//===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file VarLocBasedImpl.cpp /// /// LiveDebugValues is an optimistic "available expressions" dataflow /// algorithm. The set of expressions is the set of machine locations /// (registers, spill slots, constants) that a variable fragment might be /// located, qualified by a DIExpression and indirect-ness flag, while each /// variable is identified by a DebugVariable object. The availability of an /// expression begins when a DBG_VALUE instruction specifies the location of a /// DebugVariable, and continues until that location is clobbered or /// re-specified by a different DBG_VALUE for the same DebugVariable. /// /// The output of LiveDebugValues is additional DBG_VALUE instructions, /// placed to extend variable locations as far they're available. This file /// and the VarLocBasedLDV class is an implementation that explicitly tracks /// locations, using the VarLoc class. /// /// The canonical "available expressions" problem doesn't have expression /// clobbering, instead when a variable is re-assigned, any expressions using /// that variable get invalidated. LiveDebugValues can map onto "available /// expressions" by having every register represented by a variable, which is /// used in an expression that becomes available at a DBG_VALUE instruction. /// When the register is clobbered, its variable is effectively reassigned, and /// expressions computed from it become unavailable. A similar construct is /// needed when a DebugVariable has its location re-specified, to invalidate /// all other locations for that DebugVariable. /// /// Using the dataflow analysis to compute the available expressions, we create /// a DBG_VALUE at the beginning of each block where the expression is /// live-in. This propagates variable locations into every basic block where /// the location can be determined, rather than only having DBG_VALUEs in blocks /// where locations are specified due to an assignment or some optimization. /// Movements of values between registers and spill slots are annotated with /// DBG_VALUEs too to track variable values bewteen locations. All this allows /// DbgEntityHistoryCalculator to focus on only the locations within individual /// blocks, facilitating testing and improving modularity. /// /// We follow an optimisic dataflow approach, with this lattice: /// /// \verbatim /// ┬ "Unknown" /// | /// v /// True /// | /// v /// ⊥ False /// \endverbatim With "True" signifying that the expression is available (and /// thus a DebugVariable's location is the corresponding register), while /// "False" signifies that the expression is unavailable. "Unknown"s never /// survive to the end of the analysis (see below). /// /// Formally, all DebugVariable locations that are live-out of a block are /// initialized to \top. A blocks live-in values take the meet of the lattice /// value for every predecessors live-outs, except for the entry block, where /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer /// function for a block assigns an expression for a DebugVariable to be "True" /// if a DBG_VALUE in the block specifies it; "False" if the location is /// clobbered; or the live-in value if it is unaffected by the block. We /// visit each block in reverse post order until a fixedpoint is reached. The /// solution produced is maximal. /// /// Intuitively, we start by assuming that every expression / variable location /// is at least "True", and then propagate "False" from the entry block and any /// clobbers until there are no more changes to make. This gives us an accurate /// solution because all incorrect locations will have a "False" propagated into /// them. It also gives us a solution that copes well with loops by assuming /// that variable locations are live-through every loop, and then removing those /// that are not through dataflow. /// /// Within LiveDebugValues: each variable location is represented by a /// VarLoc object that identifies the source variable, its current /// machine-location, and the DBG_VALUE inst that specifies the location. Each /// VarLoc is indexed in the (function-scope) \p VarLocMap, giving each VarLoc a /// unique index. Rather than operate directly on machine locations, the /// dataflow analysis in this pass identifies locations by their index in the /// VarLocMap, meaning all the variable locations in a block can be described /// by a sparse vector of VarLocMap indicies. /// /// All the storage for the dataflow analysis is local to the ExtendRanges /// method and passed down to helper methods. "OutLocs" and "InLocs" record the /// in and out lattice values for each block. "OpenRanges" maintains a list of /// variable locations and, with the "process" method, evaluates the transfer /// function of each block. "flushPendingLocs" installs DBG_VALUEs for each /// live-in location at the start of blocks, while "Transfers" records /// transfers of values between machine-locations. /// /// We avoid explicitly representing the "Unknown" (\top) lattice value in the /// implementation. Instead, unvisited blocks implicitly have all lattice /// values set as "Unknown". After being visited, there will be path back to /// the entry block where the lattice value is "False", and as the transfer /// function cannot make new "Unknown" locations, there are no scenarios where /// a block can have an "Unknown" location after being visited. Similarly, we /// don't enumerate all possible variable locations before exploring the /// function: when a new location is discovered, all blocks previously explored /// were implicitly "False" but unrecorded, and become explicitly "False" when /// a new VarLoc is created with its bit not set in predecessor InLocs or /// OutLocs. /// //===----------------------------------------------------------------------===// #include "LiveDebugValues.h" #include "llvm/ADT/CoalescingBitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/UniqueVector.h" #include "llvm/CodeGen/LexicalScopes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/IR/Module.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/TypeSize.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "livedebugvalues" STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); // Options to prevent pathological compile-time behavior. If InputBBLimit and // InputDbgValueLimit are both exceeded, range extension is disabled. static cl::opt InputBBLimit( "livedebugvalues-input-bb-limit", cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"), cl::init(10000), cl::Hidden); static cl::opt InputDbgValueLimit( "livedebugvalues-input-dbg-value-limit", cl::desc( "Maximum input DBG_VALUE insts supported by debug range extension"), cl::init(50000), cl::Hidden); // If @MI is a DBG_VALUE with debug value described by a defined // register, returns the number of this register. In the other case, returns 0. static Register isDbgValueDescribedByReg(const MachineInstr &MI) { assert(MI.isDebugValue() && "expected a DBG_VALUE"); assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); // If location of variable is described using a register (directly // or indirectly), this register is always a first operand. return MI.getDebugOperand(0).isReg() ? MI.getDebugOperand(0).getReg() : Register(); } /// If \p Op is a stack or frame register return true, otherwise return false. /// This is used to avoid basing the debug entry values on the registers, since /// we do not support it at the moment. static bool isRegOtherThanSPAndFP(const MachineOperand &Op, const MachineInstr &MI, const TargetRegisterInfo *TRI) { if (!Op.isReg()) return false; const MachineFunction *MF = MI.getParent()->getParent(); const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); Register SP = TLI->getStackPointerRegisterToSaveRestore(); Register FP = TRI->getFrameRegister(*MF); Register Reg = Op.getReg(); return Reg && Reg != SP && Reg != FP; } namespace { // Max out the number of statically allocated elements in DefinedRegsSet, as // this prevents fallback to std::set::count() operations. using DefinedRegsSet = SmallSet; using VarLocSet = CoalescingBitVector; /// A type-checked pair of {Register Location (or 0), Index}, used to index /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int /// for insertion into a \ref VarLocSet, and efficiently converted back. The /// type-checker helps ensure that the conversions aren't lossy. /// /// Why encode a location /into/ the VarLocMap index? This makes it possible /// to find the open VarLocs killed by a register def very quickly. This is a /// performance-critical operation for LiveDebugValues. struct LocIndex { using u32_location_t = uint32_t; using u32_index_t = uint32_t; u32_location_t Location; // Physical registers live in the range [1;2^30) (see // \ref MCRegister), so we have plenty of range left // here to encode non-register locations. u32_index_t Index; /// The first location greater than 0 that is not reserved for VarLocs of /// kind RegisterKind. static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; /// A special location reserved for VarLocs of kind SpillLocKind. static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; /// A special location reserved for VarLocs of kind EntryValueBackupKind and /// EntryValueCopyBackupKind. static constexpr u32_location_t kEntryValueBackupLocation = kFirstInvalidRegLocation + 1; LocIndex(u32_location_t Location, u32_index_t Index) : Location(Location), Index(Index) {} uint64_t getAsRawInteger() const { return (static_cast(Location) << 32) | Index; } template static LocIndex fromRawInteger(IntT ID) { static_assert(std::is_unsigned::value && sizeof(ID) == sizeof(uint64_t), "Cannot convert raw integer to LocIndex"); return {static_cast(ID >> 32), static_cast(ID)}; } /// Get the start of the interval reserved for VarLocs of kind RegisterKind /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. static uint64_t rawIndexForReg(uint32_t Reg) { return LocIndex(Reg, 0).getAsRawInteger(); } /// Return a range covering all set indices in the interval reserved for /// \p Location in \p Set. static auto indexRangeForLocation(const VarLocSet &Set, u32_location_t Location) { uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); return Set.half_open_range(Start, End); } }; class VarLocBasedLDV : public LDVImpl { private: const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; const TargetFrameLowering *TFI; TargetPassConfig *TPC; BitVector CalleeSavedRegs; LexicalScopes LS; VarLocSet::Allocator Alloc; enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; using FragmentInfo = DIExpression::FragmentInfo; using OptFragmentInfo = Optional; /// A pair of debug variable and value location. struct VarLoc { // The location at which a spilled variable resides. It consists of a // register and an offset. struct SpillLoc { unsigned SpillBase; StackOffset SpillOffset; bool operator==(const SpillLoc &Other) const { return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; } bool operator!=(const SpillLoc &Other) const { return !(*this == Other); } }; /// Identity of the variable at this location. const DebugVariable Var; /// The expression applied to this location. const DIExpression *Expr; /// DBG_VALUE to clone var/expr information from if this location /// is moved. const MachineInstr &MI; enum VarLocKind { InvalidKind = 0, RegisterKind, SpillLocKind, ImmediateKind, EntryValueKind, EntryValueBackupKind, EntryValueCopyBackupKind } Kind = InvalidKind; /// The value location. Stored separately to avoid repeatedly /// extracting it from MI. union LocUnion { uint64_t RegNo; SpillLoc SpillLocation; uint64_t Hash; int64_t Immediate; const ConstantFP *FPImm; const ConstantInt *CImm; LocUnion() : Hash(0) {} } Loc; VarLoc(const MachineInstr &MI, LexicalScopes &LS) : Var(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()), Expr(MI.getDebugExpression()), MI(MI) { assert(MI.isDebugValue() && "not a DBG_VALUE"); assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); if (int RegNo = isDbgValueDescribedByReg(MI)) { Kind = RegisterKind; Loc.RegNo = RegNo; } else if (MI.getDebugOperand(0).isImm()) { Kind = ImmediateKind; Loc.Immediate = MI.getDebugOperand(0).getImm(); } else if (MI.getDebugOperand(0).isFPImm()) { Kind = ImmediateKind; Loc.FPImm = MI.getDebugOperand(0).getFPImm(); } else if (MI.getDebugOperand(0).isCImm()) { Kind = ImmediateKind; Loc.CImm = MI.getDebugOperand(0).getCImm(); } // We create the debug entry values from the factory functions rather than // from this ctor. assert(Kind != EntryValueKind && !isEntryBackupLoc()); } /// Take the variable and machine-location in DBG_VALUE MI, and build an /// entry location using the given expression. static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS, const DIExpression *EntryExpr, Register Reg) { VarLoc VL(MI, LS); assert(VL.Kind == RegisterKind); VL.Kind = EntryValueKind; VL.Expr = EntryExpr; VL.Loc.RegNo = Reg; return VL; } /// Take the variable and machine-location from the DBG_VALUE (from the /// function entry), and build an entry value backup location. The backup /// location will turn into the normal location if the backup is valid at /// the time of the primary location clobbering. static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, LexicalScopes &LS, const DIExpression *EntryExpr) { VarLoc VL(MI, LS); assert(VL.Kind == RegisterKind); VL.Kind = EntryValueBackupKind; VL.Expr = EntryExpr; return VL; } /// Take the variable and machine-location from the DBG_VALUE (from the /// function entry), and build a copy of an entry value backup location by /// setting the register location to NewReg. static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, LexicalScopes &LS, const DIExpression *EntryExpr, Register NewReg) { VarLoc VL(MI, LS); assert(VL.Kind == RegisterKind); VL.Kind = EntryValueCopyBackupKind; VL.Expr = EntryExpr; VL.Loc.RegNo = NewReg; return VL; } /// Copy the register location in DBG_VALUE MI, updating the register to /// be NewReg. static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS, Register NewReg) { VarLoc VL(MI, LS); assert(VL.Kind == RegisterKind); VL.Loc.RegNo = NewReg; return VL; } /// Take the variable described by DBG_VALUE MI, and create a VarLoc /// locating it in the specified spill location. static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase, StackOffset SpillOffset, LexicalScopes &LS) { VarLoc VL(MI, LS); assert(VL.Kind == RegisterKind); VL.Kind = SpillLocKind; VL.Loc.SpillLocation = {SpillBase, SpillOffset}; return VL; } /// Create a DBG_VALUE representing this VarLoc in the given function. /// Copies variable-specific information such as DILocalVariable and /// inlining information from the original DBG_VALUE instruction, which may /// have been several transfers ago. MachineInstr *BuildDbgValue(MachineFunction &MF) const { const DebugLoc &DbgLoc = MI.getDebugLoc(); bool Indirect = MI.isIndirectDebugValue(); const auto &IID = MI.getDesc(); const DILocalVariable *Var = MI.getDebugVariable(); const DIExpression *DIExpr = MI.getDebugExpression(); NumInserted++; switch (Kind) { case EntryValueKind: // An entry value is a register location -- but with an updated // expression. The register location of such DBG_VALUE is always the one // from the entry DBG_VALUE, it does not matter if the entry value was // copied in to another register due to some optimizations. return BuildMI(MF, DbgLoc, IID, Indirect, MI.getDebugOperand(0).getReg(), Var, Expr); case RegisterKind: // Register locations are like the source DBG_VALUE, but with the // register number from this VarLoc. return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr); case SpillLocKind: { // Spills are indirect DBG_VALUEs, with a base register and offset. // Use the original DBG_VALUEs expression to build the spilt location // on top of. FIXME: spill locations created before this pass runs // are not recognized, and not handled here. auto *TRI = MF.getSubtarget().getRegisterInfo(); auto *SpillExpr = TRI->prependOffsetExpression( DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset); unsigned Base = Loc.SpillLocation.SpillBase; return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr); } case ImmediateKind: { MachineOperand MO = MI.getDebugOperand(0); return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr); } case EntryValueBackupKind: case EntryValueCopyBackupKind: case InvalidKind: llvm_unreachable( "Tried to produce DBG_VALUE for invalid or backup VarLoc"); } llvm_unreachable("Unrecognized VarLocBasedLDV.VarLoc.Kind enum"); } /// Is the Loc field a constant or constant object? bool isConstant() const { return Kind == ImmediateKind; } /// Check if the Loc field is an entry backup location. bool isEntryBackupLoc() const { return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind; } /// If this variable is described by a register holding the entry value, /// return it, otherwise return 0. unsigned getEntryValueBackupReg() const { if (Kind == EntryValueBackupKind) return Loc.RegNo; return 0; } /// If this variable is described by a register holding the copy of the /// entry value, return it, otherwise return 0. unsigned getEntryValueCopyBackupReg() const { if (Kind == EntryValueCopyBackupKind) return Loc.RegNo; return 0; } /// If this variable is described by a register, return it, /// otherwise return 0. unsigned isDescribedByReg() const { if (Kind == RegisterKind) return Loc.RegNo; return 0; } /// Determine whether the lexical scope of this value's debug location /// dominates MBB. bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { return LS.dominates(MI.getDebugLoc().get(), &MBB); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) // TRI can be null. void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const { Out << "VarLoc("; switch (Kind) { case RegisterKind: case EntryValueKind: case EntryValueBackupKind: case EntryValueCopyBackupKind: Out << printReg(Loc.RegNo, TRI); break; case SpillLocKind: Out << printReg(Loc.SpillLocation.SpillBase, TRI); Out << "[" << Loc.SpillLocation.SpillOffset.getFixed() << " + " << Loc.SpillLocation.SpillOffset.getScalable() << "x vscale" << "]"; break; case ImmediateKind: Out << Loc.Immediate; break; case InvalidKind: llvm_unreachable("Invalid VarLoc in dump method"); } Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; if (Var.getInlinedAt()) Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; else Out << "(null))"; if (isEntryBackupLoc()) Out << " (backup loc)\n"; else Out << "\n"; } #endif bool operator==(const VarLoc &Other) const { if (Kind != Other.Kind || !(Var == Other.Var) || Expr != Other.Expr) return false; switch (Kind) { case SpillLocKind: return Loc.SpillLocation == Other.Loc.SpillLocation; case RegisterKind: case ImmediateKind: case EntryValueKind: case EntryValueBackupKind: case EntryValueCopyBackupKind: return Loc.Hash == Other.Loc.Hash; default: llvm_unreachable("Invalid kind"); } } /// This operator guarantees that VarLocs are sorted by Variable first. bool operator<(const VarLoc &Other) const { switch (Kind) { case SpillLocKind: return std::make_tuple(Var, Kind, Loc.SpillLocation.SpillBase, Loc.SpillLocation.SpillOffset.getFixed(), Loc.SpillLocation.SpillOffset.getScalable(), Expr) < std::make_tuple( Other.Var, Other.Kind, Other.Loc.SpillLocation.SpillBase, Other.Loc.SpillLocation.SpillOffset.getFixed(), Other.Loc.SpillLocation.SpillOffset.getScalable(), Other.Expr); case RegisterKind: case ImmediateKind: case EntryValueKind: case EntryValueBackupKind: case EntryValueCopyBackupKind: return std::tie(Var, Kind, Loc.Hash, Expr) < std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr); default: llvm_unreachable("Invalid kind"); } } }; /// VarLocMap is used for two things: /// 1) Assigning a unique LocIndex to a VarLoc. This LocIndex can be used to /// virtually insert a VarLoc into a VarLocSet. /// 2) Given a LocIndex, look up the unique associated VarLoc. class VarLocMap { /// Map a VarLoc to an index within the vector reserved for its location /// within Loc2Vars. std::map Var2Index; /// Map a location to a vector which holds VarLocs which live in that /// location. SmallDenseMap> Loc2Vars; /// Determine the 32-bit location reserved for \p VL, based on its kind. static LocIndex::u32_location_t getLocationForVar(const VarLoc &VL) { switch (VL.Kind) { case VarLoc::RegisterKind: assert((VL.Loc.RegNo < LocIndex::kFirstInvalidRegLocation) && "Physreg out of range?"); return VL.Loc.RegNo; case VarLoc::SpillLocKind: return LocIndex::kSpillLocation; case VarLoc::EntryValueBackupKind: case VarLoc::EntryValueCopyBackupKind: return LocIndex::kEntryValueBackupLocation; default: return 0; } } public: /// Retrieve a unique LocIndex for \p VL. LocIndex insert(const VarLoc &VL) { LocIndex::u32_location_t Location = getLocationForVar(VL); LocIndex::u32_index_t &Index = Var2Index[VL]; if (!Index) { auto &Vars = Loc2Vars[Location]; Vars.push_back(VL); Index = Vars.size(); } return {Location, Index - 1}; } /// Retrieve the unique VarLoc associated with \p ID. const VarLoc &operator[](LocIndex ID) const { auto LocIt = Loc2Vars.find(ID.Location); assert(LocIt != Loc2Vars.end() && "Location not tracked"); return LocIt->second[ID.Index]; } }; using VarLocInMBB = SmallDenseMap>; struct TransferDebugPair { MachineInstr *TransferInst; ///< Instruction where this transfer occurs. LocIndex LocationID; ///< Location number for the transfer dest. }; using TransferMap = SmallVector; // Types for recording sets of variable fragments that overlap. For a given // local variable, we record all other fragments of that variable that could // overlap it, to reduce search time. using FragmentOfVar = std::pair; using OverlapMap = DenseMap>; // Helper while building OverlapMap, a map of all fragments seen for a given // DILocalVariable. using VarToFragments = DenseMap>; /// This holds the working set of currently open ranges. For fast /// access, this is done both as a set of VarLocIDs, and a map of /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all /// previous open ranges for the same variable. In addition, we keep /// two different maps (Vars/EntryValuesBackupVars), so erase/insert /// methods act differently depending on whether a VarLoc is primary /// location or backup one. In the case the VarLoc is backup location /// we will erase/insert from the EntryValuesBackupVars map, otherwise /// we perform the operation on the Vars. class OpenRangesSet { VarLocSet VarLocs; // Map the DebugVariable to recent primary location ID. SmallDenseMap Vars; // Map the DebugVariable to recent backup location ID. SmallDenseMap EntryValuesBackupVars; OverlapMap &OverlappingFragments; public: OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) : VarLocs(Alloc), OverlappingFragments(_OLapMap) {} const VarLocSet &getVarLocs() const { return VarLocs; } /// Terminate all open ranges for VL.Var by removing it from the set. void erase(const VarLoc &VL); /// Terminate all open ranges listed in \c KillSet by removing /// them from the set. void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs); /// Insert a new range into the set. void insert(LocIndex VarLocID, const VarLoc &VL); /// Insert a set of ranges. void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) { for (uint64_t ID : ToLoad) { LocIndex Idx = LocIndex::fromRawInteger(ID); const VarLoc &VarL = Map[Idx]; insert(Idx, VarL); } } llvm::Optional getEntryValueBackup(DebugVariable Var); /// Empty the set. void clear() { VarLocs.clear(); Vars.clear(); EntryValuesBackupVars.clear(); } /// Return whether the set is empty or not. bool empty() const { assert(Vars.empty() == EntryValuesBackupVars.empty() && Vars.empty() == VarLocs.empty() && "open ranges are inconsistent"); return VarLocs.empty(); } /// Get an empty range of VarLoc IDs. auto getEmptyVarLocRange() const { return iterator_range(getVarLocs().end(), getVarLocs().end()); } /// Get all set IDs for VarLocs of kind RegisterKind in \p Reg. auto getRegisterVarLocs(Register Reg) const { return LocIndex::indexRangeForLocation(getVarLocs(), Reg); } /// Get all set IDs for VarLocs of kind SpillLocKind. auto getSpillVarLocs() const { return LocIndex::indexRangeForLocation(getVarLocs(), LocIndex::kSpillLocation); } /// Get all set IDs for VarLocs of kind EntryValueBackupKind or /// EntryValueCopyBackupKind. auto getEntryValueBackupVarLocs() const { return LocIndex::indexRangeForLocation( getVarLocs(), LocIndex::kEntryValueBackupLocation); } }; /// Collect all VarLoc IDs from \p CollectFrom for VarLocs of kind /// RegisterKind which are located in any reg in \p Regs. Insert collected IDs /// into \p Collected. void collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs, const VarLocSet &CollectFrom) const; /// Get the registers which are used by VarLocs of kind RegisterKind tracked /// by \p CollectFrom. void getUsedRegs(const VarLocSet &CollectFrom, SmallVectorImpl &UsedRegs) const; VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { std::unique_ptr &VLS = Locs[MBB]; if (!VLS) VLS = std::make_unique(Alloc); return *VLS.get(); } const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, const VarLocInMBB &Locs) const { auto It = Locs.find(MBB); assert(It != Locs.end() && "MBB not in map"); return *It->second.get(); } /// Tests whether this instruction is a spill to a stack location. bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); /// Decide if @MI is a spill instruction and return true if it is. We use 2 /// criteria to make this decision: /// - Is this instruction a store to a spill slot? /// - Is there a register operand that is both used and killed? /// TODO: Store optimization can fold spills into other stores (including /// other spills). We do not handle this yet (more than one memory operand). bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, Register &Reg); /// Returns true if the given machine instruction is a debug value which we /// can emit entry values for. /// /// Currently, we generate debug entry values only for parameters that are /// unmodified throughout the function and located in a register. bool isEntryValueCandidate(const MachineInstr &MI, const DefinedRegsSet &Regs) const; /// If a given instruction is identified as a spill, return the spill location /// and set \p Reg to the spilled register. Optional isRestoreInstruction(const MachineInstr &MI, MachineFunction *MF, Register &Reg); /// Given a spill instruction, extract the register and offset used to /// address the spill location in a target independent way. VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, Register NewReg = Register()); void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, const VarLoc &EntryVL); void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers, VarLocSet &KillSet); void recordEntryValue(const MachineInstr &MI, const DefinedRegsSet &DefinedRegs, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); void process(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, OverlapMap &OLapMap); bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, const VarLocMap &VarLocIDs, SmallPtrSet &Visited, SmallPtrSetImpl &ArtificialBlocks); /// Create DBG_VALUE insts for inlocs that have been propagated but /// had their instruction creation deferred. void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; public: /// Default construct and initialize the pass. VarLocBasedLDV(); ~VarLocBasedLDV(); /// Print to ostream with a message. void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, const VarLocMap &VarLocIDs, const char *msg, raw_ostream &Out) const; }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Implementation //===----------------------------------------------------------------------===// VarLocBasedLDV::VarLocBasedLDV() { } VarLocBasedLDV::~VarLocBasedLDV() { } /// Erase a variable from the set of open ranges, and additionally erase any /// fragments that may overlap it. If the VarLoc is a backup location, erase /// the variable from the EntryValuesBackupVars set, indicating we should stop /// tracking its backup entry location. Otherwise, if the VarLoc is primary /// location, erase the variable from the Vars set. void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { // Erasure helper. auto DoErase = [VL, this](DebugVariable VarToErase) { auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; auto It = EraseFrom->find(VarToErase); if (It != EraseFrom->end()) { LocIndex ID = It->second; VarLocs.reset(ID.getAsRawInteger()); EraseFrom->erase(It); } }; DebugVariable Var = VL.Var; // Erase the variable/fragment that ends here. DoErase(Var); // Extract the fragment. Interpret an empty fragment as one that covers all // possible bits. FragmentInfo ThisFragment = Var.getFragmentOrDefault(); // There may be fragments that overlap the designated fragment. Look them up // in the pre-computed overlap map, and erase them too. auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); if (MapIt != OverlappingFragments.end()) { for (auto Fragment : MapIt->second) { VarLocBasedLDV::OptFragmentInfo FragmentHolder; if (!DebugVariable::isDefaultFragment(Fragment)) FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); } } } void VarLocBasedLDV::OpenRangesSet::erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) { VarLocs.intersectWithComplement(KillSet); for (uint64_t ID : KillSet) { const VarLoc *VL = &VarLocIDs[LocIndex::fromRawInteger(ID)]; auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; EraseFrom->erase(VL->Var); } } void VarLocBasedLDV::OpenRangesSet::insert(LocIndex VarLocID, const VarLoc &VL) { auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; VarLocs.set(VarLocID.getAsRawInteger()); InsertInto->insert({VL.Var, VarLocID}); } /// Return the Loc ID of an entry value backup location, if it exists for the /// variable. llvm::Optional VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { auto It = EntryValuesBackupVars.find(Var); if (It != EntryValuesBackupVars.end()) return It->second; return llvm::None; } void VarLocBasedLDV::collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs, const VarLocSet &CollectFrom) const { assert(!Regs.empty() && "Nothing to collect"); SmallVector SortedRegs; for (Register Reg : Regs) SortedRegs.push_back(Reg); array_pod_sort(SortedRegs.begin(), SortedRegs.end()); auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); auto End = CollectFrom.end(); for (uint32_t Reg : SortedRegs) { // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all // possible VarLoc IDs for VarLocs of kind RegisterKind which live in Reg. uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); It.advanceToLowerBound(FirstIndexForReg); // Iterate through that half-open interval and collect all the set IDs. for (; It != End && *It < FirstInvalidIndex; ++It) Collected.set(*It); if (It == End) return; } } void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, SmallVectorImpl &UsedRegs) const { // All register-based VarLocs are assigned indices greater than or equal to // FirstRegIndex. uint64_t FirstRegIndex = LocIndex::rawIndexForReg(1); uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); for (auto It = CollectFrom.find(FirstRegIndex), End = CollectFrom.find(FirstInvalidIndex); It != End;) { // We found a VarLoc ID for a VarLoc that lives in a register. Figure out // which register and add it to UsedRegs. uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && "Duplicate used reg"); UsedRegs.push_back(FoundReg); // Skip to the next /set/ register. Note that this finds a lower bound, so // even if there aren't any VarLocs living in `FoundReg+1`, we're still // guaranteed to move on to the next register (or to end()). uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); It.advanceToLowerBound(NextRegIndex); } } //===----------------------------------------------------------------------===// // Debug Range Extension Implementation //===----------------------------------------------------------------------===// #ifndef NDEBUG void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, const VarLocMap &VarLocIDs, const char *msg, raw_ostream &Out) const { Out << '\n' << msg << '\n'; for (const MachineBasicBlock &BB : MF) { if (!V.count(&BB)) continue; const VarLocSet &L = getVarLocsInMBB(&BB, V); if (L.empty()) continue; Out << "MBB: " << BB.getNumber() << ":\n"; for (uint64_t VLL : L) { const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(VLL)]; Out << " Var: " << VL.Var.getVariable()->getName(); Out << " MI: "; VL.dump(TRI, Out); } } Out << "\n"; } #endif VarLocBasedLDV::VarLoc::SpillLoc VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { assert(MI.hasOneMemOperand() && "Spill instruction does not have exactly one memory operand?"); auto MMOI = MI.memoperands_begin(); const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); assert(PVal->kind() == PseudoSourceValue::FixedStack && "Inconsistent memory operand in spill instruction"); int FI = cast(PVal)->getFrameIndex(); const MachineBasicBlock *MBB = MI.getParent(); Register Reg; StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); return {Reg, Offset}; } /// Try to salvage the debug entry value if we encounter a new debug value /// describing the same parameter, otherwise stop tracking the value. Return /// true if we should stop tracking the entry value, otherwise return false. bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, const VarLoc &EntryVL) { // Skip the DBG_VALUE which is the debug entry value itself. if (MI.isIdenticalTo(EntryVL.MI)) return false; // If the parameter's location is not register location, we can not track // the entry value any more. In addition, if the debug expression from the // DBG_VALUE is not empty, we can assume the parameter's value has changed // indicating that we should stop tracking its entry value as well. if (!MI.getDebugOperand(0).isReg() || MI.getDebugExpression()->getNumElements() != 0) return true; // If the DBG_VALUE comes from a copy instruction that copies the entry value, // it means the parameter's value has not changed and we should be able to use // its entry value. bool TrySalvageEntryValue = false; Register Reg = MI.getDebugOperand(0).getReg(); auto I = std::next(MI.getReverseIterator()); const MachineOperand *SrcRegOp, *DestRegOp; if (I != MI.getParent()->rend()) { // TODO: Try to keep tracking of an entry value if we encounter a propagated // DBG_VALUE describing the copy of the entry value. (Propagated entry value // does not indicate the parameter modification.) auto DestSrc = TII->isCopyInstr(*I); if (!DestSrc) return true; SrcRegOp = DestSrc->Source; DestRegOp = DestSrc->Destination; if (Reg != DestRegOp->getReg()) return true; TrySalvageEntryValue = true; } if (TrySalvageEntryValue) { for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; if (VL.getEntryValueCopyBackupReg() == Reg && VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) return false; } } return true; } /// End all previous ranges related to @MI and start a new range from @MI /// if it is a DBG_VALUE instr. void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs) { if (!MI.isDebugValue()) return; const DILocalVariable *Var = MI.getDebugVariable(); const DIExpression *Expr = MI.getDebugExpression(); const DILocation *DebugLoc = MI.getDebugLoc(); const DILocation *InlinedAt = DebugLoc->getInlinedAt(); assert(Var->isValidLocationForIntrinsic(DebugLoc) && "Expected inlined-at fields to agree"); DebugVariable V(Var, Expr, InlinedAt); // Check if this DBG_VALUE indicates a parameter's value changing. // If that is the case, we should stop tracking its entry value. auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); if (Var->isParameter() && EntryValBackupID) { const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) { LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; MI.print(dbgs(), /*IsStandalone*/ false, /*SkipOpers*/ false, /*SkipDebugLoc*/ false, /*AddNewLine*/ true, TII)); OpenRanges.erase(EntryVL); } } if (isDbgValueDescribedByReg(MI) || MI.getDebugOperand(0).isImm() || MI.getDebugOperand(0).isFPImm() || MI.getDebugOperand(0).isCImm()) { // Use normal VarLoc constructor for registers and immediates. VarLoc VL(MI, LS); // End all previous ranges of VL.Var. OpenRanges.erase(VL); LocIndex ID = VarLocIDs.insert(VL); // Add the VarLoc to OpenRanges from this DBG_VALUE. OpenRanges.insert(ID, VL); } else if (MI.hasOneMemOperand()) { llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); } else { // This must be an undefined location. If it has an open range, erase it. assert(MI.getDebugOperand(0).isReg() && MI.getDebugOperand(0).getReg() == 0 && "Unexpected non-undef DBG_VALUE encountered"); VarLoc VL(MI, LS); OpenRanges.erase(VL); } } /// Turn the entry value backup locations into primary locations. void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers, VarLocSet &KillSet) { // Do not insert entry value locations after a terminator. if (MI.isTerminator()) return; for (uint64_t ID : KillSet) { LocIndex Idx = LocIndex::fromRawInteger(ID); const VarLoc &VL = VarLocIDs[Idx]; if (!VL.Var.getVariable()->isParameter()) continue; auto DebugVar = VL.Var; Optional EntryValBackupID = OpenRanges.getEntryValueBackup(DebugVar); // If the parameter has the entry value backup, it means we should // be able to use its entry value. if (!EntryValBackupID) continue; const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo); LocIndex EntryValueID = VarLocIDs.insert(EntryLoc); Transfers.push_back({&MI, EntryValueID}); OpenRanges.insert(EntryValueID, EntryLoc); } } /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc /// with \p OldVarID should be deleted form \p OpenRanges and replaced with /// new VarLoc. If \p NewReg is different than default zero value then the /// new location will be register location created by the copy like instruction, /// otherwise it is variable's location on the stack. void VarLocBasedLDV::insertTransferDebugPair( MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, Register NewReg) { const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI; auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { LocIndex LocId = VarLocIDs.insert(VL); // Close this variable's previous location range. OpenRanges.erase(VL); // Record the new location as an open range, and a postponed transfer // inserting a DBG_VALUE for this location. OpenRanges.insert(LocId, VL); assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); TransferDebugPair MIP = {&MI, LocId}; Transfers.push_back(MIP); }; // End all previous ranges of VL.Var. OpenRanges.erase(VarLocIDs[OldVarID]); switch (Kind) { case TransferKind::TransferCopy: { assert(NewReg && "No register supplied when handling a copy of a debug value"); // Create a DBG_VALUE instruction to describe the Var in its new // register location. VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); ProcessVarLoc(VL); LLVM_DEBUG({ dbgs() << "Creating VarLoc for register copy:"; VL.dump(TRI); }); return; } case TransferKind::TransferSpill: { // Create a DBG_VALUE instruction to describe the Var in its spilled // location. VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase, SpillLocation.SpillOffset, LS); ProcessVarLoc(VL); LLVM_DEBUG({ dbgs() << "Creating VarLoc for spill:"; VL.dump(TRI); }); return; } case TransferKind::TransferRestore: { assert(NewReg && "No register supplied when handling a restore of a debug value"); // DebugInstr refers to the pre-spill location, therefore we can reuse // its expression. VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); ProcessVarLoc(VL); LLVM_DEBUG({ dbgs() << "Creating VarLoc for restore:"; VL.dump(TRI); }); return; } } llvm_unreachable("Invalid transfer kind"); } /// A definition of a register may mark the end of a range. void VarLocBasedLDV::transferRegisterDef( MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { // Meta Instructions do not affect the debug liveness of any register they // define. if (MI.isMetaInstruction()) return; MachineFunction *MF = MI.getMF(); const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); Register SP = TLI->getStackPointerRegisterToSaveRestore(); // Find the regs killed by MI, and find regmasks of preserved regs. DefinedRegsSet DeadRegs; SmallVector RegMasks; for (const MachineOperand &MO : MI.operands()) { // Determine whether the operand is a register def. if (MO.isReg() && MO.isDef() && MO.getReg() && Register::isPhysicalRegister(MO.getReg()) && !(MI.isCall() && MO.getReg() == SP)) { // Remove ranges of all aliased registers. for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) // FIXME: Can we break out of this loop early if no insertion occurs? DeadRegs.insert(*RAI); } else if (MO.isRegMask()) { RegMasks.push_back(MO.getRegMask()); } } // Erase VarLocs which reside in one of the dead registers. For performance // reasons, it's critical to not iterate over the full set of open VarLocs. // Iterate over the set of dying/used regs instead. if (!RegMasks.empty()) { SmallVector UsedRegs; getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); for (uint32_t Reg : UsedRegs) { // Remove ranges of all clobbered registers. Register masks don't usually // list SP as preserved. Assume that call instructions never clobber SP, // because some backends (e.g., AArch64) never list SP in the regmask. // While the debug info may be off for an instruction or two around // callee-cleanup calls, transferring the DEBUG_VALUE across the call is // still a better user experience. if (Reg == SP) continue; bool AnyRegMaskKillsReg = any_of(RegMasks, [Reg](const uint32_t *RegMask) { return MachineOperand::clobbersPhysReg(RegMask, Reg); }); if (AnyRegMaskKillsReg) DeadRegs.insert(Reg); } } if (DeadRegs.empty()) return; VarLocSet KillSet(Alloc); collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs()); OpenRanges.erase(KillSet, VarLocIDs); if (TPC) { auto &TM = TPC->getTM(); if (TM.Options.ShouldEmitDebugEntryValues()) emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet); } } bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, MachineFunction *MF) { // TODO: Handle multiple stores folded into one. if (!MI.hasOneMemOperand()) return false; if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) return false; // This is not a spill instruction, since no valid size was // returned from either function. return true; } bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, MachineFunction *MF, Register &Reg) { if (!isSpillInstruction(MI, MF)) return false; auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { if (!MO.isReg() || !MO.isUse()) { Reg = 0; return false; } Reg = MO.getReg(); return MO.isKill(); }; for (const MachineOperand &MO : MI.operands()) { // In a spill instruction generated by the InlineSpiller the spilled // register has its kill flag set. if (isKilledReg(MO, Reg)) return true; if (Reg != 0) { // Check whether next instruction kills the spilled register. // FIXME: Current solution does not cover search for killed register in // bundles and instructions further down the chain. auto NextI = std::next(MI.getIterator()); // Skip next instruction that points to basic block end iterator. if (MI.getParent()->end() == NextI) continue; Register RegNext; for (const MachineOperand &MONext : NextI->operands()) { // Return true if we came across the register from the // previous spill instruction that is killed in NextI. if (isKilledReg(MONext, RegNext) && RegNext == Reg) return true; } } } // Return false if we didn't find spilled register. return false; } Optional VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, MachineFunction *MF, Register &Reg) { if (!MI.hasOneMemOperand()) return None; // FIXME: Handle folded restore instructions with more than one memory // operand. if (MI.getRestoreSize(TII)) { Reg = MI.getOperand(0).getReg(); return extractSpillBaseRegAndOffset(MI); } return None; } /// A spilled register may indicate that we have to end the current range of /// a variable and create a new one for the spill location. /// A restored register may indicate the reverse situation. /// We don't want to insert any instructions in process(), so we just create /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. /// It will be inserted into the BB when we're done iterating over the /// instructions. void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { MachineFunction *MF = MI.getMF(); TransferKind TKind; Register Reg; Optional Loc; LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); // First, if there are any DBG_VALUEs pointing at a spill slot that is // written to, then close the variable location. The value in memory // will have changed. VarLocSet KillSet(Alloc); if (isSpillInstruction(MI, MF)) { Loc = extractSpillBaseRegAndOffset(MI); for (uint64_t ID : OpenRanges.getSpillVarLocs()) { LocIndex Idx = LocIndex::fromRawInteger(ID); const VarLoc &VL = VarLocIDs[Idx]; assert(VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); if (VL.Loc.SpillLocation == *Loc) { // This location is overwritten by the current instruction -- terminate // the open range, and insert an explicit DBG_VALUE $noreg. // // Doing this at a later stage would require re-interpreting all // DBG_VALUes and DIExpressions to identify whether they point at // memory, and then analysing all memory writes to see if they // overwrite that memory, which is expensive. // // At this stage, we already know which DBG_VALUEs are for spills and // where they are located; it's best to fix handle overwrites now. KillSet.set(ID); VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0); LocIndex UndefLocID = VarLocIDs.insert(UndefVL); Transfers.push_back({&MI, UndefLocID}); } } OpenRanges.erase(KillSet, VarLocIDs); } // Try to recognise spill and restore instructions that may create a new // variable location. if (isLocationSpill(MI, MF, Reg)) { TKind = TransferKind::TransferSpill; LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) << "\n"); } else { if (!(Loc = isRestoreInstruction(MI, MF, Reg))) return; TKind = TransferKind::TransferRestore; LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) << "\n"); } // Check if the register or spill location is the location of a debug value. auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); if (TKind == TransferKind::TransferSpill) TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); else if (TKind == TransferKind::TransferRestore) TransferCandidates = OpenRanges.getSpillVarLocs(); for (uint64_t ID : TransferCandidates) { LocIndex Idx = LocIndex::fromRawInteger(ID); const VarLoc &VL = VarLocIDs[Idx]; if (TKind == TransferKind::TransferSpill) { assert(VL.isDescribedByReg() == Reg && "Broken VarLocSet?"); LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' << VL.Var.getVariable()->getName() << ")\n"); } else { assert(TKind == TransferKind::TransferRestore && VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); if (VL.Loc.SpillLocation != *Loc) // The spill location is not the location of a debug value. continue; LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' << VL.Var.getVariable()->getName() << ")\n"); } insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, Reg); // FIXME: A comment should explain why it's correct to return early here, // if that is in fact correct. return; } } /// If \p MI is a register copy instruction, that copies a previously tracked /// value from one register to another register that is callee saved, we /// create new DBG_VALUE instruction described with copy destination register. void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { auto DestSrc = TII->isCopyInstr(MI); if (!DestSrc) return; const MachineOperand *DestRegOp = DestSrc->Destination; const MachineOperand *SrcRegOp = DestSrc->Source; if (!DestRegOp->isDef()) return; auto isCalleeSavedReg = [&](Register Reg) { for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) if (CalleeSavedRegs.test(*RAI)) return true; return false; }; Register SrcReg = SrcRegOp->getReg(); Register DestReg = DestRegOp->getReg(); // We want to recognize instructions where destination register is callee // saved register. If register that could be clobbered by the call is // included, there would be a great chance that it is going to be clobbered // soon. It is more likely that previous register location, which is callee // saved, is going to stay unclobbered longer, even if it is killed. if (!isCalleeSavedReg(DestReg)) return; // Remember an entry value movement. If we encounter a new debug value of // a parameter describing only a moving of the value around, rather then // modifying it, we are still able to use the entry value if needed. if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { LocIndex Idx = LocIndex::fromRawInteger(ID); const VarLoc &VL = VarLocIDs[Idx]; if (VL.getEntryValueBackupReg() == SrcReg) { LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); VarLoc EntryValLocCopyBackup = VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg); // Stop tracking the original entry value. OpenRanges.erase(VL); // Start tracking the entry value copy. LocIndex EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup); OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup); break; } } } if (!SrcRegOp->isKill()) return; for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { LocIndex Idx = LocIndex::fromRawInteger(ID); assert(VarLocIDs[Idx].isDescribedByReg() == SrcReg && "Broken VarLocSet?"); insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TransferKind::TransferCopy, DestReg); // FIXME: A comment should explain why it's correct to return early here, // if that is in fact correct. return; } } /// Terminate all open ranges at the end of the current basic block. bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, OpenRangesSet &OpenRanges, VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs) { bool Changed = false; LLVM_DEBUG(for (uint64_t ID : OpenRanges.getVarLocs()) { // Copy OpenRanges to OutLocs, if not already present. dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; VarLocIDs[LocIndex::fromRawInteger(ID)].dump(TRI); }); VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); Changed = VLS != OpenRanges.getVarLocs(); // New OutLocs set may be different due to spill, restore or register // copy instruction processing. if (Changed) VLS = OpenRanges.getVarLocs(); OpenRanges.clear(); return Changed; } /// Accumulate a mapping between each DILocalVariable fragment and other /// fragments of that DILocalVariable which overlap. This reduces work during /// the data-flow stage from "Find any overlapping fragments" to "Check if the /// known-to-overlap fragments are present". /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for /// fragment usage. /// \param SeenFragments Map from DILocalVariable to all fragments of that /// Variable which are known to exist. /// \param OverlappingFragments The overlap map being constructed, from one /// Var/Fragment pair to a vector of fragments known to overlap. void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, OverlapMap &OverlappingFragments) { DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); // If this is the first sighting of this variable, then we are guaranteed // there are currently no overlapping fragments either. Initialize the set // of seen fragments, record no overlaps for the current one, and return. auto SeenIt = SeenFragments.find(MIVar.getVariable()); if (SeenIt == SeenFragments.end()) { SmallSet OneFragment; OneFragment.insert(ThisFragment); SeenFragments.insert({MIVar.getVariable(), OneFragment}); OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); return; } // If this particular Variable/Fragment pair already exists in the overlap // map, it has already been accounted for. auto IsInOLapMap = OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); if (!IsInOLapMap.second) return; auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; auto &AllSeenFragments = SeenIt->second; // Otherwise, examine all other seen fragments for this variable, with "this" // fragment being a previously unseen fragment. Record any pair of // overlapping fragments. for (auto &ASeenFragment : AllSeenFragments) { // Does this previously seen fragment overlap? if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { // Yes: Mark the current fragment as being overlapped. ThisFragmentsOverlaps.push_back(ASeenFragment); // Mark the previously seen fragment as being overlapped by the current // one. auto ASeenFragmentsOverlaps = OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && "Previously seen var fragment has no vector of overlaps"); ASeenFragmentsOverlaps->second.push_back(ThisFragment); } } AllSeenFragments.insert(ThisFragment); } /// This routine creates OpenRanges. void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { transferDebugValue(MI, OpenRanges, VarLocIDs); transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers); transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); } /// This routine joins the analysis results of all incoming edges in @MBB by /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same /// source variable in all the predecessors of @MBB reside in the same location. bool VarLocBasedLDV::join( MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, const VarLocMap &VarLocIDs, SmallPtrSet &Visited, SmallPtrSetImpl &ArtificialBlocks) { LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); VarLocSet InLocsT(Alloc); // Temporary incoming locations. // For all predecessors of this MBB, find the set of VarLocs that // can be joined. int NumVisited = 0; for (auto p : MBB.predecessors()) { // Ignore backedges if we have not visited the predecessor yet. As the // predecessor hasn't yet had locations propagated into it, most locations // will not yet be valid, so treat them as all being uninitialized and // potentially valid. If a location guessed to be correct here is // invalidated later, we will remove it when we revisit this block. if (!Visited.count(p)) { LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() << "\n"); continue; } auto OL = OutLocs.find(p); // Join is null in case of empty OutLocs from any of the pred. if (OL == OutLocs.end()) return false; // Just copy over the Out locs to incoming locs for the first visited // predecessor, and for all other predecessors join the Out locs. VarLocSet &OutLocVLS = *OL->second.get(); if (!NumVisited) InLocsT = OutLocVLS; else InLocsT &= OutLocVLS; LLVM_DEBUG({ if (!InLocsT.empty()) { for (uint64_t ID : InLocsT) dbgs() << " gathered candidate incoming var: " << VarLocIDs[LocIndex::fromRawInteger(ID)] .Var.getVariable() ->getName() << "\n"; } }); NumVisited++; } // Filter out DBG_VALUES that are out of scope. VarLocSet KillSet(Alloc); bool IsArtificial = ArtificialBlocks.count(&MBB); if (!IsArtificial) { for (uint64_t ID : InLocsT) { LocIndex Idx = LocIndex::fromRawInteger(ID); if (!VarLocIDs[Idx].dominates(LS, MBB)) { KillSet.set(ID); LLVM_DEBUG({ auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; }); } } } InLocsT.intersectWithComplement(KillSet); // As we are processing blocks in reverse post-order we // should have processed at least one predecessor, unless it // is the entry block which has no predecessor. assert((NumVisited || MBB.pred_empty()) && "Should have processed at least one predecessor"); VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); bool Changed = false; if (ILS != InLocsT) { ILS = InLocsT; Changed = true; } return Changed; } void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs) { // PendingInLocs records all locations propagated into blocks, which have // not had DBG_VALUE insts created. Go through and create those insts now. for (auto &Iter : PendingInLocs) { // Map is keyed on a constant pointer, unwrap it so we can insert insts. auto &MBB = const_cast(*Iter.first); VarLocSet &Pending = *Iter.second.get(); for (uint64_t ID : Pending) { // The ID location is live-in to MBB -- work out what kind of machine // location it is and create a DBG_VALUE. const VarLoc &DiffIt = VarLocIDs[LocIndex::fromRawInteger(ID)]; if (DiffIt.isEntryBackupLoc()) continue; MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); MBB.insert(MBB.instr_begin(), MI); (void)MI; LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); } } } bool VarLocBasedLDV::isEntryValueCandidate( const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { assert(MI.isDebugValue() && "This must be DBG_VALUE."); // TODO: Add support for local variables that are expressed in terms of // parameters entry values. // TODO: Add support for modified arguments that can be expressed // by using its entry value. auto *DIVar = MI.getDebugVariable(); if (!DIVar->isParameter()) return false; // Do not consider parameters that belong to an inlined function. if (MI.getDebugLoc()->getInlinedAt()) return false; // Only consider parameters that are described using registers. Parameters // that are passed on the stack are not yet supported, so ignore debug // values that are described by the frame or stack pointer. if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) return false; // If a parameter's value has been propagated from the caller, then the // parameter's DBG_VALUE may be described using a register defined by some // instruction in the entry block, in which case we shouldn't create an // entry value. if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) return false; // TODO: Add support for parameters that have a pre-existing debug expressions // (e.g. fragments). if (MI.getDebugExpression()->getNumElements() > 0) return false; return true; } /// Collect all register defines (including aliases) for the given instruction. static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, const TargetRegisterInfo *TRI) { for (const MachineOperand &MO : MI.operands()) if (MO.isReg() && MO.isDef() && MO.getReg()) for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) Regs.insert(*AI); } /// This routine records the entry values of function parameters. The values /// could be used as backup values. If we loose the track of some unmodified /// parameters, the backup values will be used as a primary locations. void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, const DefinedRegsSet &DefinedRegs, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs) { if (TPC) { auto &TM = TPC->getTM(); if (!TM.Options.ShouldEmitDebugEntryValues()) return; } DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), MI.getDebugLoc()->getInlinedAt()); if (!isEntryValueCandidate(MI, DefinedRegs) || OpenRanges.getEntryValueBackup(V)) return; LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); // Create the entry value and use it as a backup location until it is // valid. It is valid until a parameter is not changed. DIExpression *NewExpr = DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr); LocIndex EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup); OpenRanges.insert(EntryValLocID, EntryValLocAsBackup); } /// Calculate the liveness information for the given machine function and /// extend ranges across basic blocks. bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) { LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); if (!MF.getFunction().getSubprogram()) // VarLocBaseLDV will already have removed all DBG_VALUEs. return false; // Skip functions from NoDebug compilation units. if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) return false; TRI = MF.getSubtarget().getRegisterInfo(); TII = MF.getSubtarget().getInstrInfo(); TFI = MF.getSubtarget().getFrameLowering(); TFI->getCalleeSaves(MF, CalleeSavedRegs); this->TPC = TPC; LS.initialize(MF); bool Changed = false; bool OLChanged = false; bool MBBJoined = false; VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. OverlapMap OverlapFragments; // Map of overlapping variable fragments. OpenRangesSet OpenRanges(Alloc, OverlapFragments); // Ranges that are open until end of bb. VarLocInMBB OutLocs; // Ranges that exist beyond bb. VarLocInMBB InLocs; // Ranges that are incoming after joining. TransferMap Transfers; // DBG_VALUEs associated with transfers (such as // spills, copies and restores). VarToFragments SeenFragments; // Blocks which are artificial, i.e. blocks which exclusively contain // instructions without locations, or with line 0 locations. SmallPtrSet ArtificialBlocks; DenseMap OrderToBB; DenseMap BBToOrder; std::priority_queue, std::greater> Worklist; std::priority_queue, std::greater> Pending; // Set of register defines that are seen when traversing the entry block // looking for debug entry value candidates. DefinedRegsSet DefinedRegs; // Only in the case of entry MBB collect DBG_VALUEs representing // function parameters in order to generate debug entry values for them. MachineBasicBlock &First_MBB = *(MF.begin()); for (auto &MI : First_MBB) { collectRegDefs(MI, DefinedRegs, TRI); if (MI.isDebugValue()) recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); } // Initialize per-block structures and scan for fragment overlaps. for (auto &MBB : MF) for (auto &MI : MBB) if (MI.isDebugValue()) accumulateFragmentMap(MI, SeenFragments, OverlapFragments); auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { if (const DebugLoc &DL = MI.getDebugLoc()) return DL.getLine() != 0; return false; }; for (auto &MBB : MF) if (none_of(MBB.instrs(), hasNonArtificialLocation)) ArtificialBlocks.insert(&MBB); LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "OutLocs after initialization", dbgs())); ReversePostOrderTraversal RPOT(&MF); unsigned int RPONumber = 0; for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { OrderToBB[RPONumber] = *RI; BBToOrder[*RI] = RPONumber; Worklist.push(RPONumber); ++RPONumber; } if (RPONumber > InputBBLimit) { unsigned NumInputDbgValues = 0; for (auto &MBB : MF) for (auto &MI : MBB) if (MI.isDebugValue()) ++NumInputDbgValues; if (NumInputDbgValues > InputDbgValueLimit) { LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() << " has " << RPONumber << " basic blocks and " << NumInputDbgValues << " input DBG_VALUEs, exceeding limits.\n"); return false; } } // This is a standard "union of predecessor outs" dataflow problem. // To solve it, we perform join() and process() using the two worklist method // until the ranges converge. // Ranges have converged when both worklists are empty. SmallPtrSet Visited; while (!Worklist.empty() || !Pending.empty()) { // We track what is on the pending worklist to avoid inserting the same // thing twice. We could avoid this with a custom priority queue, but this // is probably not worth it. SmallPtrSet OnPending; LLVM_DEBUG(dbgs() << "Processing Worklist\n"); while (!Worklist.empty()) { MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; Worklist.pop(); MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, ArtificialBlocks); MBBJoined |= Visited.insert(MBB).second; if (MBBJoined) { MBBJoined = false; Changed = true; // Now that we have started to extend ranges across BBs we need to // examine spill, copy and restore instructions to see whether they // operate with registers that correspond to user variables. // First load any pending inlocs. OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); for (auto &MI : *MBB) process(MI, OpenRanges, VarLocIDs, Transfers); OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "OutLocs after propagating", dbgs())); LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "InLocs after propagating", dbgs())); if (OLChanged) { OLChanged = false; for (auto s : MBB->successors()) if (OnPending.insert(s).second) { Pending.push(BBToOrder[s]); } } } } Worklist.swap(Pending); // At this point, pending must be empty, since it was just the empty // worklist assert(Pending.empty() && "Pending should be empty"); } // Add any DBG_VALUE instructions created by location transfers. for (auto &TR : Transfers) { assert(!TR.TransferInst->isTerminator() && "Cannot insert DBG_VALUE after terminator"); MachineBasicBlock *MBB = TR.TransferInst->getParent(); const VarLoc &VL = VarLocIDs[TR.LocationID]; MachineInstr *MI = VL.BuildDbgValue(MF); MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); } Transfers.clear(); // Deferred inlocs will not have had any DBG_VALUE insts created; do // that now. flushPendingLocs(InLocs, VarLocIDs); LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); return Changed; } LDVImpl * llvm::makeVarLocBasedLiveDebugValues() { return new VarLocBasedLDV(); }