//===- Attributor.h --- Module-wide attribute deduction ---------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Attributor: An inter procedural (abstract) "attribute" deduction framework. // // The Attributor framework is an inter procedural abstract analysis (fixpoint // iteration analysis). The goal is to allow easy deduction of new attributes as // well as information exchange between abstract attributes in-flight. // // The Attributor class is the driver and the link between the various abstract // attributes. The Attributor will iterate until a fixpoint state is reached by // all abstract attributes in-flight, or until it will enforce a pessimistic fix // point because an iteration limit is reached. // // Abstract attributes, derived from the AbstractAttribute class, actually // describe properties of the code. They can correspond to actual LLVM-IR // attributes, or they can be more general, ultimately unrelated to LLVM-IR // attributes. The latter is useful when an abstract attributes provides // information to other abstract attributes in-flight but we might not want to // manifest the information. The Attributor allows to query in-flight abstract // attributes through the `Attributor::getAAFor` method (see the method // description for an example). If the method is used by an abstract attribute // P, and it results in an abstract attribute Q, the Attributor will // automatically capture a potential dependence from Q to P. This dependence // will cause P to be reevaluated whenever Q changes in the future. // // The Attributor will only reevaluate abstract attributes that might have // changed since the last iteration. That means that the Attribute will not // revisit all instructions/blocks/functions in the module but only query // an update from a subset of the abstract attributes. // // The update method `AbstractAttribute::updateImpl` is implemented by the // specific "abstract attribute" subclasses. The method is invoked whenever the // currently assumed state (see the AbstractState class) might not be valid // anymore. This can, for example, happen if the state was dependent on another // abstract attribute that changed. In every invocation, the update method has // to adjust the internal state of an abstract attribute to a point that is // justifiable by the underlying IR and the current state of abstract attributes // in-flight. Since the IR is given and assumed to be valid, the information // derived from it can be assumed to hold. However, information derived from // other abstract attributes is conditional on various things. If the justifying // state changed, the `updateImpl` has to revisit the situation and potentially // find another justification or limit the optimistic assumes made. // // Change is the key in this framework. Until a state of no-change, thus a // fixpoint, is reached, the Attributor will query the abstract attributes // in-flight to re-evaluate their state. If the (current) state is too // optimistic, hence it cannot be justified anymore through other abstract // attributes or the state of the IR, the state of the abstract attribute will // have to change. Generally, we assume abstract attribute state to be a finite // height lattice and the update function to be monotone. However, these // conditions are not enforced because the iteration limit will guarantee // termination. If an optimistic fixpoint is reached, or a pessimistic fix // point is enforced after a timeout, the abstract attributes are tasked to // manifest their result in the IR for passes to come. // // Attribute manifestation is not mandatory. If desired, there is support to // generate a single or multiple LLVM-IR attributes already in the helper struct // IRAttribute. In the simplest case, a subclass inherits from IRAttribute with // a proper Attribute::AttrKind as template parameter. The Attributor // manifestation framework will then create and place a new attribute if it is // allowed to do so (based on the abstract state). Other use cases can be // achieved by overloading AbstractAttribute or IRAttribute methods. // // // The "mechanics" of adding a new "abstract attribute": // - Define a class (transitively) inheriting from AbstractAttribute and one // (which could be the same) that (transitively) inherits from AbstractState. // For the latter, consider the already available BooleanState and // {Inc,Dec,Bit}IntegerState if they fit your needs, e.g., you require only a // number tracking or bit-encoding. // - Implement all pure methods. Also use overloading if the attribute is not // conforming with the "default" behavior: A (set of) LLVM-IR attribute(s) for // an argument, call site argument, function return value, or function. See // the class and method descriptions for more information on the two // "Abstract" classes and their respective methods. // - Register opportunities for the new abstract attribute in the // `Attributor::identifyDefaultAbstractAttributes` method if it should be // counted as a 'default' attribute. // - Add sufficient tests. // - Add a Statistics object for bookkeeping. If it is a simple (set of) // attribute(s) manifested through the Attributor manifestation framework, see // the bookkeeping function in Attributor.cpp. // - If instructions with a certain opcode are interesting to the attribute, add // that opcode to the switch in `Attributor::identifyAbstractAttributes`. This // will make it possible to query all those instructions through the // `InformationCache::getOpcodeInstMapForFunction` interface and eliminate the // need to traverse the IR repeatedly. // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H #define LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/Analysis/AssumeBundleQueries.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/CGSCCPassManager.h" #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MustExecute.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/AbstractCallSite.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Casting.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Transforms/Utils/CallGraphUpdater.h" namespace llvm { struct AADepGraphNode; struct AADepGraph; struct Attributor; struct AbstractAttribute; struct InformationCache; struct AAIsDead; class AAManager; class AAResults; class Function; /// The value passed to the line option that defines the maximal initialization /// chain length. extern unsigned MaxInitializationChainLength; ///{ enum class ChangeStatus { CHANGED, UNCHANGED, }; ChangeStatus operator|(ChangeStatus l, ChangeStatus r); ChangeStatus operator&(ChangeStatus l, ChangeStatus r); enum class DepClassTy { REQUIRED, OPTIONAL, }; ///} /// The data structure for the nodes of a dependency graph struct AADepGraphNode { public: virtual ~AADepGraphNode(){}; using DepTy = PointerIntPair; protected: /// Set of dependency graph nodes which should be updated if this one /// is updated. The bit encodes if it is optional. TinyPtrVector Deps; static AADepGraphNode *DepGetVal(DepTy &DT) { return DT.getPointer(); } static AbstractAttribute *DepGetValAA(DepTy &DT) { return cast(DT.getPointer()); } operator AbstractAttribute *() { return cast(this); } public: using iterator = mapped_iterator::iterator, decltype(&DepGetVal)>; using aaiterator = mapped_iterator::iterator, decltype(&DepGetValAA)>; aaiterator begin() { return aaiterator(Deps.begin(), &DepGetValAA); } aaiterator end() { return aaiterator(Deps.end(), &DepGetValAA); } iterator child_begin() { return iterator(Deps.begin(), &DepGetVal); } iterator child_end() { return iterator(Deps.end(), &DepGetVal); } virtual void print(raw_ostream &OS) const { OS << "AADepNode Impl\n"; } TinyPtrVector &getDeps() { return Deps; } friend struct Attributor; friend struct AADepGraph; }; /// The data structure for the dependency graph /// /// Note that in this graph if there is an edge from A to B (A -> B), /// then it means that B depends on A, and when the state of A is /// updated, node B should also be updated struct AADepGraph { AADepGraph() {} ~AADepGraph() {} using DepTy = AADepGraphNode::DepTy; static AADepGraphNode *DepGetVal(DepTy &DT) { return DT.getPointer(); } using iterator = mapped_iterator::iterator, decltype(&DepGetVal)>; /// There is no root node for the dependency graph. But the SCCIterator /// requires a single entry point, so we maintain a fake("synthetic") root /// node that depends on every node. AADepGraphNode SyntheticRoot; AADepGraphNode *GetEntryNode() { return &SyntheticRoot; } iterator begin() { return SyntheticRoot.child_begin(); } iterator end() { return SyntheticRoot.child_end(); } void viewGraph(); /// Dump graph to file void dumpGraph(); /// Print dependency graph void print(); }; /// Helper to describe and deal with positions in the LLVM-IR. /// /// A position in the IR is described by an anchor value and an "offset" that /// could be the argument number, for call sites and arguments, or an indicator /// of the "position kind". The kinds, specified in the Kind enum below, include /// the locations in the attribute list, i.a., function scope and return value, /// as well as a distinction between call sites and functions. Finally, there /// are floating values that do not have a corresponding attribute list /// position. struct IRPosition { /// The positions we distinguish in the IR. enum Kind : char { IRP_INVALID, ///< An invalid position. IRP_FLOAT, ///< A position that is not associated with a spot suitable ///< for attributes. This could be any value or instruction. IRP_RETURNED, ///< An attribute for the function return value. IRP_CALL_SITE_RETURNED, ///< An attribute for a call site return value. IRP_FUNCTION, ///< An attribute for a function (scope). IRP_CALL_SITE, ///< An attribute for a call site (function scope). IRP_ARGUMENT, ///< An attribute for a function argument. IRP_CALL_SITE_ARGUMENT, ///< An attribute for a call site argument. }; /// Default constructor available to create invalid positions implicitly. All /// other positions need to be created explicitly through the appropriate /// static member function. IRPosition() : Enc(nullptr, ENC_VALUE) { verify(); } /// Create a position describing the value of \p V. static const IRPosition value(const Value &V) { if (auto *Arg = dyn_cast(&V)) return IRPosition::argument(*Arg); if (auto *CB = dyn_cast(&V)) return IRPosition::callsite_returned(*CB); return IRPosition(const_cast(V), IRP_FLOAT); } /// Create a position describing the function scope of \p F. static const IRPosition function(const Function &F) { return IRPosition(const_cast(F), IRP_FUNCTION); } /// Create a position describing the returned value of \p F. static const IRPosition returned(const Function &F) { return IRPosition(const_cast(F), IRP_RETURNED); } /// Create a position describing the argument \p Arg. static const IRPosition argument(const Argument &Arg) { return IRPosition(const_cast(Arg), IRP_ARGUMENT); } /// Create a position describing the function scope of \p CB. static const IRPosition callsite_function(const CallBase &CB) { return IRPosition(const_cast(CB), IRP_CALL_SITE); } /// Create a position describing the returned value of \p CB. static const IRPosition callsite_returned(const CallBase &CB) { return IRPosition(const_cast(CB), IRP_CALL_SITE_RETURNED); } /// Create a position describing the argument of \p CB at position \p ArgNo. static const IRPosition callsite_argument(const CallBase &CB, unsigned ArgNo) { return IRPosition(const_cast(CB.getArgOperandUse(ArgNo)), IRP_CALL_SITE_ARGUMENT); } /// Create a position describing the argument of \p ACS at position \p ArgNo. static const IRPosition callsite_argument(AbstractCallSite ACS, unsigned ArgNo) { if (ACS.getNumArgOperands() <= ArgNo) return IRPosition(); int CSArgNo = ACS.getCallArgOperandNo(ArgNo); if (CSArgNo >= 0) return IRPosition::callsite_argument( cast(*ACS.getInstruction()), CSArgNo); return IRPosition(); } /// Create a position with function scope matching the "context" of \p IRP. /// If \p IRP is a call site (see isAnyCallSitePosition()) then the result /// will be a call site position, otherwise the function position of the /// associated function. static const IRPosition function_scope(const IRPosition &IRP) { if (IRP.isAnyCallSitePosition()) { return IRPosition::callsite_function( cast(IRP.getAnchorValue())); } assert(IRP.getAssociatedFunction()); return IRPosition::function(*IRP.getAssociatedFunction()); } bool operator==(const IRPosition &RHS) const { return Enc == RHS.Enc; } bool operator!=(const IRPosition &RHS) const { return !(*this == RHS); } /// Return the value this abstract attribute is anchored with. /// /// The anchor value might not be the associated value if the latter is not /// sufficient to determine where arguments will be manifested. This is, so /// far, only the case for call site arguments as the value is not sufficient /// to pinpoint them. Instead, we can use the call site as an anchor. Value &getAnchorValue() const { switch (getEncodingBits()) { case ENC_VALUE: case ENC_RETURNED_VALUE: case ENC_FLOATING_FUNCTION: return *getAsValuePtr(); case ENC_CALL_SITE_ARGUMENT_USE: return *(getAsUsePtr()->getUser()); default: llvm_unreachable("Unkown encoding!"); }; } /// Return the associated function, if any. Function *getAssociatedFunction() const { if (auto *CB = dyn_cast(&getAnchorValue())) { // We reuse the logic that associates callback calles to arguments of a // call site here to identify the callback callee as the associated // function. if (Argument *Arg = getAssociatedArgument()) return Arg->getParent(); return CB->getCalledFunction(); } return getAnchorScope(); } /// Return the associated argument, if any. Argument *getAssociatedArgument() const; /// Return true if the position refers to a function interface, that is the /// function scope, the function return, or an argument. bool isFnInterfaceKind() const { switch (getPositionKind()) { case IRPosition::IRP_FUNCTION: case IRPosition::IRP_RETURNED: case IRPosition::IRP_ARGUMENT: return true; default: return false; } } /// Return the Function surrounding the anchor value. Function *getAnchorScope() const { Value &V = getAnchorValue(); if (isa(V)) return &cast(V); if (isa(V)) return cast(V).getParent(); if (isa(V)) return cast(V).getFunction(); return nullptr; } /// Return the context instruction, if any. Instruction *getCtxI() const { Value &V = getAnchorValue(); if (auto *I = dyn_cast(&V)) return I; if (auto *Arg = dyn_cast(&V)) if (!Arg->getParent()->isDeclaration()) return &Arg->getParent()->getEntryBlock().front(); if (auto *F = dyn_cast(&V)) if (!F->isDeclaration()) return &(F->getEntryBlock().front()); return nullptr; } /// Return the value this abstract attribute is associated with. Value &getAssociatedValue() const { if (getCallSiteArgNo() < 0 || isa(&getAnchorValue())) return getAnchorValue(); assert(isa(&getAnchorValue()) && "Expected a call base!"); return *cast(&getAnchorValue()) ->getArgOperand(getCallSiteArgNo()); } /// Return the type this abstract attribute is associated with. Type *getAssociatedType() const { if (getPositionKind() == IRPosition::IRP_RETURNED) return getAssociatedFunction()->getReturnType(); return getAssociatedValue().getType(); } /// Return the callee argument number of the associated value if it is an /// argument or call site argument, otherwise a negative value. In contrast to /// `getCallSiteArgNo` this method will always return the "argument number" /// from the perspective of the callee. This may not the same as the call site /// if this is a callback call. int getCalleeArgNo() const { return getArgNo(/* CallbackCalleeArgIfApplicable */ true); } /// Return the call site argument number of the associated value if it is an /// argument or call site argument, otherwise a negative value. In contrast to /// `getCalleArgNo` this method will always return the "operand number" from /// the perspective of the call site. This may not the same as the callee /// perspective if this is a callback call. int getCallSiteArgNo() const { return getArgNo(/* CallbackCalleeArgIfApplicable */ false); } /// Return the index in the attribute list for this position. unsigned getAttrIdx() const { switch (getPositionKind()) { case IRPosition::IRP_INVALID: case IRPosition::IRP_FLOAT: break; case IRPosition::IRP_FUNCTION: case IRPosition::IRP_CALL_SITE: return AttributeList::FunctionIndex; case IRPosition::IRP_RETURNED: case IRPosition::IRP_CALL_SITE_RETURNED: return AttributeList::ReturnIndex; case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_CALL_SITE_ARGUMENT: return getCallSiteArgNo() + AttributeList::FirstArgIndex; } llvm_unreachable( "There is no attribute index for a floating or invalid position!"); } /// Return the associated position kind. Kind getPositionKind() const { char EncodingBits = getEncodingBits(); if (EncodingBits == ENC_CALL_SITE_ARGUMENT_USE) return IRP_CALL_SITE_ARGUMENT; if (EncodingBits == ENC_FLOATING_FUNCTION) return IRP_FLOAT; Value *V = getAsValuePtr(); if (!V) return IRP_INVALID; if (isa(V)) return IRP_ARGUMENT; if (isa(V)) return isReturnPosition(EncodingBits) ? IRP_RETURNED : IRP_FUNCTION; if (isa(V)) return isReturnPosition(EncodingBits) ? IRP_CALL_SITE_RETURNED : IRP_CALL_SITE; return IRP_FLOAT; } /// TODO: Figure out if the attribute related helper functions should live /// here or somewhere else. /// Return true if any kind in \p AKs existing in the IR at a position that /// will affect this one. See also getAttrs(...). /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions, /// e.g., the function position if this is an /// argument position, should be ignored. bool hasAttr(ArrayRef AKs, bool IgnoreSubsumingPositions = false, Attributor *A = nullptr) const; /// Return the attributes of any kind in \p AKs existing in the IR at a /// position that will affect this one. While each position can only have a /// single attribute of any kind in \p AKs, there are "subsuming" positions /// that could have an attribute as well. This method returns all attributes /// found in \p Attrs. /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions, /// e.g., the function position if this is an /// argument position, should be ignored. void getAttrs(ArrayRef AKs, SmallVectorImpl &Attrs, bool IgnoreSubsumingPositions = false, Attributor *A = nullptr) const; /// Remove the attribute of kind \p AKs existing in the IR at this position. void removeAttrs(ArrayRef AKs) const { if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT) return; AttributeList AttrList; auto *CB = dyn_cast(&getAnchorValue()); if (CB) AttrList = CB->getAttributes(); else AttrList = getAssociatedFunction()->getAttributes(); LLVMContext &Ctx = getAnchorValue().getContext(); for (Attribute::AttrKind AK : AKs) AttrList = AttrList.removeAttribute(Ctx, getAttrIdx(), AK); if (CB) CB->setAttributes(AttrList); else getAssociatedFunction()->setAttributes(AttrList); } bool isAnyCallSitePosition() const { switch (getPositionKind()) { case IRPosition::IRP_CALL_SITE: case IRPosition::IRP_CALL_SITE_RETURNED: case IRPosition::IRP_CALL_SITE_ARGUMENT: return true; default: return false; } } /// Return true if the position is an argument or call site argument. bool isArgumentPosition() const { switch (getPositionKind()) { case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_CALL_SITE_ARGUMENT: return true; default: return false; } } /// Special DenseMap key values. /// ///{ static const IRPosition EmptyKey; static const IRPosition TombstoneKey; ///} /// Conversion into a void * to allow reuse of pointer hashing. operator void *() const { return Enc.getOpaqueValue(); } private: /// Private constructor for special values only! explicit IRPosition(void *Ptr) { Enc.setFromOpaqueValue(Ptr); } /// IRPosition anchored at \p AnchorVal with kind/argument numbet \p PK. explicit IRPosition(Value &AnchorVal, Kind PK) { switch (PK) { case IRPosition::IRP_INVALID: llvm_unreachable("Cannot create invalid IRP with an anchor value!"); break; case IRPosition::IRP_FLOAT: // Special case for floating functions. if (isa(AnchorVal)) Enc = {&AnchorVal, ENC_FLOATING_FUNCTION}; else Enc = {&AnchorVal, ENC_VALUE}; break; case IRPosition::IRP_FUNCTION: case IRPosition::IRP_CALL_SITE: Enc = {&AnchorVal, ENC_VALUE}; break; case IRPosition::IRP_RETURNED: case IRPosition::IRP_CALL_SITE_RETURNED: Enc = {&AnchorVal, ENC_RETURNED_VALUE}; break; case IRPosition::IRP_ARGUMENT: Enc = {&AnchorVal, ENC_VALUE}; break; case IRPosition::IRP_CALL_SITE_ARGUMENT: llvm_unreachable( "Cannot create call site argument IRP with an anchor value!"); break; } verify(); } /// Return the callee argument number of the associated value if it is an /// argument or call site argument. See also `getCalleeArgNo` and /// `getCallSiteArgNo`. int getArgNo(bool CallbackCalleeArgIfApplicable) const { if (CallbackCalleeArgIfApplicable) if (Argument *Arg = getAssociatedArgument()) return Arg->getArgNo(); switch (getPositionKind()) { case IRPosition::IRP_ARGUMENT: return cast(getAsValuePtr())->getArgNo(); case IRPosition::IRP_CALL_SITE_ARGUMENT: { Use &U = *getAsUsePtr(); return cast(U.getUser())->getArgOperandNo(&U); } default: return -1; } } /// IRPosition for the use \p U. The position kind \p PK needs to be /// IRP_CALL_SITE_ARGUMENT, the anchor value is the user, the associated value /// the used value. explicit IRPosition(Use &U, Kind PK) { assert(PK == IRP_CALL_SITE_ARGUMENT && "Use constructor is for call site arguments only!"); Enc = {&U, ENC_CALL_SITE_ARGUMENT_USE}; verify(); } /// Verify internal invariants. void verify(); /// Return the attributes of kind \p AK existing in the IR as attribute. bool getAttrsFromIRAttr(Attribute::AttrKind AK, SmallVectorImpl &Attrs) const; /// Return the attributes of kind \p AK existing in the IR as operand bundles /// of an llvm.assume. bool getAttrsFromAssumes(Attribute::AttrKind AK, SmallVectorImpl &Attrs, Attributor &A) const; /// Return the underlying pointer as Value *, valid for all positions but /// IRP_CALL_SITE_ARGUMENT. Value *getAsValuePtr() const { assert(getEncodingBits() != ENC_CALL_SITE_ARGUMENT_USE && "Not a value pointer!"); return reinterpret_cast(Enc.getPointer()); } /// Return the underlying pointer as Use *, valid only for /// IRP_CALL_SITE_ARGUMENT positions. Use *getAsUsePtr() const { assert(getEncodingBits() == ENC_CALL_SITE_ARGUMENT_USE && "Not a value pointer!"); return reinterpret_cast(Enc.getPointer()); } /// Return true if \p EncodingBits describe a returned or call site returned /// position. static bool isReturnPosition(char EncodingBits) { return EncodingBits == ENC_RETURNED_VALUE; } /// Return true if the encoding bits describe a returned or call site returned /// position. bool isReturnPosition() const { return isReturnPosition(getEncodingBits()); } /// The encoding of the IRPosition is a combination of a pointer and two /// encoding bits. The values of the encoding bits are defined in the enum /// below. The pointer is either a Value* (for the first three encoding bit /// combinations) or Use* (for ENC_CALL_SITE_ARGUMENT_USE). /// ///{ enum { ENC_VALUE = 0b00, ENC_RETURNED_VALUE = 0b01, ENC_FLOATING_FUNCTION = 0b10, ENC_CALL_SITE_ARGUMENT_USE = 0b11, }; // Reserve the maximal amount of bits so there is no need to mask out the // remaining ones. We will not encode anything else in the pointer anyway. static constexpr int NumEncodingBits = PointerLikeTypeTraits::NumLowBitsAvailable; static_assert(NumEncodingBits >= 2, "At least two bits are required!"); /// The pointer with the encoding bits. PointerIntPair Enc; ///} /// Return the encoding bits. char getEncodingBits() const { return Enc.getInt(); } }; /// Helper that allows IRPosition as a key in a DenseMap. template <> struct DenseMapInfo : DenseMapInfo { static inline IRPosition getEmptyKey() { return IRPosition::EmptyKey; } static inline IRPosition getTombstoneKey() { return IRPosition::TombstoneKey; } }; /// A visitor class for IR positions. /// /// Given a position P, the SubsumingPositionIterator allows to visit "subsuming /// positions" wrt. attributes/information. Thus, if a piece of information /// holds for a subsuming position, it also holds for the position P. /// /// The subsuming positions always include the initial position and then, /// depending on the position kind, additionally the following ones: /// - for IRP_RETURNED: /// - the function (IRP_FUNCTION) /// - for IRP_ARGUMENT: /// - the function (IRP_FUNCTION) /// - for IRP_CALL_SITE: /// - the callee (IRP_FUNCTION), if known /// - for IRP_CALL_SITE_RETURNED: /// - the callee (IRP_RETURNED), if known /// - the call site (IRP_FUNCTION) /// - the callee (IRP_FUNCTION), if known /// - for IRP_CALL_SITE_ARGUMENT: /// - the argument of the callee (IRP_ARGUMENT), if known /// - the callee (IRP_FUNCTION), if known /// - the position the call site argument is associated with if it is not /// anchored to the call site, e.g., if it is an argument then the argument /// (IRP_ARGUMENT) class SubsumingPositionIterator { SmallVector IRPositions; using iterator = decltype(IRPositions)::iterator; public: SubsumingPositionIterator(const IRPosition &IRP); iterator begin() { return IRPositions.begin(); } iterator end() { return IRPositions.end(); } }; /// Wrapper for FunctoinAnalysisManager. struct AnalysisGetter { template typename Analysis::Result *getAnalysis(const Function &F) { if (!FAM || !F.getParent()) return nullptr; return &FAM->getResult(const_cast(F)); } AnalysisGetter(FunctionAnalysisManager &FAM) : FAM(&FAM) {} AnalysisGetter() {} private: FunctionAnalysisManager *FAM = nullptr; }; /// Data structure to hold cached (LLVM-IR) information. /// /// All attributes are given an InformationCache object at creation time to /// avoid inspection of the IR by all of them individually. This default /// InformationCache will hold information required by 'default' attributes, /// thus the ones deduced when Attributor::identifyDefaultAbstractAttributes(..) /// is called. /// /// If custom abstract attributes, registered manually through /// Attributor::registerAA(...), need more information, especially if it is not /// reusable, it is advised to inherit from the InformationCache and cast the /// instance down in the abstract attributes. struct InformationCache { InformationCache(const Module &M, AnalysisGetter &AG, BumpPtrAllocator &Allocator, SetVector *CGSCC) : DL(M.getDataLayout()), Allocator(Allocator), Explorer( /* ExploreInterBlock */ true, /* ExploreCFGForward */ true, /* ExploreCFGBackward */ true, /* LIGetter */ [&](const Function &F) { return AG.getAnalysis(F); }, /* DTGetter */ [&](const Function &F) { return AG.getAnalysis(F); }, /* PDTGetter */ [&](const Function &F) { return AG.getAnalysis(F); }), AG(AG), CGSCC(CGSCC) { if (CGSCC) initializeModuleSlice(*CGSCC); } ~InformationCache() { // The FunctionInfo objects are allocated via a BumpPtrAllocator, we call // the destructor manually. for (auto &It : FuncInfoMap) It.getSecond()->~FunctionInfo(); } /// Apply \p CB to all uses of \p F. If \p LookThroughConstantExprUses is /// true, constant expression users are not given to \p CB but their uses are /// traversed transitively. template static void foreachUse(Function &F, CBTy CB, bool LookThroughConstantExprUses = true) { SmallVector Worklist(make_pointer_range(F.uses())); for (unsigned Idx = 0; Idx < Worklist.size(); ++Idx) { Use &U = *Worklist[Idx]; // Allow use in constant bitcasts and simply look through them. if (LookThroughConstantExprUses && isa(U.getUser())) { for (Use &CEU : cast(U.getUser())->uses()) Worklist.push_back(&CEU); continue; } CB(U); } } /// Initialize the ModuleSlice member based on \p SCC. ModuleSlices contains /// (a subset of) all functions that we can look at during this SCC traversal. /// This includes functions (transitively) called from the SCC and the /// (transitive) callers of SCC functions. We also can look at a function if /// there is a "reference edge", i.a., if the function somehow uses (!=calls) /// a function in the SCC or a caller of a function in the SCC. void initializeModuleSlice(SetVector &SCC) { ModuleSlice.insert(SCC.begin(), SCC.end()); SmallPtrSet Seen; SmallVector Worklist(SCC.begin(), SCC.end()); while (!Worklist.empty()) { Function *F = Worklist.pop_back_val(); ModuleSlice.insert(F); for (Instruction &I : instructions(*F)) if (auto *CB = dyn_cast(&I)) if (Function *Callee = CB->getCalledFunction()) if (Seen.insert(Callee).second) Worklist.push_back(Callee); } Seen.clear(); Worklist.append(SCC.begin(), SCC.end()); while (!Worklist.empty()) { Function *F = Worklist.pop_back_val(); ModuleSlice.insert(F); // Traverse all transitive uses. foreachUse(*F, [&](Use &U) { if (auto *UsrI = dyn_cast(U.getUser())) if (Seen.insert(UsrI->getFunction()).second) Worklist.push_back(UsrI->getFunction()); }); } } /// The slice of the module we are allowed to look at. SmallPtrSet ModuleSlice; /// A vector type to hold instructions. using InstructionVectorTy = SmallVector; /// A map type from opcodes to instructions with this opcode. using OpcodeInstMapTy = DenseMap; /// Return the map that relates "interesting" opcodes with all instructions /// with that opcode in \p F. OpcodeInstMapTy &getOpcodeInstMapForFunction(const Function &F) { return getFunctionInfo(F).OpcodeInstMap; } /// Return the instructions in \p F that may read or write memory. InstructionVectorTy &getReadOrWriteInstsForFunction(const Function &F) { return getFunctionInfo(F).RWInsts; } /// Return MustBeExecutedContextExplorer MustBeExecutedContextExplorer &getMustBeExecutedContextExplorer() { return Explorer; } /// Return TargetLibraryInfo for function \p F. TargetLibraryInfo *getTargetLibraryInfoForFunction(const Function &F) { return AG.getAnalysis(F); } /// Return AliasAnalysis Result for function \p F. AAResults *getAAResultsForFunction(const Function &F); /// Return true if \p Arg is involved in a must-tail call, thus the argument /// of the caller or callee. bool isInvolvedInMustTailCall(const Argument &Arg) { FunctionInfo &FI = getFunctionInfo(*Arg.getParent()); return FI.CalledViaMustTail || FI.ContainsMustTailCall; } /// Return the analysis result from a pass \p AP for function \p F. template typename AP::Result *getAnalysisResultForFunction(const Function &F) { return AG.getAnalysis(F); } /// Return SCC size on call graph for function \p F or 0 if unknown. unsigned getSccSize(const Function &F) { if (CGSCC && CGSCC->count(const_cast(&F))) return CGSCC->size(); return 0; } /// Return datalayout used in the module. const DataLayout &getDL() { return DL; } /// Return the map conaining all the knowledge we have from `llvm.assume`s. const RetainedKnowledgeMap &getKnowledgeMap() const { return KnowledgeMap; } /// Return if \p To is potentially reachable form \p From or not /// If the same query was answered, return cached result bool getPotentiallyReachable(const Instruction &From, const Instruction &To) { auto KeyPair = std::make_pair(&From, &To); auto Iter = PotentiallyReachableMap.find(KeyPair); if (Iter != PotentiallyReachableMap.end()) return Iter->second; const Function &F = *From.getFunction(); bool Result = isPotentiallyReachable( &From, &To, nullptr, AG.getAnalysis(F), AG.getAnalysis(F)); PotentiallyReachableMap.insert(std::make_pair(KeyPair, Result)); return Result; } /// Check whether \p F is part of module slice. bool isInModuleSlice(const Function &F) { return ModuleSlice.count(const_cast(&F)); } private: struct FunctionInfo { ~FunctionInfo(); /// A nested map that remembers all instructions in a function with a /// certain instruction opcode (Instruction::getOpcode()). OpcodeInstMapTy OpcodeInstMap; /// A map from functions to their instructions that may read or write /// memory. InstructionVectorTy RWInsts; /// Function is called by a `musttail` call. bool CalledViaMustTail; /// Function contains a `musttail` call. bool ContainsMustTailCall; }; /// A map type from functions to informatio about it. DenseMap FuncInfoMap; /// Return information about the function \p F, potentially by creating it. FunctionInfo &getFunctionInfo(const Function &F) { FunctionInfo *&FI = FuncInfoMap[&F]; if (!FI) { FI = new (Allocator) FunctionInfo(); initializeInformationCache(F, *FI); } return *FI; } /// Initialize the function information cache \p FI for the function \p F. /// /// This method needs to be called for all function that might be looked at /// through the information cache interface *prior* to looking at them. void initializeInformationCache(const Function &F, FunctionInfo &FI); /// The datalayout used in the module. const DataLayout &DL; /// The allocator used to allocate memory, e.g. for `FunctionInfo`s. BumpPtrAllocator &Allocator; /// MustBeExecutedContextExplorer MustBeExecutedContextExplorer Explorer; /// A map with knowledge retained in `llvm.assume` instructions. RetainedKnowledgeMap KnowledgeMap; /// Getters for analysis. AnalysisGetter &AG; /// The underlying CGSCC, or null if not available. SetVector *CGSCC; /// Set of inlineable functions SmallPtrSet InlineableFunctions; /// A map for caching results of queries for isPotentiallyReachable DenseMap, bool> PotentiallyReachableMap; /// Give the Attributor access to the members so /// Attributor::identifyDefaultAbstractAttributes(...) can initialize them. friend struct Attributor; }; /// The fixpoint analysis framework that orchestrates the attribute deduction. /// /// The Attributor provides a general abstract analysis framework (guided /// fixpoint iteration) as well as helper functions for the deduction of /// (LLVM-IR) attributes. However, also other code properties can be deduced, /// propagated, and ultimately manifested through the Attributor framework. This /// is particularly useful if these properties interact with attributes and a /// co-scheduled deduction allows to improve the solution. Even if not, thus if /// attributes/properties are completely isolated, they should use the /// Attributor framework to reduce the number of fixpoint iteration frameworks /// in the code base. Note that the Attributor design makes sure that isolated /// attributes are not impacted, in any way, by others derived at the same time /// if there is no cross-reasoning performed. /// /// The public facing interface of the Attributor is kept simple and basically /// allows abstract attributes to one thing, query abstract attributes /// in-flight. There are two reasons to do this: /// a) The optimistic state of one abstract attribute can justify an /// optimistic state of another, allowing to framework to end up with an /// optimistic (=best possible) fixpoint instead of one based solely on /// information in the IR. /// b) This avoids reimplementing various kinds of lookups, e.g., to check /// for existing IR attributes, in favor of a single lookups interface /// provided by an abstract attribute subclass. /// /// NOTE: The mechanics of adding a new "concrete" abstract attribute are /// described in the file comment. struct Attributor { /// Constructor /// /// \param Functions The set of functions we are deriving attributes for. /// \param InfoCache Cache to hold various information accessible for /// the abstract attributes. /// \param CGUpdater Helper to update an underlying call graph. /// \param Allowed If not null, a set limiting the attribute opportunities. Attributor(SetVector &Functions, InformationCache &InfoCache, CallGraphUpdater &CGUpdater, DenseSet *Allowed = nullptr) : Allocator(InfoCache.Allocator), Functions(Functions), InfoCache(InfoCache), CGUpdater(CGUpdater), Allowed(Allowed) {} ~Attributor(); /// Run the analyses until a fixpoint is reached or enforced (timeout). /// /// The attributes registered with this Attributor can be used after as long /// as the Attributor is not destroyed (it owns the attributes now). /// /// \Returns CHANGED if the IR was changed, otherwise UNCHANGED. ChangeStatus run(); /// Lookup an abstract attribute of type \p AAType at position \p IRP. While /// no abstract attribute is found equivalent positions are checked, see /// SubsumingPositionIterator. Thus, the returned abstract attribute /// might be anchored at a different position, e.g., the callee if \p IRP is a /// call base. /// /// This method is the only (supported) way an abstract attribute can retrieve /// information from another abstract attribute. As an example, take an /// abstract attribute that determines the memory access behavior for a /// argument (readnone, readonly, ...). It should use `getAAFor` to get the /// most optimistic information for other abstract attributes in-flight, e.g. /// the one reasoning about the "captured" state for the argument or the one /// reasoning on the memory access behavior of the function as a whole. /// /// If the flag \p TrackDependence is set to false the dependence from /// \p QueryingAA to the return abstract attribute is not automatically /// recorded. This should only be used if the caller will record the /// dependence explicitly if necessary, thus if it the returned abstract /// attribute is used for reasoning. To record the dependences explicitly use /// the `Attributor::recordDependence` method. template const AAType &getAAFor(const AbstractAttribute &QueryingAA, const IRPosition &IRP, bool TrackDependence = true, DepClassTy DepClass = DepClassTy::REQUIRED) { return getOrCreateAAFor(IRP, &QueryingAA, TrackDependence, DepClass, /* ForceUpdate */ false); } /// Similar to getAAFor but the return abstract attribute will be updated (via /// `AbstractAttribute::update`) even if it is found in the cache. This is /// especially useful for AAIsDead as changes in liveness can make updates /// possible/useful that were not happening before as the abstract attribute /// was assumed dead. template const AAType &getAndUpdateAAFor(const AbstractAttribute &QueryingAA, const IRPosition &IRP, bool TrackDependence = true, DepClassTy DepClass = DepClassTy::REQUIRED) { return getOrCreateAAFor(IRP, &QueryingAA, TrackDependence, DepClass, /* ForceUpdate */ true); } /// The version of getAAFor that allows to omit a querying abstract /// attribute. Using this after Attributor started running is restricted to /// only the Attributor itself. Initial seeding of AAs can be done via this /// function. /// NOTE: ForceUpdate is ignored in any stage other than the update stage. template const AAType &getOrCreateAAFor(const IRPosition &IRP, const AbstractAttribute *QueryingAA = nullptr, bool TrackDependence = false, DepClassTy DepClass = DepClassTy::OPTIONAL, bool ForceUpdate = false) { if (AAType *AAPtr = lookupAAFor(IRP, QueryingAA, TrackDependence)) { if (ForceUpdate && Phase == AttributorPhase::UPDATE) updateAA(*AAPtr); return *AAPtr; } // No matching attribute found, create one. // Use the static create method. auto &AA = AAType::createForPosition(IRP, *this); // If we are currenty seeding attributes, enforce seeding rules. if (Phase == AttributorPhase::SEEDING && !shouldSeedAttribute(AA)) { AA.getState().indicatePessimisticFixpoint(); return AA; } registerAA(AA); // For now we ignore naked and optnone functions. bool Invalidate = Allowed && !Allowed->count(&AAType::ID); const Function *FnScope = IRP.getAnchorScope(); if (FnScope) Invalidate |= FnScope->hasFnAttribute(Attribute::Naked) || FnScope->hasFnAttribute(Attribute::OptimizeNone); // Avoid too many nested initializations to prevent a stack overflow. Invalidate |= InitializationChainLength > MaxInitializationChainLength; // Bootstrap the new attribute with an initial update to propagate // information, e.g., function -> call site. If it is not on a given // Allowed we will not perform updates at all. if (Invalidate) { AA.getState().indicatePessimisticFixpoint(); return AA; } { TimeTraceScope TimeScope(AA.getName() + "::initialize"); ++InitializationChainLength; AA.initialize(*this); --InitializationChainLength; } // Initialize and update is allowed for code outside of the current function // set, but only if it is part of module slice we are allowed to look at. // Only exception is AAIsDeadFunction whose initialization is prevented // directly, since we don't to compute it twice. if (FnScope && !Functions.count(const_cast(FnScope))) { if (!getInfoCache().isInModuleSlice(*FnScope)) { AA.getState().indicatePessimisticFixpoint(); return AA; } } // If this is queried in the manifest stage, we force the AA to indicate // pessimistic fixpoint immediately. if (Phase == AttributorPhase::MANIFEST) { AA.getState().indicatePessimisticFixpoint(); return AA; } // Allow seeded attributes to declare dependencies. // Remember the seeding state. AttributorPhase OldPhase = Phase; Phase = AttributorPhase::UPDATE; updateAA(AA); Phase = OldPhase; if (TrackDependence && AA.getState().isValidState()) recordDependence(AA, const_cast(*QueryingAA), DepClass); return AA; } /// Return the attribute of \p AAType for \p IRP if existing. This also allows /// non-AA users lookup. template AAType *lookupAAFor(const IRPosition &IRP, const AbstractAttribute *QueryingAA = nullptr, bool TrackDependence = false, DepClassTy DepClass = DepClassTy::OPTIONAL) { static_assert(std::is_base_of::value, "Cannot query an attribute with a type not derived from " "'AbstractAttribute'!"); assert((QueryingAA || !TrackDependence) && "Cannot track dependences without a QueryingAA!"); // Lookup the abstract attribute of type AAType. If found, return it after // registering a dependence of QueryingAA on the one returned attribute. AbstractAttribute *AAPtr = AAMap.lookup({&AAType::ID, IRP}); if (!AAPtr) return nullptr; AAType *AA = static_cast(AAPtr); // Do not register a dependence on an attribute with an invalid state. if (TrackDependence && AA->getState().isValidState()) recordDependence(*AA, const_cast(*QueryingAA), DepClass); return AA; } /// Explicitly record a dependence from \p FromAA to \p ToAA, that is if /// \p FromAA changes \p ToAA should be updated as well. /// /// This method should be used in conjunction with the `getAAFor` method and /// with the TrackDependence flag passed to the method set to false. This can /// be beneficial to avoid false dependences but it requires the users of /// `getAAFor` to explicitly record true dependences through this method. /// The \p DepClass flag indicates if the dependence is striclty necessary. /// That means for required dependences, if \p FromAA changes to an invalid /// state, \p ToAA can be moved to a pessimistic fixpoint because it required /// information from \p FromAA but none are available anymore. void recordDependence(const AbstractAttribute &FromAA, const AbstractAttribute &ToAA, DepClassTy DepClass); /// Introduce a new abstract attribute into the fixpoint analysis. /// /// Note that ownership of the attribute is given to the Attributor. It will /// invoke delete for the Attributor on destruction of the Attributor. /// /// Attributes are identified by their IR position (AAType::getIRPosition()) /// and the address of their static member (see AAType::ID). template AAType ®isterAA(AAType &AA) { static_assert(std::is_base_of::value, "Cannot register an attribute with a type not derived from " "'AbstractAttribute'!"); // Put the attribute in the lookup map structure and the container we use to // keep track of all attributes. const IRPosition &IRP = AA.getIRPosition(); AbstractAttribute *&AAPtr = AAMap[{&AAType::ID, IRP}]; assert(!AAPtr && "Attribute already in map!"); AAPtr = &AA; // Register AA with the synthetic root only before the manifest stage. if (Phase == AttributorPhase::SEEDING || Phase == AttributorPhase::UPDATE) DG.SyntheticRoot.Deps.push_back( AADepGraphNode::DepTy(&AA, unsigned(DepClassTy::REQUIRED))); return AA; } /// Return the internal information cache. InformationCache &getInfoCache() { return InfoCache; } /// Return true if this is a module pass, false otherwise. bool isModulePass() const { return !Functions.empty() && Functions.size() == Functions.front()->getParent()->size(); } /// Return true if we derive attributes for \p Fn bool isRunOn(Function &Fn) const { return Functions.empty() || Functions.count(&Fn); } /// Determine opportunities to derive 'default' attributes in \p F and create /// abstract attribute objects for them. /// /// \param F The function that is checked for attribute opportunities. /// /// Note that abstract attribute instances are generally created even if the /// IR already contains the information they would deduce. The most important /// reason for this is the single interface, the one of the abstract attribute /// instance, which can be queried without the need to look at the IR in /// various places. void identifyDefaultAbstractAttributes(Function &F); /// Determine whether the function \p F is IPO amendable /// /// If a function is exactly defined or it has alwaysinline attribute /// and is viable to be inlined, we say it is IPO amendable bool isFunctionIPOAmendable(const Function &F) { return F.hasExactDefinition() || InfoCache.InlineableFunctions.count(&F); } /// Mark the internal function \p F as live. /// /// This will trigger the identification and initialization of attributes for /// \p F. void markLiveInternalFunction(const Function &F) { assert(F.hasLocalLinkage() && "Only local linkage is assumed dead initially."); identifyDefaultAbstractAttributes(const_cast(F)); } /// Helper function to remove callsite. void removeCallSite(CallInst *CI) { if (!CI) return; CGUpdater.removeCallSite(*CI); } /// Record that \p U is to be replaces with \p NV after information was /// manifested. This also triggers deletion of trivially dead istructions. bool changeUseAfterManifest(Use &U, Value &NV) { Value *&V = ToBeChangedUses[&U]; if (V && (V->stripPointerCasts() == NV.stripPointerCasts() || isa_and_nonnull(V))) return false; assert((!V || V == &NV || isa(NV)) && "Use was registered twice for replacement with different values!"); V = &NV; return true; } /// Helper function to replace all uses of \p V with \p NV. Return true if /// there is any change. The flag \p ChangeDroppable indicates if dropppable /// uses should be changed too. bool changeValueAfterManifest(Value &V, Value &NV, bool ChangeDroppable = true) { bool Changed = false; for (auto &U : V.uses()) if (ChangeDroppable || !U.getUser()->isDroppable()) Changed |= changeUseAfterManifest(U, NV); return Changed; } /// Record that \p I is to be replaced with `unreachable` after information /// was manifested. void changeToUnreachableAfterManifest(Instruction *I) { ToBeChangedToUnreachableInsts.insert(I); } /// Record that \p II has at least one dead successor block. This information /// is used, e.g., to replace \p II with a call, after information was /// manifested. void registerInvokeWithDeadSuccessor(InvokeInst &II) { InvokeWithDeadSuccessor.push_back(&II); } /// Record that \p I is deleted after information was manifested. This also /// triggers deletion of trivially dead istructions. void deleteAfterManifest(Instruction &I) { ToBeDeletedInsts.insert(&I); } /// Record that \p BB is deleted after information was manifested. This also /// triggers deletion of trivially dead istructions. void deleteAfterManifest(BasicBlock &BB) { ToBeDeletedBlocks.insert(&BB); } /// Record that \p F is deleted after information was manifested. void deleteAfterManifest(Function &F) { ToBeDeletedFunctions.insert(&F); } /// If \p V is assumed to be a constant, return it, if it is unclear yet, /// return None, otherwise return `nullptr`. Optional getAssumedConstant(const Value &V, const AbstractAttribute &AA, bool &UsedAssumedInformation); /// Return true if \p AA (or its context instruction) is assumed dead. /// /// If \p LivenessAA is not provided it is queried. bool isAssumedDead(const AbstractAttribute &AA, const AAIsDead *LivenessAA, bool CheckBBLivenessOnly = false, DepClassTy DepClass = DepClassTy::OPTIONAL); /// Return true if \p I is assumed dead. /// /// If \p LivenessAA is not provided it is queried. bool isAssumedDead(const Instruction &I, const AbstractAttribute *QueryingAA, const AAIsDead *LivenessAA, bool CheckBBLivenessOnly = false, DepClassTy DepClass = DepClassTy::OPTIONAL); /// Return true if \p U is assumed dead. /// /// If \p FnLivenessAA is not provided it is queried. bool isAssumedDead(const Use &U, const AbstractAttribute *QueryingAA, const AAIsDead *FnLivenessAA, bool CheckBBLivenessOnly = false, DepClassTy DepClass = DepClassTy::OPTIONAL); /// Return true if \p IRP is assumed dead. /// /// If \p FnLivenessAA is not provided it is queried. bool isAssumedDead(const IRPosition &IRP, const AbstractAttribute *QueryingAA, const AAIsDead *FnLivenessAA, bool CheckBBLivenessOnly = false, DepClassTy DepClass = DepClassTy::OPTIONAL); /// Check \p Pred on all (transitive) uses of \p V. /// /// This method will evaluate \p Pred on all (transitive) uses of the /// associated value and return true if \p Pred holds every time. bool checkForAllUses(function_ref Pred, const AbstractAttribute &QueryingAA, const Value &V, DepClassTy LivenessDepClass = DepClassTy::OPTIONAL); /// Helper struct used in the communication between an abstract attribute (AA) /// that wants to change the signature of a function and the Attributor which /// applies the changes. The struct is partially initialized with the /// information from the AA (see the constructor). All other members are /// provided by the Attributor prior to invoking any callbacks. struct ArgumentReplacementInfo { /// Callee repair callback type /// /// The function repair callback is invoked once to rewire the replacement /// arguments in the body of the new function. The argument replacement info /// is passed, as build from the registerFunctionSignatureRewrite call, as /// well as the replacement function and an iteratore to the first /// replacement argument. using CalleeRepairCBTy = std::function; /// Abstract call site (ACS) repair callback type /// /// The abstract call site repair callback is invoked once on every abstract /// call site of the replaced function (\see ReplacedFn). The callback needs /// to provide the operands for the call to the new replacement function. /// The number and type of the operands appended to the provided vector /// (second argument) is defined by the number and types determined through /// the replacement type vector (\see ReplacementTypes). The first argument /// is the ArgumentReplacementInfo object registered with the Attributor /// through the registerFunctionSignatureRewrite call. using ACSRepairCBTy = std::function &)>; /// Simple getters, see the corresponding members for details. ///{ Attributor &getAttributor() const { return A; } const Function &getReplacedFn() const { return ReplacedFn; } const Argument &getReplacedArg() const { return ReplacedArg; } unsigned getNumReplacementArgs() const { return ReplacementTypes.size(); } const SmallVectorImpl &getReplacementTypes() const { return ReplacementTypes; } ///} private: /// Constructor that takes the argument to be replaced, the types of /// the replacement arguments, as well as callbacks to repair the call sites /// and new function after the replacement happened. ArgumentReplacementInfo(Attributor &A, Argument &Arg, ArrayRef ReplacementTypes, CalleeRepairCBTy &&CalleeRepairCB, ACSRepairCBTy &&ACSRepairCB) : A(A), ReplacedFn(*Arg.getParent()), ReplacedArg(Arg), ReplacementTypes(ReplacementTypes.begin(), ReplacementTypes.end()), CalleeRepairCB(std::move(CalleeRepairCB)), ACSRepairCB(std::move(ACSRepairCB)) {} /// Reference to the attributor to allow access from the callbacks. Attributor &A; /// The "old" function replaced by ReplacementFn. const Function &ReplacedFn; /// The "old" argument replaced by new ones defined via ReplacementTypes. const Argument &ReplacedArg; /// The types of the arguments replacing ReplacedArg. const SmallVector ReplacementTypes; /// Callee repair callback, see CalleeRepairCBTy. const CalleeRepairCBTy CalleeRepairCB; /// Abstract call site (ACS) repair callback, see ACSRepairCBTy. const ACSRepairCBTy ACSRepairCB; /// Allow access to the private members from the Attributor. friend struct Attributor; }; /// Check if we can rewrite a function signature. /// /// The argument \p Arg is replaced with new ones defined by the number, /// order, and types in \p ReplacementTypes. /// /// \returns True, if the replacement can be registered, via /// registerFunctionSignatureRewrite, false otherwise. bool isValidFunctionSignatureRewrite(Argument &Arg, ArrayRef ReplacementTypes); /// Register a rewrite for a function signature. /// /// The argument \p Arg is replaced with new ones defined by the number, /// order, and types in \p ReplacementTypes. The rewiring at the call sites is /// done through \p ACSRepairCB and at the callee site through /// \p CalleeRepairCB. /// /// \returns True, if the replacement was registered, false otherwise. bool registerFunctionSignatureRewrite( Argument &Arg, ArrayRef ReplacementTypes, ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB, ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB); /// Check \p Pred on all function call sites. /// /// This method will evaluate \p Pred on call sites and return /// true if \p Pred holds in every call sites. However, this is only possible /// all call sites are known, hence the function has internal linkage. /// If true is returned, \p AllCallSitesKnown is set if all possible call /// sites of the function have been visited. bool checkForAllCallSites(function_ref Pred, const AbstractAttribute &QueryingAA, bool RequireAllCallSites, bool &AllCallSitesKnown); /// Check \p Pred on all values potentially returned by \p F. /// /// This method will evaluate \p Pred on all values potentially returned by /// the function associated with \p QueryingAA. The returned values are /// matched with their respective return instructions. Returns true if \p Pred /// holds on all of them. bool checkForAllReturnedValuesAndReturnInsts( function_ref &)> Pred, const AbstractAttribute &QueryingAA); /// Check \p Pred on all values potentially returned by the function /// associated with \p QueryingAA. /// /// This is the context insensitive version of the method above. bool checkForAllReturnedValues(function_ref Pred, const AbstractAttribute &QueryingAA); /// Check \p Pred on all instructions with an opcode present in \p Opcodes. /// /// This method will evaluate \p Pred on all instructions with an opcode /// present in \p Opcode and return true if \p Pred holds on all of them. bool checkForAllInstructions(function_ref Pred, const AbstractAttribute &QueryingAA, const ArrayRef &Opcodes, bool CheckBBLivenessOnly = false); /// Check \p Pred on all call-like instructions (=CallBased derived). /// /// See checkForAllCallLikeInstructions(...) for more information. bool checkForAllCallLikeInstructions(function_ref Pred, const AbstractAttribute &QueryingAA) { return checkForAllInstructions(Pred, QueryingAA, {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, (unsigned)Instruction::Call}); } /// Check \p Pred on all Read/Write instructions. /// /// This method will evaluate \p Pred on all instructions that read or write /// to memory present in the information cache and return true if \p Pred /// holds on all of them. bool checkForAllReadWriteInstructions(function_ref Pred, AbstractAttribute &QueryingAA); /// Create a shallow wrapper for \p F such that \p F has internal linkage /// afterwards. It also sets the original \p F 's name to anonymous /// /// A wrapper is a function with the same type (and attributes) as \p F /// that will only call \p F and return the result, if any. /// /// Assuming the declaration of looks like: /// rty F(aty0 arg0, ..., atyN argN); /// /// The wrapper will then look as follows: /// rty wrapper(aty0 arg0, ..., atyN argN) { /// return F(arg0, ..., argN); /// } /// static void createShallowWrapper(Function &F); /// Return the data layout associated with the anchor scope. const DataLayout &getDataLayout() const { return InfoCache.DL; } /// The allocator used to allocate memory, e.g. for `AbstractAttribute`s. BumpPtrAllocator &Allocator; private: /// This method will do fixpoint iteration until fixpoint or the /// maximum iteration count is reached. /// /// If the maximum iteration count is reached, This method will /// indicate pessimistic fixpoint on attributes that transitively depend /// on attributes that were scheduled for an update. void runTillFixpoint(); /// Gets called after scheduling, manifests attributes to the LLVM IR. ChangeStatus manifestAttributes(); /// Gets called after attributes have been manifested, cleans up the IR. /// Deletes dead functions, blocks and instructions. /// Rewrites function signitures and updates the call graph. ChangeStatus cleanupIR(); /// Identify internal functions that are effectively dead, thus not reachable /// from a live entry point. The functions are added to ToBeDeletedFunctions. void identifyDeadInternalFunctions(); /// Run `::update` on \p AA and track the dependences queried while doing so. /// Also adjust the state if we know further updates are not necessary. ChangeStatus updateAA(AbstractAttribute &AA); /// Remember the dependences on the top of the dependence stack such that they /// may trigger further updates. (\see DependenceStack) void rememberDependences(); /// Check \p Pred on all call sites of \p Fn. /// /// This method will evaluate \p Pred on call sites and return /// true if \p Pred holds in every call sites. However, this is only possible /// all call sites are known, hence the function has internal linkage. /// If true is returned, \p AllCallSitesKnown is set if all possible call /// sites of the function have been visited. bool checkForAllCallSites(function_ref Pred, const Function &Fn, bool RequireAllCallSites, const AbstractAttribute *QueryingAA, bool &AllCallSitesKnown); /// Apply all requested function signature rewrites /// (\see registerFunctionSignatureRewrite) and return Changed if the module /// was altered. ChangeStatus rewriteFunctionSignatures(SmallPtrSetImpl &ModifiedFns); /// Check if the Attribute \p AA should be seeded. /// See getOrCreateAAFor. bool shouldSeedAttribute(AbstractAttribute &AA); /// A nested map to lookup abstract attributes based on the argument position /// on the outer level, and the addresses of the static member (AAType::ID) on /// the inner level. ///{ using AAMapKeyTy = std::pair; DenseMap AAMap; ///} /// Map to remember all requested signature changes (= argument replacements). DenseMap, 8>> ArgumentReplacementMap; /// The set of functions we are deriving attributes for. SetVector &Functions; /// The information cache that holds pre-processed (LLVM-IR) information. InformationCache &InfoCache; /// Helper to update an underlying call graph. CallGraphUpdater &CGUpdater; /// Abstract Attribute dependency graph AADepGraph DG; /// Set of functions for which we modified the content such that it might /// impact the call graph. SmallPtrSet CGModifiedFunctions; /// Information about a dependence. If FromAA is changed ToAA needs to be /// updated as well. struct DepInfo { const AbstractAttribute *FromAA; const AbstractAttribute *ToAA; DepClassTy DepClass; }; /// The dependence stack is used to track dependences during an /// `AbstractAttribute::update` call. As `AbstractAttribute::update` can be /// recursive we might have multiple vectors of dependences in here. The stack /// size, should be adjusted according to the expected recursion depth and the /// inner dependence vector size to the expected number of dependences per /// abstract attribute. Since the inner vectors are actually allocated on the /// stack we can be generous with their size. using DependenceVector = SmallVector; SmallVector DependenceStack; /// If not null, a set limiting the attribute opportunities. const DenseSet *Allowed; /// A set to remember the functions we already assume to be live and visited. DenseSet VisitedFunctions; /// Uses we replace with a new value after manifest is done. We will remove /// then trivially dead instructions as well. DenseMap ToBeChangedUses; /// Instructions we replace with `unreachable` insts after manifest is done. SmallDenseSet ToBeChangedToUnreachableInsts; /// Invoke instructions with at least a single dead successor block. SmallVector InvokeWithDeadSuccessor; /// A flag that indicates which stage of the process we are in. Initially, the /// phase is SEEDING. Phase is changed in `Attributor::run()` enum class AttributorPhase { SEEDING, UPDATE, MANIFEST, CLEANUP, } Phase = AttributorPhase::SEEDING; /// The current initialization chain length. Tracked to avoid stack overflows. unsigned InitializationChainLength = 0; /// Functions, blocks, and instructions we delete after manifest is done. /// ///{ SmallPtrSet ToBeDeletedFunctions; SmallPtrSet ToBeDeletedBlocks; SmallDenseSet ToBeDeletedInsts; ///} friend AADepGraph; }; /// An interface to query the internal state of an abstract attribute. /// /// The abstract state is a minimal interface that allows the Attributor to /// communicate with the abstract attributes about their internal state without /// enforcing or exposing implementation details, e.g., the (existence of an) /// underlying lattice. /// /// It is sufficient to be able to query if a state is (1) valid or invalid, (2) /// at a fixpoint, and to indicate to the state that (3) an optimistic fixpoint /// was reached or (4) a pessimistic fixpoint was enforced. /// /// All methods need to be implemented by the subclass. For the common use case, /// a single boolean state or a bit-encoded state, the BooleanState and /// {Inc,Dec,Bit}IntegerState classes are already provided. An abstract /// attribute can inherit from them to get the abstract state interface and /// additional methods to directly modify the state based if needed. See the /// class comments for help. struct AbstractState { virtual ~AbstractState() {} /// Return if this abstract state is in a valid state. If false, no /// information provided should be used. virtual bool isValidState() const = 0; /// Return if this abstract state is fixed, thus does not need to be updated /// if information changes as it cannot change itself. virtual bool isAtFixpoint() const = 0; /// Indicate that the abstract state should converge to the optimistic state. /// /// This will usually make the optimistically assumed state the known to be /// true state. /// /// \returns ChangeStatus::UNCHANGED as the assumed value should not change. virtual ChangeStatus indicateOptimisticFixpoint() = 0; /// Indicate that the abstract state should converge to the pessimistic state. /// /// This will usually revert the optimistically assumed state to the known to /// be true state. /// /// \returns ChangeStatus::CHANGED as the assumed value may change. virtual ChangeStatus indicatePessimisticFixpoint() = 0; }; /// Simple state with integers encoding. /// /// The interface ensures that the assumed bits are always a subset of the known /// bits. Users can only add known bits and, except through adding known bits, /// they can only remove assumed bits. This should guarantee monotoniticy and /// thereby the existence of a fixpoint (if used corretly). The fixpoint is /// reached when the assumed and known state/bits are equal. Users can /// force/inidicate a fixpoint. If an optimistic one is indicated, the known /// state will catch up with the assumed one, for a pessimistic fixpoint it is /// the other way around. template struct IntegerStateBase : public AbstractState { using base_t = base_ty; IntegerStateBase() {} IntegerStateBase(base_t Assumed) : Assumed(Assumed) {} /// Return the best possible representable state. static constexpr base_t getBestState() { return BestState; } static constexpr base_t getBestState(const IntegerStateBase &) { return getBestState(); } /// Return the worst possible representable state. static constexpr base_t getWorstState() { return WorstState; } static constexpr base_t getWorstState(const IntegerStateBase &) { return getWorstState(); } /// See AbstractState::isValidState() /// NOTE: For now we simply pretend that the worst possible state is invalid. bool isValidState() const override { return Assumed != getWorstState(); } /// See AbstractState::isAtFixpoint() bool isAtFixpoint() const override { return Assumed == Known; } /// See AbstractState::indicateOptimisticFixpoint(...) ChangeStatus indicateOptimisticFixpoint() override { Known = Assumed; return ChangeStatus::UNCHANGED; } /// See AbstractState::indicatePessimisticFixpoint(...) ChangeStatus indicatePessimisticFixpoint() override { Assumed = Known; return ChangeStatus::CHANGED; } /// Return the known state encoding base_t getKnown() const { return Known; } /// Return the assumed state encoding. base_t getAssumed() const { return Assumed; } /// Equality for IntegerStateBase. bool operator==(const IntegerStateBase &R) const { return this->getAssumed() == R.getAssumed() && this->getKnown() == R.getKnown(); } /// Inequality for IntegerStateBase. bool operator!=(const IntegerStateBase &R) const { return !(*this == R); } /// "Clamp" this state with \p R. The result is subtype dependent but it is /// intended that only information assumed in both states will be assumed in /// this one afterwards. void operator^=(const IntegerStateBase &R) { handleNewAssumedValue(R.getAssumed()); } /// "Clamp" this state with \p R. The result is subtype dependent but it is /// intended that information known in either state will be known in /// this one afterwards. void operator+=(const IntegerStateBase &R) { handleNewKnownValue(R.getKnown()); } void operator|=(const IntegerStateBase &R) { joinOR(R.getAssumed(), R.getKnown()); } void operator&=(const IntegerStateBase &R) { joinAND(R.getAssumed(), R.getKnown()); } protected: /// Handle a new assumed value \p Value. Subtype dependent. virtual void handleNewAssumedValue(base_t Value) = 0; /// Handle a new known value \p Value. Subtype dependent. virtual void handleNewKnownValue(base_t Value) = 0; /// Handle a value \p Value. Subtype dependent. virtual void joinOR(base_t AssumedValue, base_t KnownValue) = 0; /// Handle a new assumed value \p Value. Subtype dependent. virtual void joinAND(base_t AssumedValue, base_t KnownValue) = 0; /// The known state encoding in an integer of type base_t. base_t Known = getWorstState(); /// The assumed state encoding in an integer of type base_t. base_t Assumed = getBestState(); }; /// Specialization of the integer state for a bit-wise encoding. template struct BitIntegerState : public IntegerStateBase { using base_t = base_ty; /// Return true if the bits set in \p BitsEncoding are "known bits". bool isKnown(base_t BitsEncoding) const { return (this->Known & BitsEncoding) == BitsEncoding; } /// Return true if the bits set in \p BitsEncoding are "assumed bits". bool isAssumed(base_t BitsEncoding) const { return (this->Assumed & BitsEncoding) == BitsEncoding; } /// Add the bits in \p BitsEncoding to the "known bits". BitIntegerState &addKnownBits(base_t Bits) { // Make sure we never miss any "known bits". this->Assumed |= Bits; this->Known |= Bits; return *this; } /// Remove the bits in \p BitsEncoding from the "assumed bits" if not known. BitIntegerState &removeAssumedBits(base_t BitsEncoding) { return intersectAssumedBits(~BitsEncoding); } /// Remove the bits in \p BitsEncoding from the "known bits". BitIntegerState &removeKnownBits(base_t BitsEncoding) { this->Known = (this->Known & ~BitsEncoding); return *this; } /// Keep only "assumed bits" also set in \p BitsEncoding but all known ones. BitIntegerState &intersectAssumedBits(base_t BitsEncoding) { // Make sure we never loose any "known bits". this->Assumed = (this->Assumed & BitsEncoding) | this->Known; return *this; } private: void handleNewAssumedValue(base_t Value) override { intersectAssumedBits(Value); } void handleNewKnownValue(base_t Value) override { addKnownBits(Value); } void joinOR(base_t AssumedValue, base_t KnownValue) override { this->Known |= KnownValue; this->Assumed |= AssumedValue; } void joinAND(base_t AssumedValue, base_t KnownValue) override { this->Known &= KnownValue; this->Assumed &= AssumedValue; } }; /// Specialization of the integer state for an increasing value, hence ~0u is /// the best state and 0 the worst. template struct IncIntegerState : public IntegerStateBase { using super = IntegerStateBase; using base_t = base_ty; IncIntegerState() : super() {} IncIntegerState(base_t Assumed) : super(Assumed) {} /// Return the best possible representable state. static constexpr base_t getBestState() { return BestState; } static constexpr base_t getBestState(const IncIntegerState &) { return getBestState(); } /// Take minimum of assumed and \p Value. IncIntegerState &takeAssumedMinimum(base_t Value) { // Make sure we never loose "known value". this->Assumed = std::max(std::min(this->Assumed, Value), this->Known); return *this; } /// Take maximum of known and \p Value. IncIntegerState &takeKnownMaximum(base_t Value) { // Make sure we never loose "known value". this->Assumed = std::max(Value, this->Assumed); this->Known = std::max(Value, this->Known); return *this; } private: void handleNewAssumedValue(base_t Value) override { takeAssumedMinimum(Value); } void handleNewKnownValue(base_t Value) override { takeKnownMaximum(Value); } void joinOR(base_t AssumedValue, base_t KnownValue) override { this->Known = std::max(this->Known, KnownValue); this->Assumed = std::max(this->Assumed, AssumedValue); } void joinAND(base_t AssumedValue, base_t KnownValue) override { this->Known = std::min(this->Known, KnownValue); this->Assumed = std::min(this->Assumed, AssumedValue); } }; /// Specialization of the integer state for a decreasing value, hence 0 is the /// best state and ~0u the worst. template struct DecIntegerState : public IntegerStateBase { using base_t = base_ty; /// Take maximum of assumed and \p Value. DecIntegerState &takeAssumedMaximum(base_t Value) { // Make sure we never loose "known value". this->Assumed = std::min(std::max(this->Assumed, Value), this->Known); return *this; } /// Take minimum of known and \p Value. DecIntegerState &takeKnownMinimum(base_t Value) { // Make sure we never loose "known value". this->Assumed = std::min(Value, this->Assumed); this->Known = std::min(Value, this->Known); return *this; } private: void handleNewAssumedValue(base_t Value) override { takeAssumedMaximum(Value); } void handleNewKnownValue(base_t Value) override { takeKnownMinimum(Value); } void joinOR(base_t AssumedValue, base_t KnownValue) override { this->Assumed = std::min(this->Assumed, KnownValue); this->Assumed = std::min(this->Assumed, AssumedValue); } void joinAND(base_t AssumedValue, base_t KnownValue) override { this->Assumed = std::max(this->Assumed, KnownValue); this->Assumed = std::max(this->Assumed, AssumedValue); } }; /// Simple wrapper for a single bit (boolean) state. struct BooleanState : public IntegerStateBase { using super = IntegerStateBase; using base_t = IntegerStateBase::base_t; BooleanState() : super() {} BooleanState(base_t Assumed) : super(Assumed) {} /// Set the assumed value to \p Value but never below the known one. void setAssumed(bool Value) { Assumed &= (Known | Value); } /// Set the known and asssumed value to \p Value. void setKnown(bool Value) { Known |= Value; Assumed |= Value; } /// Return true if the state is assumed to hold. bool isAssumed() const { return getAssumed(); } /// Return true if the state is known to hold. bool isKnown() const { return getKnown(); } private: void handleNewAssumedValue(base_t Value) override { if (!Value) Assumed = Known; } void handleNewKnownValue(base_t Value) override { if (Value) Known = (Assumed = Value); } void joinOR(base_t AssumedValue, base_t KnownValue) override { Known |= KnownValue; Assumed |= AssumedValue; } void joinAND(base_t AssumedValue, base_t KnownValue) override { Known &= KnownValue; Assumed &= AssumedValue; } }; /// State for an integer range. struct IntegerRangeState : public AbstractState { /// Bitwidth of the associated value. uint32_t BitWidth; /// State representing assumed range, initially set to empty. ConstantRange Assumed; /// State representing known range, initially set to [-inf, inf]. ConstantRange Known; IntegerRangeState(uint32_t BitWidth) : BitWidth(BitWidth), Assumed(ConstantRange::getEmpty(BitWidth)), Known(ConstantRange::getFull(BitWidth)) {} IntegerRangeState(const ConstantRange &CR) : BitWidth(CR.getBitWidth()), Assumed(CR), Known(getWorstState(CR.getBitWidth())) {} /// Return the worst possible representable state. static ConstantRange getWorstState(uint32_t BitWidth) { return ConstantRange::getFull(BitWidth); } /// Return the best possible representable state. static ConstantRange getBestState(uint32_t BitWidth) { return ConstantRange::getEmpty(BitWidth); } static ConstantRange getBestState(const IntegerRangeState &IRS) { return getBestState(IRS.getBitWidth()); } /// Return associated values' bit width. uint32_t getBitWidth() const { return BitWidth; } /// See AbstractState::isValidState() bool isValidState() const override { return BitWidth > 0 && !Assumed.isFullSet(); } /// See AbstractState::isAtFixpoint() bool isAtFixpoint() const override { return Assumed == Known; } /// See AbstractState::indicateOptimisticFixpoint(...) ChangeStatus indicateOptimisticFixpoint() override { Known = Assumed; return ChangeStatus::CHANGED; } /// See AbstractState::indicatePessimisticFixpoint(...) ChangeStatus indicatePessimisticFixpoint() override { Assumed = Known; return ChangeStatus::CHANGED; } /// Return the known state encoding ConstantRange getKnown() const { return Known; } /// Return the assumed state encoding. ConstantRange getAssumed() const { return Assumed; } /// Unite assumed range with the passed state. void unionAssumed(const ConstantRange &R) { // Don't loose a known range. Assumed = Assumed.unionWith(R).intersectWith(Known); } /// See IntegerRangeState::unionAssumed(..). void unionAssumed(const IntegerRangeState &R) { unionAssumed(R.getAssumed()); } /// Unite known range with the passed state. void unionKnown(const ConstantRange &R) { // Don't loose a known range. Known = Known.unionWith(R); Assumed = Assumed.unionWith(Known); } /// See IntegerRangeState::unionKnown(..). void unionKnown(const IntegerRangeState &R) { unionKnown(R.getKnown()); } /// Intersect known range with the passed state. void intersectKnown(const ConstantRange &R) { Assumed = Assumed.intersectWith(R); Known = Known.intersectWith(R); } /// See IntegerRangeState::intersectKnown(..). void intersectKnown(const IntegerRangeState &R) { intersectKnown(R.getKnown()); } /// Equality for IntegerRangeState. bool operator==(const IntegerRangeState &R) const { return getAssumed() == R.getAssumed() && getKnown() == R.getKnown(); } /// "Clamp" this state with \p R. The result is subtype dependent but it is /// intended that only information assumed in both states will be assumed in /// this one afterwards. IntegerRangeState operator^=(const IntegerRangeState &R) { // NOTE: `^=` operator seems like `intersect` but in this case, we need to // take `union`. unionAssumed(R); return *this; } IntegerRangeState operator&=(const IntegerRangeState &R) { // NOTE: `&=` operator seems like `intersect` but in this case, we need to // take `union`. unionKnown(R); unionAssumed(R); return *this; } }; /// Helper struct necessary as the modular build fails if the virtual method /// IRAttribute::manifest is defined in the Attributor.cpp. struct IRAttributeManifest { static ChangeStatus manifestAttrs(Attributor &A, const IRPosition &IRP, const ArrayRef &DeducedAttrs); }; /// Helper to tie a abstract state implementation to an abstract attribute. template struct StateWrapper : public BaseType, public StateTy { /// Provide static access to the type of the state. using StateType = StateTy; StateWrapper(const IRPosition &IRP, Ts... Args) : BaseType(IRP), StateTy(Args...) {} /// See AbstractAttribute::getState(...). StateType &getState() override { return *this; } /// See AbstractAttribute::getState(...). const StateType &getState() const override { return *this; } }; /// Helper class that provides common functionality to manifest IR attributes. template struct IRAttribute : public BaseType { IRAttribute(const IRPosition &IRP) : BaseType(IRP) {} /// See AbstractAttribute::initialize(...). virtual void initialize(Attributor &A) override { const IRPosition &IRP = this->getIRPosition(); if (isa(IRP.getAssociatedValue()) || this->hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ false, &A)) { this->getState().indicateOptimisticFixpoint(); return; } bool IsFnInterface = IRP.isFnInterfaceKind(); const Function *FnScope = IRP.getAnchorScope(); // TODO: Not all attributes require an exact definition. Find a way to // enable deduction for some but not all attributes in case the // definition might be changed at runtime, see also // http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html. // TODO: We could always determine abstract attributes and if sufficient // information was found we could duplicate the functions that do not // have an exact definition. if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) this->getState().indicatePessimisticFixpoint(); } /// See AbstractAttribute::manifest(...). ChangeStatus manifest(Attributor &A) override { if (isa(this->getIRPosition().getAssociatedValue())) return ChangeStatus::UNCHANGED; SmallVector DeducedAttrs; getDeducedAttributes(this->getAnchorValue().getContext(), DeducedAttrs); return IRAttributeManifest::manifestAttrs(A, this->getIRPosition(), DeducedAttrs); } /// Return the kind that identifies the abstract attribute implementation. Attribute::AttrKind getAttrKind() const { return AK; } /// Return the deduced attributes in \p Attrs. virtual void getDeducedAttributes(LLVMContext &Ctx, SmallVectorImpl &Attrs) const { Attrs.emplace_back(Attribute::get(Ctx, getAttrKind())); } }; /// Base struct for all "concrete attribute" deductions. /// /// The abstract attribute is a minimal interface that allows the Attributor to /// orchestrate the abstract/fixpoint analysis. The design allows to hide away /// implementation choices made for the subclasses but also to structure their /// implementation and simplify the use of other abstract attributes in-flight. /// /// To allow easy creation of new attributes, most methods have default /// implementations. The ones that do not are generally straight forward, except /// `AbstractAttribute::updateImpl` which is the location of most reasoning /// associated with the abstract attribute. The update is invoked by the /// Attributor in case the situation used to justify the current optimistic /// state might have changed. The Attributor determines this automatically /// by monitoring the `Attributor::getAAFor` calls made by abstract attributes. /// /// The `updateImpl` method should inspect the IR and other abstract attributes /// in-flight to justify the best possible (=optimistic) state. The actual /// implementation is, similar to the underlying abstract state encoding, not /// exposed. In the most common case, the `updateImpl` will go through a list of /// reasons why its optimistic state is valid given the current information. If /// any combination of them holds and is sufficient to justify the current /// optimistic state, the method shall return UNCHAGED. If not, the optimistic /// state is adjusted to the situation and the method shall return CHANGED. /// /// If the manifestation of the "concrete attribute" deduced by the subclass /// differs from the "default" behavior, which is a (set of) LLVM-IR /// attribute(s) for an argument, call site argument, function return value, or /// function, the `AbstractAttribute::manifest` method should be overloaded. /// /// NOTE: If the state obtained via getState() is INVALID, thus if /// AbstractAttribute::getState().isValidState() returns false, no /// information provided by the methods of this class should be used. /// NOTE: The Attributor currently has certain limitations to what we can do. /// As a general rule of thumb, "concrete" abstract attributes should *for /// now* only perform "backward" information propagation. That means /// optimistic information obtained through abstract attributes should /// only be used at positions that precede the origin of the information /// with regards to the program flow. More practically, information can /// *now* be propagated from instructions to their enclosing function, but /// *not* from call sites to the called function. The mechanisms to allow /// both directions will be added in the future. /// NOTE: The mechanics of adding a new "concrete" abstract attribute are /// described in the file comment. struct AbstractAttribute : public IRPosition, public AADepGraphNode { using StateType = AbstractState; AbstractAttribute(const IRPosition &IRP) : IRPosition(IRP) {} /// Virtual destructor. virtual ~AbstractAttribute() {} /// This function is used to identify if an \p DGN is of type /// AbstractAttribute so that the dyn_cast and cast can use such information /// to cast an AADepGraphNode to an AbstractAttribute. /// /// We eagerly return true here because all AADepGraphNodes except for the /// Synthethis Node are of type AbstractAttribute static bool classof(const AADepGraphNode *DGN) { return true; } /// Initialize the state with the information in the Attributor \p A. /// /// This function is called by the Attributor once all abstract attributes /// have been identified. It can and shall be used for task like: /// - identify existing knowledge in the IR and use it for the "known state" /// - perform any work that is not going to change over time, e.g., determine /// a subset of the IR, or attributes in-flight, that have to be looked at /// in the `updateImpl` method. virtual void initialize(Attributor &A) {} /// Return the internal abstract state for inspection. virtual StateType &getState() = 0; virtual const StateType &getState() const = 0; /// Return an IR position, see struct IRPosition. const IRPosition &getIRPosition() const { return *this; }; IRPosition &getIRPosition() { return *this; }; /// Helper functions, for debug purposes only. ///{ void print(raw_ostream &OS) const override; virtual void printWithDeps(raw_ostream &OS) const; void dump() const { print(dbgs()); } /// This function should return the "summarized" assumed state as string. virtual const std::string getAsStr() const = 0; /// This function should return the name of the AbstractAttribute virtual const std::string getName() const = 0; /// This function should return the address of the ID of the AbstractAttribute virtual const char *getIdAddr() const = 0; ///} /// Allow the Attributor access to the protected methods. friend struct Attributor; protected: /// Hook for the Attributor to trigger an update of the internal state. /// /// If this attribute is already fixed, this method will return UNCHANGED, /// otherwise it delegates to `AbstractAttribute::updateImpl`. /// /// \Return CHANGED if the internal state changed, otherwise UNCHANGED. ChangeStatus update(Attributor &A); /// Hook for the Attributor to trigger the manifestation of the information /// represented by the abstract attribute in the LLVM-IR. /// /// \Return CHANGED if the IR was altered, otherwise UNCHANGED. virtual ChangeStatus manifest(Attributor &A) { return ChangeStatus::UNCHANGED; } /// Hook to enable custom statistic tracking, called after manifest that /// resulted in a change if statistics are enabled. /// /// We require subclasses to provide an implementation so we remember to /// add statistics for them. virtual void trackStatistics() const = 0; /// The actual update/transfer function which has to be implemented by the /// derived classes. /// /// If it is called, the environment has changed and we have to determine if /// the current information is still valid or adjust it otherwise. /// /// \Return CHANGED if the internal state changed, otherwise UNCHANGED. virtual ChangeStatus updateImpl(Attributor &A) = 0; }; /// Forward declarations of output streams for debug purposes. /// ///{ raw_ostream &operator<<(raw_ostream &OS, const AbstractAttribute &AA); raw_ostream &operator<<(raw_ostream &OS, ChangeStatus S); raw_ostream &operator<<(raw_ostream &OS, IRPosition::Kind); raw_ostream &operator<<(raw_ostream &OS, const IRPosition &); raw_ostream &operator<<(raw_ostream &OS, const AbstractState &State); template raw_ostream & operator<<(raw_ostream &OS, const IntegerStateBase &S) { return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")" << static_cast(S); } raw_ostream &operator<<(raw_ostream &OS, const IntegerRangeState &State); ///} struct AttributorPass : public PassInfoMixin { PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM); }; struct AttributorCGSCCPass : public PassInfoMixin { PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG, CGSCCUpdateResult &UR); }; Pass *createAttributorLegacyPass(); Pass *createAttributorCGSCCLegacyPass(); /// ---------------------------------------------------------------------------- /// Abstract Attribute Classes /// ---------------------------------------------------------------------------- /// An abstract attribute for the returned values of a function. struct AAReturnedValues : public IRAttribute { AAReturnedValues(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Return an assumed unique return value if a single candidate is found. If /// there cannot be one, return a nullptr. If it is not clear yet, return the /// Optional::NoneType. Optional getAssumedUniqueReturnValue(Attributor &A) const; /// Check \p Pred on all returned values. /// /// This method will evaluate \p Pred on returned values and return /// true if (1) all returned values are known, and (2) \p Pred returned true /// for all returned values. /// /// Note: Unlike the Attributor::checkForAllReturnedValuesAndReturnInsts /// method, this one will not filter dead return instructions. virtual bool checkForAllReturnedValuesAndReturnInsts( function_ref &)> Pred) const = 0; using iterator = MapVector>::iterator; using const_iterator = MapVector>::const_iterator; virtual llvm::iterator_range returned_values() = 0; virtual llvm::iterator_range returned_values() const = 0; virtual size_t getNumReturnValues() const = 0; virtual const SmallSetVector &getUnresolvedCalls() const = 0; /// Create an abstract attribute view for the position \p IRP. static AAReturnedValues &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AAReturnedValues"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAReturnedValues static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; struct AANoUnwind : public IRAttribute> { AANoUnwind(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Returns true if nounwind is assumed. bool isAssumedNoUnwind() const { return getAssumed(); } /// Returns true if nounwind is known. bool isKnownNoUnwind() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoUnwind &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AANoUnwind"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AANoUnwind static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; struct AANoSync : public IRAttribute> { AANoSync(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Returns true if "nosync" is assumed. bool isAssumedNoSync() const { return getAssumed(); } /// Returns true if "nosync" is known. bool isKnownNoSync() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoSync &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AANoSync"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AANoSync static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for all nonnull attributes. struct AANonNull : public IRAttribute> { AANonNull(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Return true if we assume that the underlying value is nonnull. bool isAssumedNonNull() const { return getAssumed(); } /// Return true if we know that underlying value is nonnull. bool isKnownNonNull() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANonNull &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AANonNull"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AANonNull static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract attribute for norecurse. struct AANoRecurse : public IRAttribute> { AANoRecurse(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Return true if "norecurse" is assumed. bool isAssumedNoRecurse() const { return getAssumed(); } /// Return true if "norecurse" is known. bool isKnownNoRecurse() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoRecurse &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AANoRecurse"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AANoRecurse static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract attribute for willreturn. struct AAWillReturn : public IRAttribute> { AAWillReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Return true if "willreturn" is assumed. bool isAssumedWillReturn() const { return getAssumed(); } /// Return true if "willreturn" is known. bool isKnownWillReturn() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AAWillReturn &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AAWillReturn"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AAWillReturn static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract attribute for undefined behavior. struct AAUndefinedBehavior : public StateWrapper { using Base = StateWrapper; AAUndefinedBehavior(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Return true if "undefined behavior" is assumed. bool isAssumedToCauseUB() const { return getAssumed(); } /// Return true if "undefined behavior" is assumed for a specific instruction. virtual bool isAssumedToCauseUB(Instruction *I) const = 0; /// Return true if "undefined behavior" is known. bool isKnownToCauseUB() const { return getKnown(); } /// Return true if "undefined behavior" is known for a specific instruction. virtual bool isKnownToCauseUB(Instruction *I) const = 0; /// Create an abstract attribute view for the position \p IRP. static AAUndefinedBehavior &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AAUndefinedBehavior"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAUndefineBehavior static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface to determine reachability of point A to B. struct AAReachability : public StateWrapper { using Base = StateWrapper; AAReachability(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Returns true if 'From' instruction is assumed to reach, 'To' instruction. /// Users should provide two positions they are interested in, and the class /// determines (and caches) reachability. bool isAssumedReachable(Attributor &A, const Instruction &From, const Instruction &To) const { return A.getInfoCache().getPotentiallyReachable(From, To); } /// Returns true if 'From' instruction is known to reach, 'To' instruction. /// Users should provide two positions they are interested in, and the class /// determines (and caches) reachability. bool isKnownReachable(Attributor &A, const Instruction &From, const Instruction &To) const { return A.getInfoCache().getPotentiallyReachable(From, To); } /// Create an abstract attribute view for the position \p IRP. static AAReachability &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AAReachability"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAReachability static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for all noalias attributes. struct AANoAlias : public IRAttribute> { AANoAlias(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Return true if we assume that the underlying value is alias. bool isAssumedNoAlias() const { return getAssumed(); } /// Return true if we know that underlying value is noalias. bool isKnownNoAlias() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoAlias &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AANoAlias"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AANoAlias static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An AbstractAttribute for nofree. struct AANoFree : public IRAttribute> { AANoFree(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Return true if "nofree" is assumed. bool isAssumedNoFree() const { return getAssumed(); } /// Return true if "nofree" is known. bool isKnownNoFree() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoFree &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AANoFree"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AANoFree static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An AbstractAttribute for noreturn. struct AANoReturn : public IRAttribute> { AANoReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Return true if the underlying object is assumed to never return. bool isAssumedNoReturn() const { return getAssumed(); } /// Return true if the underlying object is known to never return. bool isKnownNoReturn() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoReturn &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AANoReturn"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AANoReturn static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for liveness abstract attribute. struct AAIsDead : public StateWrapper { using Base = StateWrapper; AAIsDead(const IRPosition &IRP, Attributor &A) : Base(IRP) {} protected: /// The query functions are protected such that other attributes need to go /// through the Attributor interfaces: `Attributor::isAssumedDead(...)` /// Returns true if the underlying value is assumed dead. virtual bool isAssumedDead() const = 0; /// Returns true if the underlying value is known dead. virtual bool isKnownDead() const = 0; /// Returns true if \p BB is assumed dead. virtual bool isAssumedDead(const BasicBlock *BB) const = 0; /// Returns true if \p BB is known dead. virtual bool isKnownDead(const BasicBlock *BB) const = 0; /// Returns true if \p I is assumed dead. virtual bool isAssumedDead(const Instruction *I) const = 0; /// Returns true if \p I is known dead. virtual bool isKnownDead(const Instruction *I) const = 0; /// This method is used to check if at least one instruction in a collection /// of instructions is live. template bool isLiveInstSet(T begin, T end) const { for (const auto &I : llvm::make_range(begin, end)) { assert(I->getFunction() == getIRPosition().getAssociatedFunction() && "Instruction must be in the same anchor scope function."); if (!isAssumedDead(I)) return true; } return false; } public: /// Create an abstract attribute view for the position \p IRP. static AAIsDead &createForPosition(const IRPosition &IRP, Attributor &A); /// Determine if \p F might catch asynchronous exceptions. static bool mayCatchAsynchronousExceptions(const Function &F) { return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F); } /// Return if the edge from \p From BB to \p To BB is assumed dead. /// This is specifically useful in AAReachability. virtual bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const { return false; } /// See AbstractAttribute::getName() const std::string getName() const override { return "AAIsDead"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AAIsDead static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; friend struct Attributor; }; /// State for dereferenceable attribute struct DerefState : AbstractState { static DerefState getBestState() { return DerefState(); } static DerefState getBestState(const DerefState &) { return getBestState(); } /// Return the worst possible representable state. static DerefState getWorstState() { DerefState DS; DS.indicatePessimisticFixpoint(); return DS; } static DerefState getWorstState(const DerefState &) { return getWorstState(); } /// State representing for dereferenceable bytes. IncIntegerState<> DerefBytesState; /// Map representing for accessed memory offsets and sizes. /// A key is Offset and a value is size. /// If there is a load/store instruction something like, /// p[offset] = v; /// (offset, sizeof(v)) will be inserted to this map. /// std::map is used because we want to iterate keys in ascending order. std::map AccessedBytesMap; /// Helper function to calculate dereferenceable bytes from current known /// bytes and accessed bytes. /// /// int f(int *A){ /// *A = 0; /// *(A+2) = 2; /// *(A+1) = 1; /// *(A+10) = 10; /// } /// ``` /// In that case, AccessedBytesMap is `{0:4, 4:4, 8:4, 40:4}`. /// AccessedBytesMap is std::map so it is iterated in accending order on /// key(Offset). So KnownBytes will be updated like this: /// /// |Access | KnownBytes /// |(0, 4)| 0 -> 4 /// |(4, 4)| 4 -> 8 /// |(8, 4)| 8 -> 12 /// |(40, 4) | 12 (break) void computeKnownDerefBytesFromAccessedMap() { int64_t KnownBytes = DerefBytesState.getKnown(); for (auto &Access : AccessedBytesMap) { if (KnownBytes < Access.first) break; KnownBytes = std::max(KnownBytes, Access.first + (int64_t)Access.second); } DerefBytesState.takeKnownMaximum(KnownBytes); } /// State representing that whether the value is globaly dereferenceable. BooleanState GlobalState; /// See AbstractState::isValidState() bool isValidState() const override { return DerefBytesState.isValidState(); } /// See AbstractState::isAtFixpoint() bool isAtFixpoint() const override { return !isValidState() || (DerefBytesState.isAtFixpoint() && GlobalState.isAtFixpoint()); } /// See AbstractState::indicateOptimisticFixpoint(...) ChangeStatus indicateOptimisticFixpoint() override { DerefBytesState.indicateOptimisticFixpoint(); GlobalState.indicateOptimisticFixpoint(); return ChangeStatus::UNCHANGED; } /// See AbstractState::indicatePessimisticFixpoint(...) ChangeStatus indicatePessimisticFixpoint() override { DerefBytesState.indicatePessimisticFixpoint(); GlobalState.indicatePessimisticFixpoint(); return ChangeStatus::CHANGED; } /// Update known dereferenceable bytes. void takeKnownDerefBytesMaximum(uint64_t Bytes) { DerefBytesState.takeKnownMaximum(Bytes); // Known bytes might increase. computeKnownDerefBytesFromAccessedMap(); } /// Update assumed dereferenceable bytes. void takeAssumedDerefBytesMinimum(uint64_t Bytes) { DerefBytesState.takeAssumedMinimum(Bytes); } /// Add accessed bytes to the map. void addAccessedBytes(int64_t Offset, uint64_t Size) { uint64_t &AccessedBytes = AccessedBytesMap[Offset]; AccessedBytes = std::max(AccessedBytes, Size); // Known bytes might increase. computeKnownDerefBytesFromAccessedMap(); } /// Equality for DerefState. bool operator==(const DerefState &R) const { return this->DerefBytesState == R.DerefBytesState && this->GlobalState == R.GlobalState; } /// Inequality for DerefState. bool operator!=(const DerefState &R) const { return !(*this == R); } /// See IntegerStateBase::operator^= DerefState operator^=(const DerefState &R) { DerefBytesState ^= R.DerefBytesState; GlobalState ^= R.GlobalState; return *this; } /// See IntegerStateBase::operator+= DerefState operator+=(const DerefState &R) { DerefBytesState += R.DerefBytesState; GlobalState += R.GlobalState; return *this; } /// See IntegerStateBase::operator&= DerefState operator&=(const DerefState &R) { DerefBytesState &= R.DerefBytesState; GlobalState &= R.GlobalState; return *this; } /// See IntegerStateBase::operator|= DerefState operator|=(const DerefState &R) { DerefBytesState |= R.DerefBytesState; GlobalState |= R.GlobalState; return *this; } protected: const AANonNull *NonNullAA = nullptr; }; /// An abstract interface for all dereferenceable attribute. struct AADereferenceable : public IRAttribute> { AADereferenceable(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Return true if we assume that the underlying value is nonnull. bool isAssumedNonNull() const { return NonNullAA && NonNullAA->isAssumedNonNull(); } /// Return true if we know that the underlying value is nonnull. bool isKnownNonNull() const { return NonNullAA && NonNullAA->isKnownNonNull(); } /// Return true if we assume that underlying value is /// dereferenceable(_or_null) globally. bool isAssumedGlobal() const { return GlobalState.getAssumed(); } /// Return true if we know that underlying value is /// dereferenceable(_or_null) globally. bool isKnownGlobal() const { return GlobalState.getKnown(); } /// Return assumed dereferenceable bytes. uint32_t getAssumedDereferenceableBytes() const { return DerefBytesState.getAssumed(); } /// Return known dereferenceable bytes. uint32_t getKnownDereferenceableBytes() const { return DerefBytesState.getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AADereferenceable &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AADereferenceable"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AADereferenceable static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; using AAAlignmentStateType = IncIntegerState; /// An abstract interface for all align attributes. struct AAAlign : public IRAttribute< Attribute::Alignment, StateWrapper> { AAAlign(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Return assumed alignment. unsigned getAssumedAlign() const { return getAssumed(); } /// Return known alignment. unsigned getKnownAlign() const { return getKnown(); } /// See AbstractAttribute::getName() const std::string getName() const override { return "AAAlign"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AAAlign static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Create an abstract attribute view for the position \p IRP. static AAAlign &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for all nocapture attributes. struct AANoCapture : public IRAttribute< Attribute::NoCapture, StateWrapper, AbstractAttribute>> { AANoCapture(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// State encoding bits. A set bit in the state means the property holds. /// NO_CAPTURE is the best possible state, 0 the worst possible state. enum { NOT_CAPTURED_IN_MEM = 1 << 0, NOT_CAPTURED_IN_INT = 1 << 1, NOT_CAPTURED_IN_RET = 1 << 2, /// If we do not capture the value in memory or through integers we can only /// communicate it back as a derived pointer. NO_CAPTURE_MAYBE_RETURNED = NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT, /// If we do not capture the value in memory, through integers, or as a /// derived pointer we know it is not captured. NO_CAPTURE = NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT | NOT_CAPTURED_IN_RET, }; /// Return true if we know that the underlying value is not captured in its /// respective scope. bool isKnownNoCapture() const { return isKnown(NO_CAPTURE); } /// Return true if we assume that the underlying value is not captured in its /// respective scope. bool isAssumedNoCapture() const { return isAssumed(NO_CAPTURE); } /// Return true if we know that the underlying value is not captured in its /// respective scope but we allow it to escape through a "return". bool isKnownNoCaptureMaybeReturned() const { return isKnown(NO_CAPTURE_MAYBE_RETURNED); } /// Return true if we assume that the underlying value is not captured in its /// respective scope but we allow it to escape through a "return". bool isAssumedNoCaptureMaybeReturned() const { return isAssumed(NO_CAPTURE_MAYBE_RETURNED); } /// Create an abstract attribute view for the position \p IRP. static AANoCapture &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AANoCapture"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AANoCapture static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for value simplify abstract attribute. struct AAValueSimplify : public StateWrapper { using Base = StateWrapper; AAValueSimplify(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Return an assumed simplified value if a single candidate is found. If /// there cannot be one, return original value. If it is not clear yet, return /// the Optional::NoneType. virtual Optional getAssumedSimplifiedValue(Attributor &A) const = 0; /// Create an abstract attribute view for the position \p IRP. static AAValueSimplify &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AAValueSimplify"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAValueSimplify static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; struct AAHeapToStack : public StateWrapper { using Base = StateWrapper; AAHeapToStack(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Returns true if HeapToStack conversion is assumed to be possible. bool isAssumedHeapToStack() const { return getAssumed(); } /// Returns true if HeapToStack conversion is known to be possible. bool isKnownHeapToStack() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AAHeapToStack &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AAHeapToStack"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AAHeapToStack static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for privatizability. /// /// A pointer is privatizable if it can be replaced by a new, private one. /// Privatizing pointer reduces the use count, interaction between unrelated /// code parts. /// /// In order for a pointer to be privatizable its value cannot be observed /// (=nocapture), it is (for now) not written (=readonly & noalias), we know /// what values are necessary to make the private copy look like the original /// one, and the values we need can be loaded (=dereferenceable). struct AAPrivatizablePtr : public StateWrapper { using Base = StateWrapper; AAPrivatizablePtr(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Returns true if pointer privatization is assumed to be possible. bool isAssumedPrivatizablePtr() const { return getAssumed(); } /// Returns true if pointer privatization is known to be possible. bool isKnownPrivatizablePtr() const { return getKnown(); } /// Return the type we can choose for a private copy of the underlying /// value. None means it is not clear yet, nullptr means there is none. virtual Optional getPrivatizableType() const = 0; /// Create an abstract attribute view for the position \p IRP. static AAPrivatizablePtr &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AAPrivatizablePtr"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAPricatizablePtr static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for memory access kind related attributes /// (readnone/readonly/writeonly). struct AAMemoryBehavior : public IRAttribute< Attribute::ReadNone, StateWrapper, AbstractAttribute>> { AAMemoryBehavior(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// State encoding bits. A set bit in the state means the property holds. /// BEST_STATE is the best possible state, 0 the worst possible state. enum { NO_READS = 1 << 0, NO_WRITES = 1 << 1, NO_ACCESSES = NO_READS | NO_WRITES, BEST_STATE = NO_ACCESSES, }; static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value"); /// Return true if we know that the underlying value is not read or accessed /// in its respective scope. bool isKnownReadNone() const { return isKnown(NO_ACCESSES); } /// Return true if we assume that the underlying value is not read or accessed /// in its respective scope. bool isAssumedReadNone() const { return isAssumed(NO_ACCESSES); } /// Return true if we know that the underlying value is not accessed /// (=written) in its respective scope. bool isKnownReadOnly() const { return isKnown(NO_WRITES); } /// Return true if we assume that the underlying value is not accessed /// (=written) in its respective scope. bool isAssumedReadOnly() const { return isAssumed(NO_WRITES); } /// Return true if we know that the underlying value is not read in its /// respective scope. bool isKnownWriteOnly() const { return isKnown(NO_READS); } /// Return true if we assume that the underlying value is not read in its /// respective scope. bool isAssumedWriteOnly() const { return isAssumed(NO_READS); } /// Create an abstract attribute view for the position \p IRP. static AAMemoryBehavior &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AAMemoryBehavior"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAMemoryBehavior static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for all memory location attributes /// (readnone/argmemonly/inaccessiblememonly/inaccessibleorargmemonly). struct AAMemoryLocation : public IRAttribute< Attribute::ReadNone, StateWrapper, AbstractAttribute>> { using MemoryLocationsKind = StateType::base_t; AAMemoryLocation(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Encoding of different locations that could be accessed by a memory /// access. enum { ALL_LOCATIONS = 0, NO_LOCAL_MEM = 1 << 0, NO_CONST_MEM = 1 << 1, NO_GLOBAL_INTERNAL_MEM = 1 << 2, NO_GLOBAL_EXTERNAL_MEM = 1 << 3, NO_GLOBAL_MEM = NO_GLOBAL_INTERNAL_MEM | NO_GLOBAL_EXTERNAL_MEM, NO_ARGUMENT_MEM = 1 << 4, NO_INACCESSIBLE_MEM = 1 << 5, NO_MALLOCED_MEM = 1 << 6, NO_UNKOWN_MEM = 1 << 7, NO_LOCATIONS = NO_LOCAL_MEM | NO_CONST_MEM | NO_GLOBAL_INTERNAL_MEM | NO_GLOBAL_EXTERNAL_MEM | NO_ARGUMENT_MEM | NO_INACCESSIBLE_MEM | NO_MALLOCED_MEM | NO_UNKOWN_MEM, // Helper bit to track if we gave up or not. VALID_STATE = NO_LOCATIONS + 1, BEST_STATE = NO_LOCATIONS | VALID_STATE, }; static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value"); /// Return true if we know that the associated functions has no observable /// accesses. bool isKnownReadNone() const { return isKnown(NO_LOCATIONS); } /// Return true if we assume that the associated functions has no observable /// accesses. bool isAssumedReadNone() const { return isAssumed(NO_LOCATIONS) | isAssumedStackOnly(); } /// Return true if we know that the associated functions has at most /// local/stack accesses. bool isKnowStackOnly() const { return isKnown(inverseLocation(NO_LOCAL_MEM, true, true)); } /// Return true if we assume that the associated functions has at most /// local/stack accesses. bool isAssumedStackOnly() const { return isAssumed(inverseLocation(NO_LOCAL_MEM, true, true)); } /// Return true if we know that the underlying value will only access /// inaccesible memory only (see Attribute::InaccessibleMemOnly). bool isKnownInaccessibleMemOnly() const { return isKnown(inverseLocation(NO_INACCESSIBLE_MEM, true, true)); } /// Return true if we assume that the underlying value will only access /// inaccesible memory only (see Attribute::InaccessibleMemOnly). bool isAssumedInaccessibleMemOnly() const { return isAssumed(inverseLocation(NO_INACCESSIBLE_MEM, true, true)); } /// Return true if we know that the underlying value will only access /// argument pointees (see Attribute::ArgMemOnly). bool isKnownArgMemOnly() const { return isKnown(inverseLocation(NO_ARGUMENT_MEM, true, true)); } /// Return true if we assume that the underlying value will only access /// argument pointees (see Attribute::ArgMemOnly). bool isAssumedArgMemOnly() const { return isAssumed(inverseLocation(NO_ARGUMENT_MEM, true, true)); } /// Return true if we know that the underlying value will only access /// inaccesible memory or argument pointees (see /// Attribute::InaccessibleOrArgMemOnly). bool isKnownInaccessibleOrArgMemOnly() const { return isKnown( inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true)); } /// Return true if we assume that the underlying value will only access /// inaccesible memory or argument pointees (see /// Attribute::InaccessibleOrArgMemOnly). bool isAssumedInaccessibleOrArgMemOnly() const { return isAssumed( inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true)); } /// Return true if the underlying value may access memory through arguement /// pointers of the associated function, if any. bool mayAccessArgMem() const { return !isAssumed(NO_ARGUMENT_MEM); } /// Return true if only the memory locations specififed by \p MLK are assumed /// to be accessed by the associated function. bool isAssumedSpecifiedMemOnly(MemoryLocationsKind MLK) const { return isAssumed(MLK); } /// Return the locations that are assumed to be not accessed by the associated /// function, if any. MemoryLocationsKind getAssumedNotAccessedLocation() const { return getAssumed(); } /// Return the inverse of location \p Loc, thus for NO_XXX the return /// describes ONLY_XXX. The flags \p AndLocalMem and \p AndConstMem determine /// if local (=stack) and constant memory are allowed as well. Most of the /// time we do want them to be included, e.g., argmemonly allows accesses via /// argument pointers or local or constant memory accesses. static MemoryLocationsKind inverseLocation(MemoryLocationsKind Loc, bool AndLocalMem, bool AndConstMem) { return NO_LOCATIONS & ~(Loc | (AndLocalMem ? NO_LOCAL_MEM : 0) | (AndConstMem ? NO_CONST_MEM : 0)); }; /// Return the locations encoded by \p MLK as a readable string. static std::string getMemoryLocationsAsStr(MemoryLocationsKind MLK); /// Simple enum to distinguish read/write/read-write accesses. enum AccessKind { NONE = 0, READ = 1 << 0, WRITE = 1 << 1, READ_WRITE = READ | WRITE, }; /// Check \p Pred on all accesses to the memory kinds specified by \p MLK. /// /// This method will evaluate \p Pred on all accesses (access instruction + /// underlying accessed memory pointer) and it will return true if \p Pred /// holds every time. virtual bool checkForAllAccessesToMemoryKind( function_ref Pred, MemoryLocationsKind MLK) const = 0; /// Create an abstract attribute view for the position \p IRP. static AAMemoryLocation &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractState::getAsStr(). const std::string getAsStr() const override { return getMemoryLocationsAsStr(getAssumedNotAccessedLocation()); } /// See AbstractAttribute::getName() const std::string getName() const override { return "AAMemoryLocation"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAMemoryLocation static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for range value analysis. struct AAValueConstantRange : public StateWrapper { using Base = StateWrapper; AAValueConstantRange(const IRPosition &IRP, Attributor &A) : Base(IRP, IRP.getAssociatedType()->getIntegerBitWidth()) {} /// See AbstractAttribute::getState(...). IntegerRangeState &getState() override { return *this; } const IntegerRangeState &getState() const override { return *this; } /// Create an abstract attribute view for the position \p IRP. static AAValueConstantRange &createForPosition(const IRPosition &IRP, Attributor &A); /// Return an assumed range for the assocaited value a program point \p CtxI. /// If \p I is nullptr, simply return an assumed range. virtual ConstantRange getAssumedConstantRange(Attributor &A, const Instruction *CtxI = nullptr) const = 0; /// Return a known range for the assocaited value at a program point \p CtxI. /// If \p I is nullptr, simply return a known range. virtual ConstantRange getKnownConstantRange(Attributor &A, const Instruction *CtxI = nullptr) const = 0; /// Return an assumed constant for the assocaited value a program point \p /// CtxI. Optional getAssumedConstantInt(Attributor &A, const Instruction *CtxI = nullptr) const { ConstantRange RangeV = getAssumedConstantRange(A, CtxI); if (auto *C = RangeV.getSingleElement()) return cast( ConstantInt::get(getAssociatedValue().getType(), *C)); if (RangeV.isEmptySet()) return llvm::None; return nullptr; } /// See AbstractAttribute::getName() const std::string getName() const override { return "AAValueConstantRange"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAValueConstantRange static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// A class for a set state. /// The assumed boolean state indicates whether the corresponding set is full /// set or not. If the assumed state is false, this is the worst state. The /// worst state (invalid state) of set of potential values is when the set /// contains every possible value (i.e. we cannot in any way limit the value /// that the target position can take). That never happens naturally, we only /// force it. As for the conditions under which we force it, see /// AAPotentialValues. template > struct PotentialValuesState : AbstractState { using SetTy = DenseSet; PotentialValuesState() : IsValidState(true), UndefIsContained(false) {} PotentialValuesState(bool IsValid) : IsValidState(IsValid), UndefIsContained(false) {} /// See AbstractState::isValidState(...) bool isValidState() const override { return IsValidState.isValidState(); } /// See AbstractState::isAtFixpoint(...) bool isAtFixpoint() const override { return IsValidState.isAtFixpoint(); } /// See AbstractState::indicatePessimisticFixpoint(...) ChangeStatus indicatePessimisticFixpoint() override { return IsValidState.indicatePessimisticFixpoint(); } /// See AbstractState::indicateOptimisticFixpoint(...) ChangeStatus indicateOptimisticFixpoint() override { return IsValidState.indicateOptimisticFixpoint(); } /// Return the assumed state PotentialValuesState &getAssumed() { return *this; } const PotentialValuesState &getAssumed() const { return *this; } /// Return this set. We should check whether this set is valid or not by /// isValidState() before calling this function. const SetTy &getAssumedSet() const { assert(isValidState() && "This set shoud not be used when it is invalid!"); return Set; } /// Returns whether this state contains an undef value or not. bool undefIsContained() const { assert(isValidState() && "This flag shoud not be used when it is invalid!"); return UndefIsContained; } bool operator==(const PotentialValuesState &RHS) const { if (isValidState() != RHS.isValidState()) return false; if (!isValidState() && !RHS.isValidState()) return true; if (undefIsContained() != RHS.undefIsContained()) return false; return Set == RHS.getAssumedSet(); } /// Maximum number of potential values to be tracked. /// This is set by -attributor-max-potential-values command line option static unsigned MaxPotentialValues; /// Return empty set as the best state of potential values. static PotentialValuesState getBestState() { return PotentialValuesState(true); } static PotentialValuesState getBestState(PotentialValuesState &PVS) { return getBestState(); } /// Return full set as the worst state of potential values. static PotentialValuesState getWorstState() { return PotentialValuesState(false); } /// Union assumed set with the passed value. void unionAssumed(const MemberTy &C) { insert(C); } /// Union assumed set with assumed set of the passed state \p PVS. void unionAssumed(const PotentialValuesState &PVS) { unionWith(PVS); } /// Union assumed set with an undef value. void unionAssumedWithUndef() { unionWithUndef(); } /// "Clamp" this state with \p PVS. PotentialValuesState operator^=(const PotentialValuesState &PVS) { IsValidState ^= PVS.IsValidState; unionAssumed(PVS); return *this; } PotentialValuesState operator&=(const PotentialValuesState &PVS) { IsValidState &= PVS.IsValidState; unionAssumed(PVS); return *this; } private: /// Check the size of this set, and invalidate when the size is no /// less than \p MaxPotentialValues threshold. void checkAndInvalidate() { if (Set.size() >= MaxPotentialValues) indicatePessimisticFixpoint(); } /// If this state contains both undef and not undef, we can reduce /// undef to the not undef value. void reduceUndefValue() { UndefIsContained = UndefIsContained & Set.empty(); } /// Insert an element into this set. void insert(const MemberTy &C) { if (!isValidState()) return; Set.insert(C); checkAndInvalidate(); } /// Take union with R. void unionWith(const PotentialValuesState &R) { /// If this is a full set, do nothing.; if (!isValidState()) return; /// If R is full set, change L to a full set. if (!R.isValidState()) { indicatePessimisticFixpoint(); return; } for (const MemberTy &C : R.Set) Set.insert(C); UndefIsContained |= R.undefIsContained(); reduceUndefValue(); checkAndInvalidate(); } /// Take union with an undef value. void unionWithUndef() { UndefIsContained = true; reduceUndefValue(); } /// Take intersection with R. void intersectWith(const PotentialValuesState &R) { /// If R is a full set, do nothing. if (!R.isValidState()) return; /// If this is a full set, change this to R. if (!isValidState()) { *this = R; return; } SetTy IntersectSet; for (const MemberTy &C : Set) { if (R.Set.count(C)) IntersectSet.insert(C); } Set = IntersectSet; UndefIsContained &= R.undefIsContained(); reduceUndefValue(); } /// A helper state which indicate whether this state is valid or not. BooleanState IsValidState; /// Container for potential values SetTy Set; /// Flag for undef value bool UndefIsContained; }; using PotentialConstantIntValuesState = PotentialValuesState; raw_ostream &operator<<(raw_ostream &OS, const PotentialConstantIntValuesState &R); /// An abstract interface for potential values analysis. /// /// This AA collects potential values for each IR position. /// An assumed set of potential values is initialized with the empty set (the /// best state) and it will grow monotonically as we find more potential values /// for this position. /// The set might be forced to the worst state, that is, to contain every /// possible value for this position in 2 cases. /// 1. We surpassed the \p MaxPotentialValues threshold. This includes the /// case that this position is affected (e.g. because of an operation) by a /// Value that is in the worst state. /// 2. We tried to initialize on a Value that we cannot handle (e.g. an /// operator we do not currently handle). /// /// TODO: Support values other than constant integers. struct AAPotentialValues : public StateWrapper { using Base = StateWrapper; AAPotentialValues(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// See AbstractAttribute::getState(...). PotentialConstantIntValuesState &getState() override { return *this; } const PotentialConstantIntValuesState &getState() const override { return *this; } /// Create an abstract attribute view for the position \p IRP. static AAPotentialValues &createForPosition(const IRPosition &IRP, Attributor &A); /// Return assumed constant for the associated value Optional getAssumedConstantInt(Attributor &A, const Instruction *CtxI = nullptr) const { if (!isValidState()) return nullptr; if (getAssumedSet().size() == 1) return cast(ConstantInt::get(getAssociatedValue().getType(), *(getAssumedSet().begin()))); if (getAssumedSet().size() == 0) { if (undefIsContained()) return cast( ConstantInt::get(getAssociatedValue().getType(), 0)); return llvm::None; } return nullptr; } /// See AbstractAttribute::getName() const std::string getName() const override { return "AAPotentialValues"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAPotentialValues static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for all noundef attributes. struct AANoUndef : public IRAttribute> { AANoUndef(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} /// Return true if we assume that the underlying value is noundef. bool isAssumedNoUndef() const { return getAssumed(); } /// Return true if we know that underlying value is noundef. bool isKnownNoUndef() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoUndef &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName() const std::string getName() const override { return "AANoUndef"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AANoUndef static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; /// Run options, used by the pass manager. enum AttributorRunOption { NONE = 0, MODULE = 1 << 0, CGSCC = 1 << 1, ALL = MODULE | CGSCC }; } // end namespace llvm #endif // LLVM_TRANSFORMS_IPO_FUNCTIONATTRS_H