//===-- DWARFExpression.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFExpression.h" #include "llvm/DebugInfo/DWARF/DWARFUnit.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Format.h" #include #include #include using namespace llvm; using namespace dwarf; namespace llvm { typedef std::vector DescVector; static DescVector getDescriptions() { DescVector Descriptions; typedef DWARFExpression::Operation Op; typedef Op::Description Desc; Descriptions.resize(0xff); Descriptions[DW_OP_addr] = Desc(Op::Dwarf2, Op::SizeAddr); Descriptions[DW_OP_deref] = Desc(Op::Dwarf2); Descriptions[DW_OP_const1u] = Desc(Op::Dwarf2, Op::Size1); Descriptions[DW_OP_const1s] = Desc(Op::Dwarf2, Op::SignedSize1); Descriptions[DW_OP_const2u] = Desc(Op::Dwarf2, Op::Size2); Descriptions[DW_OP_const2s] = Desc(Op::Dwarf2, Op::SignedSize2); Descriptions[DW_OP_const4u] = Desc(Op::Dwarf2, Op::Size4); Descriptions[DW_OP_const4s] = Desc(Op::Dwarf2, Op::SignedSize4); Descriptions[DW_OP_const8u] = Desc(Op::Dwarf2, Op::Size8); Descriptions[DW_OP_const8s] = Desc(Op::Dwarf2, Op::SignedSize8); Descriptions[DW_OP_constu] = Desc(Op::Dwarf2, Op::SizeLEB); Descriptions[DW_OP_consts] = Desc(Op::Dwarf2, Op::SignedSizeLEB); Descriptions[DW_OP_dup] = Desc(Op::Dwarf2); Descriptions[DW_OP_drop] = Desc(Op::Dwarf2); Descriptions[DW_OP_over] = Desc(Op::Dwarf2); Descriptions[DW_OP_pick] = Desc(Op::Dwarf2, Op::Size1); Descriptions[DW_OP_swap] = Desc(Op::Dwarf2); Descriptions[DW_OP_rot] = Desc(Op::Dwarf2); Descriptions[DW_OP_xderef] = Desc(Op::Dwarf2); Descriptions[DW_OP_abs] = Desc(Op::Dwarf2); Descriptions[DW_OP_and] = Desc(Op::Dwarf2); Descriptions[DW_OP_div] = Desc(Op::Dwarf2); Descriptions[DW_OP_minus] = Desc(Op::Dwarf2); Descriptions[DW_OP_mod] = Desc(Op::Dwarf2); Descriptions[DW_OP_mul] = Desc(Op::Dwarf2); Descriptions[DW_OP_neg] = Desc(Op::Dwarf2); Descriptions[DW_OP_not] = Desc(Op::Dwarf2); Descriptions[DW_OP_or] = Desc(Op::Dwarf2); Descriptions[DW_OP_plus] = Desc(Op::Dwarf2); Descriptions[DW_OP_plus_uconst] = Desc(Op::Dwarf2, Op::SizeLEB); Descriptions[DW_OP_shl] = Desc(Op::Dwarf2); Descriptions[DW_OP_shr] = Desc(Op::Dwarf2); Descriptions[DW_OP_shra] = Desc(Op::Dwarf2); Descriptions[DW_OP_xor] = Desc(Op::Dwarf2); Descriptions[DW_OP_skip] = Desc(Op::Dwarf2, Op::SignedSize2); Descriptions[DW_OP_bra] = Desc(Op::Dwarf2, Op::SignedSize2); Descriptions[DW_OP_eq] = Desc(Op::Dwarf2); Descriptions[DW_OP_ge] = Desc(Op::Dwarf2); Descriptions[DW_OP_gt] = Desc(Op::Dwarf2); Descriptions[DW_OP_le] = Desc(Op::Dwarf2); Descriptions[DW_OP_lt] = Desc(Op::Dwarf2); Descriptions[DW_OP_ne] = Desc(Op::Dwarf2); for (uint16_t LA = DW_OP_lit0; LA <= DW_OP_lit31; ++LA) Descriptions[LA] = Desc(Op::Dwarf2); for (uint16_t LA = DW_OP_reg0; LA <= DW_OP_reg31; ++LA) Descriptions[LA] = Desc(Op::Dwarf2); for (uint16_t LA = DW_OP_breg0; LA <= DW_OP_breg31; ++LA) Descriptions[LA] = Desc(Op::Dwarf2, Op::SignedSizeLEB); Descriptions[DW_OP_regx] = Desc(Op::Dwarf2, Op::SizeLEB); Descriptions[DW_OP_fbreg] = Desc(Op::Dwarf2, Op::SignedSizeLEB); Descriptions[DW_OP_bregx] = Desc(Op::Dwarf2, Op::SizeLEB, Op::SignedSizeLEB); Descriptions[DW_OP_piece] = Desc(Op::Dwarf2, Op::SizeLEB); Descriptions[DW_OP_deref_size] = Desc(Op::Dwarf2, Op::Size1); Descriptions[DW_OP_xderef_size] = Desc(Op::Dwarf2, Op::Size1); Descriptions[DW_OP_nop] = Desc(Op::Dwarf2); Descriptions[DW_OP_push_object_address] = Desc(Op::Dwarf3); Descriptions[DW_OP_call2] = Desc(Op::Dwarf3, Op::Size2); Descriptions[DW_OP_call4] = Desc(Op::Dwarf3, Op::Size4); Descriptions[DW_OP_call_ref] = Desc(Op::Dwarf3, Op::SizeRefAddr); Descriptions[DW_OP_form_tls_address] = Desc(Op::Dwarf3); Descriptions[DW_OP_call_frame_cfa] = Desc(Op::Dwarf3); Descriptions[DW_OP_bit_piece] = Desc(Op::Dwarf3, Op::SizeLEB, Op::SizeLEB); Descriptions[DW_OP_implicit_value] = Desc(Op::Dwarf3, Op::SizeLEB, Op::SizeBlock); Descriptions[DW_OP_stack_value] = Desc(Op::Dwarf3); Descriptions[DW_OP_WASM_location] = Desc(Op::Dwarf4, Op::SizeLEB, Op::WasmLocationArg); Descriptions[DW_OP_GNU_push_tls_address] = Desc(Op::Dwarf3); Descriptions[DW_OP_addrx] = Desc(Op::Dwarf4, Op::SizeLEB); Descriptions[DW_OP_GNU_addr_index] = Desc(Op::Dwarf4, Op::SizeLEB); Descriptions[DW_OP_GNU_const_index] = Desc(Op::Dwarf4, Op::SizeLEB); Descriptions[DW_OP_GNU_entry_value] = Desc(Op::Dwarf4, Op::SizeLEB); Descriptions[DW_OP_convert] = Desc(Op::Dwarf5, Op::BaseTypeRef); Descriptions[DW_OP_entry_value] = Desc(Op::Dwarf5, Op::SizeLEB); Descriptions[DW_OP_regval_type] = Desc(Op::Dwarf5, Op::SizeLEB, Op::BaseTypeRef); return Descriptions; } static DWARFExpression::Operation::Description getOpDesc(unsigned OpCode) { // FIXME: Make this constexpr once all compilers are smart enough to do it. static DescVector Descriptions = getDescriptions(); // Handle possible corrupted or unsupported operation. if (OpCode >= Descriptions.size()) return {}; return Descriptions[OpCode]; } bool DWARFExpression::Operation::extract(DataExtractor Data, uint8_t AddressSize, uint64_t Offset, Optional Format) { EndOffset = Offset; Opcode = Data.getU8(&Offset); Desc = getOpDesc(Opcode); if (Desc.Version == Operation::DwarfNA) return false; for (unsigned Operand = 0; Operand < 2; ++Operand) { unsigned Size = Desc.Op[Operand]; unsigned Signed = Size & Operation::SignBit; if (Size == Operation::SizeNA) break; switch (Size & ~Operation::SignBit) { case Operation::Size1: Operands[Operand] = Data.getU8(&Offset); if (Signed) Operands[Operand] = (int8_t)Operands[Operand]; break; case Operation::Size2: Operands[Operand] = Data.getU16(&Offset); if (Signed) Operands[Operand] = (int16_t)Operands[Operand]; break; case Operation::Size4: Operands[Operand] = Data.getU32(&Offset); if (Signed) Operands[Operand] = (int32_t)Operands[Operand]; break; case Operation::Size8: Operands[Operand] = Data.getU64(&Offset); break; case Operation::SizeAddr: Operands[Operand] = Data.getUnsigned(&Offset, AddressSize); break; case Operation::SizeRefAddr: if (!Format) return false; Operands[Operand] = Data.getUnsigned(&Offset, dwarf::getDwarfOffsetByteSize(*Format)); break; case Operation::SizeLEB: if (Signed) Operands[Operand] = Data.getSLEB128(&Offset); else Operands[Operand] = Data.getULEB128(&Offset); break; case Operation::BaseTypeRef: Operands[Operand] = Data.getULEB128(&Offset); break; case Operation::WasmLocationArg: assert(Operand == 1); switch (Operands[0]) { case 0: case 1: case 2: Operands[Operand] = Data.getULEB128(&Offset); break; case 3: // global as uint32 Operands[Operand] = Data.getU32(&Offset); break; default: return false; // Unknown Wasm location } break; case Operation::SizeBlock: // We need a size, so this cannot be the first operand if (Operand == 0) return false; // Store the offset of the block as the value. Operands[Operand] = Offset; Offset += Operands[Operand - 1]; break; default: llvm_unreachable("Unknown DWARFExpression Op size"); } OperandEndOffsets[Operand] = Offset; } EndOffset = Offset; return true; } static void prettyPrintBaseTypeRef(DWARFUnit *U, raw_ostream &OS, DIDumpOptions DumpOpts, uint64_t Operands[2], unsigned Operand) { assert(Operand < 2 && "operand out of bounds"); auto Die = U->getDIEForOffset(U->getOffset() + Operands[Operand]); if (Die && Die.getTag() == dwarf::DW_TAG_base_type) { OS << " ("; if (DumpOpts.Verbose) OS << format("0x%08" PRIx64 " -> ", Operands[Operand]); OS << format("0x%08" PRIx64 ")", U->getOffset() + Operands[Operand]); if (auto Name = Die.find(dwarf::DW_AT_name)) OS << " \"" << Name->getAsCString() << "\""; } else { OS << format(" ", Operands[Operand]); } } static bool prettyPrintRegisterOp(DWARFUnit *U, raw_ostream &OS, DIDumpOptions DumpOpts, uint8_t Opcode, uint64_t Operands[2], const MCRegisterInfo *MRI, bool isEH) { if (!MRI) return false; uint64_t DwarfRegNum; unsigned OpNum = 0; if (Opcode == DW_OP_bregx || Opcode == DW_OP_regx || Opcode == DW_OP_regval_type) DwarfRegNum = Operands[OpNum++]; else if (Opcode >= DW_OP_breg0 && Opcode < DW_OP_bregx) DwarfRegNum = Opcode - DW_OP_breg0; else DwarfRegNum = Opcode - DW_OP_reg0; if (Optional LLVMRegNum = MRI->getLLVMRegNum(DwarfRegNum, isEH)) { if (const char *RegName = MRI->getName(*LLVMRegNum)) { if ((Opcode >= DW_OP_breg0 && Opcode <= DW_OP_breg31) || Opcode == DW_OP_bregx) OS << format(" %s%+" PRId64, RegName, Operands[OpNum]); else OS << ' ' << RegName; if (Opcode == DW_OP_regval_type) prettyPrintBaseTypeRef(U, OS, DumpOpts, Operands, 1); return true; } } return false; } bool DWARFExpression::Operation::print(raw_ostream &OS, DIDumpOptions DumpOpts, const DWARFExpression *Expr, const MCRegisterInfo *RegInfo, DWARFUnit *U, bool isEH) { if (Error) { OS << ""; return false; } StringRef Name = OperationEncodingString(Opcode); assert(!Name.empty() && "DW_OP has no name!"); OS << Name; if ((Opcode >= DW_OP_breg0 && Opcode <= DW_OP_breg31) || (Opcode >= DW_OP_reg0 && Opcode <= DW_OP_reg31) || Opcode == DW_OP_bregx || Opcode == DW_OP_regx || Opcode == DW_OP_regval_type) if (prettyPrintRegisterOp(U, OS, DumpOpts, Opcode, Operands, RegInfo, isEH)) return true; for (unsigned Operand = 0; Operand < 2; ++Operand) { unsigned Size = Desc.Op[Operand]; unsigned Signed = Size & Operation::SignBit; if (Size == Operation::SizeNA) break; if (Size == Operation::BaseTypeRef && U) { // For DW_OP_convert the operand may be 0 to indicate that conversion to // the generic type should be done. The same holds for DW_OP_reinterpret, // which is currently not supported. if (Opcode == DW_OP_convert && Operands[Operand] == 0) OS << " 0x0"; else prettyPrintBaseTypeRef(U, OS, DumpOpts, Operands, Operand); } else if (Size == Operation::WasmLocationArg) { assert(Operand == 1); switch (Operands[0]) { case 0: case 1: case 2: case 3: // global as uint32 OS << format(" 0x%" PRIx64, Operands[Operand]); break; default: assert(false); } } else if (Size == Operation::SizeBlock) { uint64_t Offset = Operands[Operand]; for (unsigned i = 0; i < Operands[Operand - 1]; ++i) OS << format(" 0x%02x", Expr->Data.getU8(&Offset)); } else { if (Signed) OS << format(" %+" PRId64, (int64_t)Operands[Operand]); else if (Opcode != DW_OP_entry_value && Opcode != DW_OP_GNU_entry_value) OS << format(" 0x%" PRIx64, Operands[Operand]); } } return true; } void DWARFExpression::print(raw_ostream &OS, DIDumpOptions DumpOpts, const MCRegisterInfo *RegInfo, DWARFUnit *U, bool IsEH) const { uint32_t EntryValExprSize = 0; for (auto &Op : *this) { if (!Op.print(OS, DumpOpts, this, RegInfo, U, IsEH)) { uint64_t FailOffset = Op.getEndOffset(); while (FailOffset < Data.getData().size()) OS << format(" %02x", Data.getU8(&FailOffset)); return; } if (Op.getCode() == DW_OP_entry_value || Op.getCode() == DW_OP_GNU_entry_value) { OS << "("; EntryValExprSize = Op.getRawOperand(0); continue; } if (EntryValExprSize) { EntryValExprSize--; if (EntryValExprSize == 0) OS << ")"; } if (Op.getEndOffset() < Data.getData().size()) OS << ", "; } } bool DWARFExpression::Operation::verify(DWARFUnit *U) { for (unsigned Operand = 0; Operand < 2; ++Operand) { unsigned Size = Desc.Op[Operand]; if (Size == Operation::SizeNA) break; if (Size == Operation::BaseTypeRef) { // For DW_OP_convert the operand may be 0 to indicate that conversion to // the generic type should be done, so don't look up a base type in that // case. The same holds for DW_OP_reinterpret, which is currently not // supported. if (Opcode == DW_OP_convert && Operands[Operand] == 0) continue; auto Die = U->getDIEForOffset(U->getOffset() + Operands[Operand]); if (!Die || Die.getTag() != dwarf::DW_TAG_base_type) { Error = true; return false; } } } return true; } bool DWARFExpression::verify(DWARFUnit *U) { for (auto &Op : *this) if (!Op.verify(U)) return false; return true; } /// A user-facing string representation of a DWARF expression. This might be an /// Address expression, in which case it will be implicitly dereferenced, or a /// Value expression. struct PrintedExpr { enum ExprKind { Address, Value, }; ExprKind Kind; SmallString<16> String; PrintedExpr(ExprKind K = Address) : Kind(K) {} }; static bool printCompactDWARFExpr(raw_ostream &OS, DWARFExpression::iterator I, const DWARFExpression::iterator E, const MCRegisterInfo &MRI) { SmallVector Stack; while (I != E) { DWARFExpression::Operation &Op = *I; uint8_t Opcode = Op.getCode(); switch (Opcode) { case dwarf::DW_OP_regx: { // DW_OP_regx: A register, with the register num given as an operand. // Printed as the plain register name. uint64_t DwarfRegNum = Op.getRawOperand(0); Optional LLVMRegNum = MRI.getLLVMRegNum(DwarfRegNum, false); if (!LLVMRegNum) { OS << ""; return false; } raw_svector_ostream S(Stack.emplace_back(PrintedExpr::Value).String); S << MRI.getName(*LLVMRegNum); break; } case dwarf::DW_OP_bregx: { int DwarfRegNum = Op.getRawOperand(0); int64_t Offset = Op.getRawOperand(1); Optional LLVMRegNum = MRI.getLLVMRegNum(DwarfRegNum, false); if (!LLVMRegNum) { OS << ""; return false; } raw_svector_ostream S(Stack.emplace_back().String); S << MRI.getName(*LLVMRegNum); if (Offset) S << format("%+" PRId64, Offset); break; } case dwarf::DW_OP_entry_value: case dwarf::DW_OP_GNU_entry_value: { // DW_OP_entry_value contains a sub-expression which must be rendered // separately. uint64_t SubExprLength = Op.getRawOperand(0); DWARFExpression::iterator SubExprEnd = I.skipBytes(SubExprLength); ++I; raw_svector_ostream S(Stack.emplace_back().String); S << "entry("; printCompactDWARFExpr(S, I, SubExprEnd, MRI); S << ")"; I = SubExprEnd; continue; } case dwarf::DW_OP_stack_value: { // The top stack entry should be treated as the actual value of tne // variable, rather than the address of the variable in memory. assert(!Stack.empty()); Stack.back().Kind = PrintedExpr::Value; break; } default: if (Opcode >= dwarf::DW_OP_reg0 && Opcode <= dwarf::DW_OP_reg31) { // DW_OP_reg: A register, with the register num implied by the // opcode. Printed as the plain register name. uint64_t DwarfRegNum = Opcode - dwarf::DW_OP_reg0; Optional LLVMRegNum = MRI.getLLVMRegNum(DwarfRegNum, false); if (!LLVMRegNum) { OS << ""; return false; } raw_svector_ostream S(Stack.emplace_back(PrintedExpr::Value).String); S << MRI.getName(*LLVMRegNum); } else if (Opcode >= dwarf::DW_OP_breg0 && Opcode <= dwarf::DW_OP_breg31) { int DwarfRegNum = Opcode - dwarf::DW_OP_breg0; int64_t Offset = Op.getRawOperand(0); Optional LLVMRegNum = MRI.getLLVMRegNum(DwarfRegNum, false); if (!LLVMRegNum) { OS << ""; return false; } raw_svector_ostream S(Stack.emplace_back().String); S << MRI.getName(*LLVMRegNum); if (Offset) S << format("%+" PRId64, Offset); } else { // If we hit an unknown operand, we don't know its effect on the stack, // so bail out on the whole expression. OS << ""; return false; } break; } ++I; } assert(Stack.size() == 1 && "expected one value on stack"); if (Stack.front().Kind == PrintedExpr::Address) OS << "[" << Stack.front().String << "]"; else OS << Stack.front().String; return true; } bool DWARFExpression::printCompact(raw_ostream &OS, const MCRegisterInfo &MRI) { return printCompactDWARFExpr(OS, begin(), end(), MRI); } } // namespace llvm