//===- MachineLoopInfo.cpp - Natural Loop Calculator ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the MachineLoopInfo class that is used to identify natural // loops and determine the loop depth of various nodes of the CFG. Note that // the loops identified may actually be several natural loops that share the // same header node... not just a single natural loop. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/Analysis/LoopInfoImpl.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; // Explicitly instantiate methods in LoopInfoImpl.h for MI-level Loops. template class llvm::LoopBase; template class llvm::LoopInfoBase; char MachineLoopInfo::ID = 0; MachineLoopInfo::MachineLoopInfo() : MachineFunctionPass(ID) { initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); } INITIALIZE_PASS_BEGIN(MachineLoopInfo, "machine-loops", "Machine Natural Loop Construction", true, true) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_END(MachineLoopInfo, "machine-loops", "Machine Natural Loop Construction", true, true) char &llvm::MachineLoopInfoID = MachineLoopInfo::ID; bool MachineLoopInfo::runOnMachineFunction(MachineFunction &) { calculate(getAnalysis()); return false; } void MachineLoopInfo::calculate(MachineDominatorTree &MDT) { releaseMemory(); LI.analyze(MDT.getBase()); } void MachineLoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } MachineBasicBlock *MachineLoop::getTopBlock() { MachineBasicBlock *TopMBB = getHeader(); MachineFunction::iterator Begin = TopMBB->getParent()->begin(); if (TopMBB->getIterator() != Begin) { MachineBasicBlock *PriorMBB = &*std::prev(TopMBB->getIterator()); while (contains(PriorMBB)) { TopMBB = PriorMBB; if (TopMBB->getIterator() == Begin) break; PriorMBB = &*std::prev(TopMBB->getIterator()); } } return TopMBB; } MachineBasicBlock *MachineLoop::getBottomBlock() { MachineBasicBlock *BotMBB = getHeader(); MachineFunction::iterator End = BotMBB->getParent()->end(); if (BotMBB->getIterator() != std::prev(End)) { MachineBasicBlock *NextMBB = &*std::next(BotMBB->getIterator()); while (contains(NextMBB)) { BotMBB = NextMBB; if (BotMBB == &*std::next(BotMBB->getIterator())) break; NextMBB = &*std::next(BotMBB->getIterator()); } } return BotMBB; } MachineBasicBlock *MachineLoop::findLoopControlBlock() { if (MachineBasicBlock *Latch = getLoopLatch()) { if (isLoopExiting(Latch)) return Latch; else return getExitingBlock(); } return nullptr; } DebugLoc MachineLoop::getStartLoc() const { // Try the pre-header first. if (MachineBasicBlock *PHeadMBB = getLoopPreheader()) if (const BasicBlock *PHeadBB = PHeadMBB->getBasicBlock()) if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) return DL; // If we have no pre-header or there are no instructions with debug // info in it, try the header. if (MachineBasicBlock *HeadMBB = getHeader()) if (const BasicBlock *HeadBB = HeadMBB->getBasicBlock()) return HeadBB->getTerminator()->getDebugLoc(); return DebugLoc(); } MachineBasicBlock * MachineLoopInfo::findLoopPreheader(MachineLoop *L, bool SpeculativePreheader) const { if (MachineBasicBlock *PB = L->getLoopPreheader()) return PB; if (!SpeculativePreheader) return nullptr; MachineBasicBlock *HB = L->getHeader(), *LB = L->getLoopLatch(); if (HB->pred_size() != 2 || HB->hasAddressTaken()) return nullptr; // Find the predecessor of the header that is not the latch block. MachineBasicBlock *Preheader = nullptr; for (MachineBasicBlock *P : HB->predecessors()) { if (P == LB) continue; // Sanity. if (Preheader) return nullptr; Preheader = P; } // Check if the preheader candidate is a successor of any other loop // headers. We want to avoid having two loop setups in the same block. for (MachineBasicBlock *S : Preheader->successors()) { if (S == HB) continue; MachineLoop *T = getLoopFor(S); if (T && T->getHeader() == S) return nullptr; } return Preheader; } bool MachineLoop::isLoopInvariant(MachineInstr &I) const { MachineFunction *MF = I.getParent()->getParent(); MachineRegisterInfo *MRI = &MF->getRegInfo(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); // The instruction is loop invariant if all of its operands are. for (const MachineOperand &MO : I.operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (Reg == 0) continue; // An instruction that uses or defines a physical register can't e.g. be // hoisted, so mark this as not invariant. if (Register::isPhysicalRegister(Reg)) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. // However, if the physreg is known to always be caller saved/restored // then this use is safe to hoist. if (!MRI->isConstantPhysReg(Reg) && !(TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *I.getMF()))) return false; // Otherwise it's safe to move. continue; } else if (!MO.isDead()) { // A def that isn't dead can't be moved. return false; } else if (getHeader()->isLiveIn(Reg)) { // If the reg is live into the loop, we can't hoist an instruction // which would clobber it. return false; } } if (!MO.isUse()) continue; assert(MRI->getVRegDef(Reg) && "Machine instr not mapped for this vreg?!"); // If the loop contains the definition of an operand, then the instruction // isn't loop invariant. if (contains(MRI->getVRegDef(Reg))) return false; } // If we got this far, the instruction is loop invariant! return true; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void MachineLoop::dump() const { print(dbgs()); } #endif