target block to which the // CBZ/CBNZ instruction jumps when its Wt/Xt is zero. if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) && MBB == CondBr.getOperand(1).getMBB()) || ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) && MBB != CondBr.getOperand(1).getMBB())) { FirstUse = CondBr; KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0)); return true; } // Otherwise, must be a conditional branch. if (Opc != AArch64::Bcc) return false; // Must be an equality check (i.e., == or !=). AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm(); if (CC != AArch64CC::EQ && CC != AArch64CC::NE) return false; MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB(); if ((CC == AArch64CC::EQ && BrTarget != MBB) || (CC == AArch64CC::NE && BrTarget == MBB)) return false; // Stop if we get to the beginning of PredMBB. MachineBasicBlock *PredMBB = *MBB->pred_begin(); assert(PredMBB == CondBr.getParent() && "Conditional branch not in predecessor block!"); if (CondBr == PredMBB->begin()) return false; // Registers clobbered in PredMBB between CondBr instruction and current // instruction being checked in loop. DomBBClobberedRegs.clear(); DomBBUsedRegs.clear(); // Find compare instruction that sets NZCV used by CondBr. MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator(); for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) { bool IsCMN = false; switch (PredI.getOpcode()) { default: break; // CMN is an alias for ADDS with a dead destination register. case AArch64::ADDSWri: case AArch64::ADDSXri: IsCMN = true; LLVM_FALLTHROUGH; // CMP is an alias for SUBS with a dead destination register. case AArch64::SUBSWri: case AArch64::SUBSXri: { // Sometimes the first operand is a FrameIndex. Bail if tht happens. if (!PredI.getOperand(1).isReg()) return false; MCPhysReg DstReg = PredI.getOperand(0).getReg(); MCPhysReg SrcReg = PredI.getOperand(1).getReg(); bool Res = false; // If we're comparing against a non-symbolic immediate and the source // register of the compare is not modified (including a self-clobbering // compare) between the compare and conditional branch we known the value // of the 1st source operand. if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) && SrcReg != DstReg) { // We've found the instruction that sets NZCV. int32_t KnownImm = PredI.getOperand(2).getImm(); int32_t Shift = PredI.getOperand(3).getImm(); KnownImm <<= Shift; if (IsCMN) KnownImm = -KnownImm; FirstUse = PredI; KnownRegs.push_back(RegImm(SrcReg, KnownImm)); Res = true; } // If this instructions defines something other than WZR/XZR, we know it's // result is zero in some cases. if (DstReg == AArch64::WZR || DstReg == AArch64::XZR) return Res; // The destination register must not be modified between the NZCV setting // instruction and the conditional branch. if (!DomBBClobberedRegs.available(DstReg)) return Res; FirstUse = PredI; KnownRegs.push_back(RegImm(DstReg, 0)); return true; } // Look for NZCV setting instructions that define something other than // WZR/XZR. case AArch64::ADCSWr: case AArch64::ADCSXr: case AArch64::ADDSWrr: case AArch64::ADDSWrs: case AArch64::ADDSWrx: case AArch64::ADDSXrr: case AArch64::ADDSXrs: case AArch64::ADDSXrx: case AArch64::ADDSXrx64: case AArch64::ANDSWri: case AArch64::ANDSWrr: case AArch64::ANDSWrs: case AArch64::ANDSXri: case AArch64::ANDSXrr: case AArch64::ANDSXrs: case AArch64::BICSWrr: case AArch64::BICSWrs: case AArch64::BICSXrs: case AArch64::BICSXrr: case AArch64::SBCSWr: case AArch64::SBCSXr: case AArch64::SUBSWrr: case AArch64::SUBSWrs: case AArch64::SUBSWrx: case AArch64::SUBSXrr: case AArch64::SUBSXrs: case AArch64::SUBSXrx: case AArch64::SUBSXrx64: { MCPhysReg DstReg = PredI.getOperand(0).getReg(); if (DstReg == AArch64::WZR || DstReg == AArch64::XZR) return false; // The destination register of the NZCV setting instruction must not be // modified before the conditional branch. if (!DomBBClobberedRegs.available(DstReg)) return false; // We've found the instruction that sets NZCV whose DstReg == 0. FirstUse = PredI; KnownRegs.push_back(RegImm(DstReg, 0)); return true; } } // Bail if we see an instruction that defines NZCV that we don't handle. if (PredI.definesRegister(AArch64::NZCV)) return false; // Track clobbered and used registers. LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs, TRI); } return false; } bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) { // Check if the current basic block has a single predecessor. if (MBB->pred_size() != 1) return false; // Check if the predecessor has two successors, implying the block ends in a // conditional branch. MachineBasicBlock *PredMBB = *MBB->pred_begin(); if (PredMBB->succ_size() != 2) return false; MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr(); if (CondBr == PredMBB->end()) return false; // Keep track of the earliest point in the PredMBB block where kill markers // need to be removed if a COPY is removed. MachineBasicBlock::iterator FirstUse; // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ // or a compare (i.e., SUBS). In the latter case, we must take care when // updating FirstUse when scanning for COPY instructions. In particular, if // there's a COPY in between the compare and branch the COPY should not // update FirstUse. bool SeenFirstUse = false; // Registers that contain a known value at the start of MBB. SmallVector KnownRegs; MachineBasicBlock::iterator Itr = std::next(CondBr); do { --Itr; if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse)) continue; // Reset the clobbered and used register units. OptBBClobberedRegs.clear(); OptBBUsedRegs.clear(); // Look backward in PredMBB for COPYs from the known reg to find other // registers that are known to be a constant value. for (auto PredI = Itr;; --PredI) { if (FirstUse == PredI) SeenFirstUse = true; if (PredI->isCopy()) { MCPhysReg CopyDstReg = PredI->getOperand(0).getReg(); MCPhysReg CopySrcReg = PredI->getOperand(1).getReg(); for (auto &KnownReg : KnownRegs) { if (!OptBBClobberedRegs.available(KnownReg.Reg)) continue; // If we have X = COPY Y, and Y is known to be zero, then now X is // known to be zero. if (CopySrcReg == KnownReg.Reg && OptBBClobberedRegs.available(CopyDstReg)) { KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm)); if (SeenFirstUse) FirstUse = PredI; break; } // If we have X = COPY Y, and X is known to be zero, then now Y is // known to be zero. if (CopyDstReg == KnownReg.Reg && OptBBClobberedRegs.available(CopySrcReg)) { KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm)); if (SeenFirstUse) FirstUse = PredI; break; } } } // Stop if we get to the beginning of PredMBB. if (PredI == PredMBB->begin()) break; LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs, OptBBUsedRegs, TRI); // Stop if all of the known-zero regs have been clobbered. if (all_of(KnownRegs, [&](RegImm KnownReg) { return !OptBBClobberedRegs.available(KnownReg.Reg); })) break; } break; } while (Itr != PredMBB->begin() && Itr->isTerminator()); // We've not found a registers with a known value, time to bail out. if (KnownRegs.empty()) return false; bool Changed = false; // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB. SmallSetVector UsedKnownRegs; MachineBasicBlock::iterator LastChange = MBB->begin(); // Remove redundant copy/move instructions unless KnownReg is modified. for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { MachineInstr *MI = &*I; ++I; bool RemovedMI = false; bool IsCopy = MI->isCopy(); bool IsMoveImm = MI->isMoveImmediate(); if (IsCopy || IsMoveImm) { Register DefReg = MI->getOperand(0).getReg(); Register SrcReg = IsCopy ? MI->getOperand(1).getReg() : Register(); int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0; if (!MRI->isReserved(DefReg) && ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) || IsMoveImm)) { for (RegImm &KnownReg : KnownRegs) { if (KnownReg.Reg != DefReg && !TRI->isSuperRegister(DefReg, KnownReg.Reg)) continue; // For a copy, the known value must be a zero. if (IsCopy && KnownReg.Imm != 0) continue; if (IsMoveImm) { // For a move immediate, the known immediate must match the source // immediate. if (KnownReg.Imm != SrcImm) continue; // Don't remove a move immediate that implicitly defines the upper // bits when only the lower 32 bits are known. MCPhysReg CmpReg = KnownReg.Reg; if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) { return !O.isDead() && O.isReg() && O.isDef() && O.getReg() != CmpReg; })) continue; // Don't remove a move immediate that implicitly defines the upper // bits as different. if (TRI->isSuperRegister(DefReg, KnownReg.Reg) && KnownReg.Imm < 0) continue; } if (IsCopy) LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI); else LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI); MI->eraseFromParent(); Changed = true; LastChange = I; NumCopiesRemoved++; UsedKnownRegs.insert(KnownReg.Reg); RemovedMI = true; break; } } } // Skip to the next instruction if we removed the COPY/MovImm. if (RemovedMI) continue; // Remove any regs the MI clobbers from the KnownConstRegs set. for (unsigned RI = 0; RI < KnownRegs.size();) if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) { std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]); KnownRegs.pop_back(); // Don't increment RI since we need to now check the swapped-in // KnownRegs[RI]. } else { ++RI; } // Continue until the KnownRegs set is empty. if (KnownRegs.empty()) break; } if (!Changed) return false; // Add newly used regs to the block's live-in list if they aren't there // already. for (MCPhysReg KnownReg : UsedKnownRegs) if (!MBB->isLiveIn(KnownReg)) MBB->addLiveIn(KnownReg); // Clear kills in the range where changes were made. This is conservative, // but should be okay since kill markers are being phased out. LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse << "\tLastChange: " << *LastChange); for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end())) MMI.clearKillInfo(); for (MachineInstr &MMI : make_range(MBB->begin(), LastChange)) MMI.clearKillInfo(); return true; } bool AArch64RedundantCopyElimination::runOnMachineFunction( MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; TRI = MF.getSubtarget().getRegisterInfo(); MRI = &MF.getRegInfo(); // Resize the clobbered and used register unit trackers. We do this once per // function. DomBBClobberedRegs.init(*TRI); DomBBUsedRegs.init(*TRI); OptBBClobberedRegs.init(*TRI); OptBBUsedRegs.init(*TRI); bool Changed = false; for (MachineBasicBlock &MBB : MF) Changed |= optimizeBlock(&MBB); return Changed; } FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() { return new AArch64RedundantCopyElimination(); }