//===- Combine.td - Combine rule definitions ---------------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Declare GlobalISel combine rules and provide mechanisms to opt-out. // //===----------------------------------------------------------------------===// // Common base class for GICombineRule and GICombineGroup. class GICombine { // See GICombineGroup. We only declare it here to make the tablegen pass // simpler. list Rules = ?; } // A group of combine rules that can be added to a GICombiner or another group. class GICombineGroup rules> : GICombine { // The rules contained in this group. The rules in a group are flattened into // a single list and sorted into whatever order is most efficient. However, // they will never be re-ordered such that behaviour differs from the // specified order. It is therefore possible to use the order of rules in this // list to describe priorities. let Rules = rules; } class GICombinerHelperArg { string Type = type; string Name = name; } // Declares a combiner helper class class GICombinerHelper rules> : GICombineGroup { // The class name to use in the generated output. string Classname = classname; // The name of a run-time compiler option that will be generated to disable // specific rules within this combiner. string DisableRuleOption = ?; // The state class to inherit from (if any). The generated helper will inherit // from this class and will forward arguments to its constructors. string StateClass = ""; // Any additional arguments that should be appended to the tryCombine*(). list AdditionalArguments = [GICombinerHelperArg<"CombinerHelper &", "Helper">]; } class GICombineRule : GICombine { /// Defines the external interface of the match rule. This includes: /// * The names of the root nodes (requires at least one) /// See GIDefKind for details. dag Defs = defs; /// Defines the things which must be true for the pattern to match /// See GIMatchKind for details. dag Match = match; /// Defines the things which happen after the decision is made to apply a /// combine rule. /// See GIApplyKind for details. dag Apply = apply; } /// The operator at the root of a GICombineRule.Defs dag. def defs; /// All arguments of the defs operator must be subclasses of GIDefKind or /// sub-dags whose operator is GIDefKindWithArgs. class GIDefKind; class GIDefKindWithArgs; /// Declare a root node. There must be at least one of these in every combine /// rule. /// TODO: The plan is to elide `root` definitions and determine it from the DAG /// itself with an overide for situations where the usual determination /// is incorrect. def root : GIDefKind; /// Declares data that is passed from the match stage to the apply stage. class GIDefMatchData : GIDefKind { /// A C++ type name indicating the storage type. string Type = type; } def extending_load_matchdata : GIDefMatchData<"PreferredTuple">; def indexed_load_store_matchdata : GIDefMatchData<"IndexedLoadStoreMatchInfo">; def instruction_steps_matchdata: GIDefMatchData<"InstructionStepsMatchInfo">; /// The operator at the root of a GICombineRule.Match dag. def match; /// All arguments of the match operator must be either: /// * A subclass of GIMatchKind /// * A subclass of GIMatchKindWithArgs /// * A subclass of Instruction /// * A MIR code block (deprecated) /// The GIMatchKind and GIMatchKindWithArgs cases are described in more detail /// in their definitions below. /// For the Instruction case, these are collected into a DAG where operand names /// that occur multiple times introduce edges. class GIMatchKind; class GIMatchKindWithArgs; /// In lieu of having proper macro support. Trivial one-off opcode checks can be /// performed with this. def wip_match_opcode : GIMatchKindWithArgs; /// The operator at the root of a GICombineRule.Apply dag. def apply; /// All arguments of the apply operator must be subclasses of GIApplyKind, or /// sub-dags whose operator is GIApplyKindWithArgs, or an MIR block /// (deprecated). class GIApplyKind; class GIApplyKindWithArgs; def copy_prop : GICombineRule< (defs root:$d), (match (COPY $d, $s):$mi, [{ return Helper.matchCombineCopy(*${mi}); }]), (apply [{ Helper.applyCombineCopy(*${mi}); }])>; def extending_loads : GICombineRule< (defs root:$root, extending_load_matchdata:$matchinfo), (match (wip_match_opcode G_LOAD, G_SEXTLOAD, G_ZEXTLOAD):$root, [{ return Helper.matchCombineExtendingLoads(*${root}, ${matchinfo}); }]), (apply [{ Helper.applyCombineExtendingLoads(*${root}, ${matchinfo}); }])>; def combines_for_extload: GICombineGroup<[extending_loads]>; def sext_trunc_sextload : GICombineRule< (defs root:$d), (match (wip_match_opcode G_SEXT_INREG):$d, [{ return Helper.matchSextTruncSextLoad(*${d}); }]), (apply [{ Helper.applySextTruncSextLoad(*${d}); }])>; def sext_inreg_of_load_matchdata : GIDefMatchData<"std::tuple">; def sext_inreg_of_load : GICombineRule< (defs root:$root, sext_inreg_of_load_matchdata:$matchinfo), (match (wip_match_opcode G_SEXT_INREG):$root, [{ return Helper.matchSextInRegOfLoad(*${root}, ${matchinfo}); }]), (apply [{ return Helper.applySextInRegOfLoad(*${root}, ${matchinfo}); }])>; def combine_indexed_load_store : GICombineRule< (defs root:$root, indexed_load_store_matchdata:$matchinfo), (match (wip_match_opcode G_LOAD, G_SEXTLOAD, G_ZEXTLOAD, G_STORE):$root, [{ return Helper.matchCombineIndexedLoadStore(*${root}, ${matchinfo}); }]), (apply [{ Helper.applyCombineIndexedLoadStore(*${root}, ${matchinfo}); }])>; def opt_brcond_by_inverting_cond : GICombineRule< (defs root:$root), (match (wip_match_opcode G_BR):$root, [{ return Helper.matchOptBrCondByInvertingCond(*${root}); }]), (apply [{ Helper.applyOptBrCondByInvertingCond(*${root}); }])>; def ptr_add_immed_matchdata : GIDefMatchData<"PtrAddChain">; def ptr_add_immed_chain : GICombineRule< (defs root:$d, ptr_add_immed_matchdata:$matchinfo), (match (wip_match_opcode G_PTR_ADD):$d, [{ return Helper.matchPtrAddImmedChain(*${d}, ${matchinfo}); }]), (apply [{ Helper.applyPtrAddImmedChain(*${d}, ${matchinfo}); }])>; // Fold shift (shift base x), y -> shift base, (x+y), if shifts are same def shift_immed_matchdata : GIDefMatchData<"RegisterImmPair">; def shift_immed_chain : GICombineRule< (defs root:$d, shift_immed_matchdata:$matchinfo), (match (wip_match_opcode G_SHL, G_ASHR, G_LSHR, G_SSHLSAT, G_USHLSAT):$d, [{ return Helper.matchShiftImmedChain(*${d}, ${matchinfo}); }]), (apply [{ Helper.applyShiftImmedChain(*${d}, ${matchinfo}); }])>; // Transform shift (logic (shift X, C0), Y), C1 // -> logic (shift X, (C0+C1)), (shift Y, C1), if shifts are same def shift_of_shifted_logic_matchdata : GIDefMatchData<"ShiftOfShiftedLogic">; def shift_of_shifted_logic_chain : GICombineRule< (defs root:$d, shift_of_shifted_logic_matchdata:$matchinfo), (match (wip_match_opcode G_SHL, G_ASHR, G_LSHR, G_USHLSAT, G_SSHLSAT):$d, [{ return Helper.matchShiftOfShiftedLogic(*${d}, ${matchinfo}); }]), (apply [{ Helper.applyShiftOfShiftedLogic(*${d}, ${matchinfo}); }])>; def mul_to_shl_matchdata : GIDefMatchData<"unsigned">; def mul_to_shl : GICombineRule< (defs root:$d, mul_to_shl_matchdata:$matchinfo), (match (G_MUL $d, $op1, $op2):$mi, [{ return Helper.matchCombineMulToShl(*${mi}, ${matchinfo}); }]), (apply [{ Helper.applyCombineMulToShl(*${mi}, ${matchinfo}); }])>; // shl ([asz]ext x), y => zext (shl x, y), if shift does not overflow int def reduce_shl_of_extend_matchdata : GIDefMatchData<"RegisterImmPair">; def reduce_shl_of_extend : GICombineRule< (defs root:$dst, reduce_shl_of_extend_matchdata:$matchinfo), (match (G_SHL $dst, $src0, $src1):$mi, [{ return Helper.matchCombineShlOfExtend(*${mi}, ${matchinfo}); }]), (apply [{ Helper.applyCombineShlOfExtend(*${mi}, ${matchinfo}); }])>; // [us]itofp(undef) = 0, because the result value is bounded. def undef_to_fp_zero : GICombineRule< (defs root:$root), (match (wip_match_opcode G_UITOFP, G_SITOFP):$root, [{ return Helper.matchAnyExplicitUseIsUndef(*${root}); }]), (apply [{ Helper.replaceInstWithFConstant(*${root}, 0.0); }])>; def undef_to_int_zero: GICombineRule< (defs root:$root), (match (wip_match_opcode G_AND, G_MUL):$root, [{ return Helper.matchAnyExplicitUseIsUndef(*${root}); }]), (apply [{ Helper.replaceInstWithConstant(*${root}, 0); }])>; def undef_to_negative_one: GICombineRule< (defs root:$root), (match (wip_match_opcode G_OR):$root, [{ return Helper.matchAnyExplicitUseIsUndef(*${root}); }]), (apply [{ Helper.replaceInstWithConstant(*${root}, -1); }])>; def binop_left_undef_to_zero: GICombineRule< (defs root:$root), (match (wip_match_opcode G_SHL):$root, [{ return Helper.matchOperandIsUndef(*${root}, 1); }]), (apply [{ Helper.replaceInstWithConstant(*${root}, 0); }])>; // Instructions where if any source operand is undef, the instruction can be // replaced with undef. def propagate_undef_any_op: GICombineRule< (defs root:$root), (match (wip_match_opcode G_ADD, G_FPTOSI, G_FPTOUI, G_SUB, G_XOR, G_TRUNC):$root, [{ return Helper.matchAnyExplicitUseIsUndef(*${root}); }]), (apply [{ Helper.replaceInstWithUndef(*${root}); }])>; // Instructions where if all source operands are undef, the instruction can be // replaced with undef. def propagate_undef_all_ops: GICombineRule< (defs root:$root), (match (wip_match_opcode G_SHUFFLE_VECTOR):$root, [{ return Helper.matchAllExplicitUsesAreUndef(*${root}); }]), (apply [{ Helper.replaceInstWithUndef(*${root}); }])>; // Replace a G_SHUFFLE_VECTOR with an undef mask with a G_IMPLICIT_DEF. def propagate_undef_shuffle_mask: GICombineRule< (defs root:$root), (match (wip_match_opcode G_SHUFFLE_VECTOR):$root, [{ return Helper.matchUndefShuffleVectorMask(*${root}); }]), (apply [{ Helper.replaceInstWithUndef(*${root}); }])>; // Fold (cond ? x : x) -> x def select_same_val: GICombineRule< (defs root:$root), (match (wip_match_opcode G_SELECT):$root, [{ return Helper.matchSelectSameVal(*${root}); }]), (apply [{ return Helper.replaceSingleDefInstWithOperand(*${root}, 2); }]) >; // Fold (undef ? x : y) -> y def select_undef_cmp: GICombineRule< (defs root:$root), (match (wip_match_opcode G_SELECT):$root, [{ return Helper.matchUndefSelectCmp(*${root}); }]), (apply [{ return Helper.replaceSingleDefInstWithOperand(*${root}, 2); }]) >; // Fold (true ? x : y) -> x // Fold (false ? x : y) -> y def select_constant_cmp_matchdata : GIDefMatchData<"unsigned">; def select_constant_cmp: GICombineRule< (defs root:$root, select_constant_cmp_matchdata:$matchinfo), (match (wip_match_opcode G_SELECT):$root, [{ return Helper.matchConstantSelectCmp(*${root}, ${matchinfo}); }]), (apply [{ return Helper.replaceSingleDefInstWithOperand(*${root}, ${matchinfo}); }]) >; // Fold x op 0 -> x def right_identity_zero: GICombineRule< (defs root:$root), (match (wip_match_opcode G_SUB, G_ADD, G_OR, G_XOR, G_SHL, G_ASHR, G_LSHR):$root, [{ return Helper.matchConstantOp(${root}->getOperand(2), 0); }]), (apply [{ return Helper.replaceSingleDefInstWithOperand(*${root}, 1); }]) >; // Fold x op 1 -> x def right_identity_one: GICombineRule< (defs root:$root), (match (wip_match_opcode G_MUL):$root, [{ return Helper.matchConstantOp(${root}->getOperand(2), 1); }]), (apply [{ return Helper.replaceSingleDefInstWithOperand(*${root}, 1); }]) >; // Fold (x op x) - > x def binop_same_val: GICombineRule< (defs root:$root), (match (wip_match_opcode G_AND, G_OR):$root, [{ return Helper.matchBinOpSameVal(*${root}); }]), (apply [{ return Helper.replaceSingleDefInstWithOperand(*${root}, 1); }]) >; // Fold (0 op x) - > 0 def binop_left_to_zero: GICombineRule< (defs root:$root), (match (wip_match_opcode G_SDIV, G_UDIV, G_SREM, G_UREM):$root, [{ return Helper.matchOperandIsZero(*${root}, 1); }]), (apply [{ return Helper.replaceSingleDefInstWithOperand(*${root}, 1); }]) >; def urem_pow2_to_mask : GICombineRule< (defs root:$root), (match (wip_match_opcode G_UREM):$root, [{ return Helper.matchOperandIsKnownToBeAPowerOfTwo(*${root}, 2); }]), (apply [{ return Helper.applySimplifyURemByPow2(*${root}); }]) >; // Fold (x op 0) - > 0 def binop_right_to_zero: GICombineRule< (defs root:$root), (match (wip_match_opcode G_MUL):$root, [{ return Helper.matchOperandIsZero(*${root}, 2); }]), (apply [{ return Helper.replaceSingleDefInstWithOperand(*${root}, 2); }]) >; // Erase stores of undef values. def erase_undef_store : GICombineRule< (defs root:$root), (match (wip_match_opcode G_STORE):$root, [{ return Helper.matchUndefStore(*${root}); }]), (apply [{ return Helper.eraseInst(*${root}); }]) >; def simplify_add_to_sub_matchinfo: GIDefMatchData<"std::tuple">; def simplify_add_to_sub: GICombineRule < (defs root:$root, simplify_add_to_sub_matchinfo:$info), (match (wip_match_opcode G_ADD):$root, [{ return Helper.matchSimplifyAddToSub(*${root}, ${info}); }]), (apply [{ return Helper.applySimplifyAddToSub(*${root}, ${info});}]) >; // Fold fp_op(cst) to the constant result of the floating point operation. def constant_fp_op_matchinfo: GIDefMatchData<"Optional">; def constant_fp_op: GICombineRule < (defs root:$root, constant_fp_op_matchinfo:$info), (match (wip_match_opcode G_FNEG, G_FABS, G_FPTRUNC, G_FSQRT, G_FLOG2):$root, [{ return Helper.matchCombineConstantFoldFpUnary(*${root}, ${info}); }]), (apply [{ return Helper.applyCombineConstantFoldFpUnary(*${root}, ${info}); }]) >; // Fold int2ptr(ptr2int(x)) -> x def p2i_to_i2p_matchinfo: GIDefMatchData<"Register">; def p2i_to_i2p: GICombineRule< (defs root:$root, p2i_to_i2p_matchinfo:$info), (match (wip_match_opcode G_INTTOPTR):$root, [{ return Helper.matchCombineI2PToP2I(*${root}, ${info}); }]), (apply [{ return Helper.applyCombineI2PToP2I(*${root}, ${info}); }]) >; // Fold ptr2int(int2ptr(x)) -> x def i2p_to_p2i_matchinfo: GIDefMatchData<"Register">; def i2p_to_p2i: GICombineRule< (defs root:$root, i2p_to_p2i_matchinfo:$info), (match (wip_match_opcode G_PTRTOINT):$root, [{ return Helper.matchCombineP2IToI2P(*${root}, ${info}); }]), (apply [{ return Helper.applyCombineP2IToI2P(*${root}, ${info}); }]) >; // Fold add ptrtoint(x), y -> ptrtoint (ptr_add x), y def add_p2i_to_ptradd_matchinfo : GIDefMatchData<"std::pair">; def add_p2i_to_ptradd : GICombineRule< (defs root:$root, add_p2i_to_ptradd_matchinfo:$info), (match (wip_match_opcode G_ADD):$root, [{ return Helper.matchCombineAddP2IToPtrAdd(*${root}, ${info}); }]), (apply [{ return Helper.applyCombineAddP2IToPtrAdd(*${root}, ${info}); }]) >; // Fold (ptr_add (int2ptr C1), C2) -> C1 + C2 def const_ptradd_to_i2p_matchinfo : GIDefMatchData<"int64_t">; def const_ptradd_to_i2p: GICombineRule< (defs root:$root, const_ptradd_to_i2p_matchinfo:$info), (match (wip_match_opcode G_PTR_ADD):$root, [{ return Helper.matchCombineConstPtrAddToI2P(*${root}, ${info}); }]), (apply [{ return Helper.applyCombineConstPtrAddToI2P(*${root}, ${info}); }]) >; // Simplify: (logic_op (op x...), (op y...)) -> (op (logic_op x, y)) def hoist_logic_op_with_same_opcode_hands: GICombineRule < (defs root:$root, instruction_steps_matchdata:$info), (match (wip_match_opcode G_AND, G_OR, G_XOR):$root, [{ return Helper.matchHoistLogicOpWithSameOpcodeHands(*${root}, ${info}); }]), (apply [{ return Helper.applyBuildInstructionSteps(*${root}, ${info});}]) >; // Fold ashr (shl x, C), C -> sext_inreg (C) def shl_ashr_to_sext_inreg_matchinfo : GIDefMatchData<"std::tuple">; def shl_ashr_to_sext_inreg : GICombineRule< (defs root:$root, shl_ashr_to_sext_inreg_matchinfo:$info), (match (wip_match_opcode G_ASHR): $root, [{ return Helper.matchAshrShlToSextInreg(*${root}, ${info}); }]), (apply [{ return Helper.applyAshShlToSextInreg(*${root}, ${info});}]) >; // Fold (x & y) -> x or (x & y) -> y when (x & y) is known to equal x or equal y. def redundant_and_matchinfo : GIDefMatchData<"Register">; def redundant_and: GICombineRule < (defs root:$root, redundant_and_matchinfo:$matchinfo), (match (wip_match_opcode G_AND):$root, [{ return Helper.matchRedundantAnd(*${root}, ${matchinfo}); }]), (apply [{ return Helper.replaceSingleDefInstWithReg(*${root}, ${matchinfo}); }]) >; // Fold (x | y) -> x or (x | y) -> y when (x | y) is known to equal x or equal y. def redundant_or_matchinfo : GIDefMatchData<"Register">; def redundant_or: GICombineRule < (defs root:$root, redundant_or_matchinfo:$matchinfo), (match (wip_match_opcode G_OR):$root, [{ return Helper.matchRedundantOr(*${root}, ${matchinfo}); }]), (apply [{ return Helper.replaceSingleDefInstWithReg(*${root}, ${matchinfo}); }]) >; // If the input is already sign extended, just drop the extension. // sext_inreg x, K -> // if computeNumSignBits(x) >= (x.getScalarSizeInBits() - K + 1) def redundant_sext_inreg: GICombineRule < (defs root:$root), (match (wip_match_opcode G_SEXT_INREG):$root, [{ return Helper.matchRedundantSExtInReg(*${root}); }]), (apply [{ return Helper.replaceSingleDefInstWithOperand(*${root}, 1); }]) >; // Fold (anyext (trunc x)) -> x if the source type is same as // the destination type. def anyext_trunc_fold_matchinfo : GIDefMatchData<"Register">; def anyext_trunc_fold: GICombineRule < (defs root:$root, anyext_trunc_fold_matchinfo:$matchinfo), (match (wip_match_opcode G_ANYEXT):$root, [{ return Helper.matchCombineAnyExtTrunc(*${root}, ${matchinfo}); }]), (apply [{ return Helper.applyCombineAnyExtTrunc(*${root}, ${matchinfo}); }]) >; // Fold ([asz]ext ([asz]ext x)) -> ([asz]ext x). def ext_ext_fold_matchinfo : GIDefMatchData<"std::tuple">; def ext_ext_fold: GICombineRule < (defs root:$root, ext_ext_fold_matchinfo:$matchinfo), (match (wip_match_opcode G_ANYEXT, G_SEXT, G_ZEXT):$root, [{ return Helper.matchCombineExtOfExt(*${root}, ${matchinfo}); }]), (apply [{ return Helper.applyCombineExtOfExt(*${root}, ${matchinfo}); }]) >; def not_cmp_fold_matchinfo : GIDefMatchData<"SmallVector">; def not_cmp_fold : GICombineRule< (defs root:$d, not_cmp_fold_matchinfo:$info), (match (wip_match_opcode G_XOR): $d, [{ return Helper.matchNotCmp(*${d}, ${info}); }]), (apply [{ return Helper.applyNotCmp(*${d}, ${info}); }]) >; // Fold (fneg (fneg x)) -> x. def fneg_fneg_fold_matchinfo : GIDefMatchData<"Register">; def fneg_fneg_fold: GICombineRule < (defs root:$root, fneg_fneg_fold_matchinfo:$matchinfo), (match (wip_match_opcode G_FNEG):$root, [{ return Helper.matchCombineFNegOfFNeg(*${root}, ${matchinfo}); }]), (apply [{ return Helper.replaceSingleDefInstWithReg(*${root}, ${matchinfo}); }]) >; // Fold (unmerge(merge x, y, z)) -> z, y, z. def unmerge_merge_matchinfo : GIDefMatchData<"SmallVector">; def unmerge_merge : GICombineRule< (defs root:$d, unmerge_merge_matchinfo:$info), (match (wip_match_opcode G_UNMERGE_VALUES): $d, [{ return Helper.matchCombineUnmergeMergeToPlainValues(*${d}, ${info}); }]), (apply [{ return Helper.applyCombineUnmergeMergeToPlainValues(*${d}, ${info}); }]) >; // Fold (fabs (fabs x)) -> (fabs x). def fabs_fabs_fold_matchinfo : GIDefMatchData<"Register">; def fabs_fabs_fold: GICombineRule< (defs root:$root, fabs_fabs_fold_matchinfo:$matchinfo), (match (wip_match_opcode G_FABS):$root, [{ return Helper.matchCombineFAbsOfFAbs(*${root}, ${matchinfo}); }]), (apply [{ return Helper.applyCombineFAbsOfFAbs(*${root}, ${matchinfo}); }]) >; // Fold (unmerge cst) -> cst1, cst2, ... def unmerge_cst_matchinfo : GIDefMatchData<"SmallVector">; def unmerge_cst : GICombineRule< (defs root:$d, unmerge_cst_matchinfo:$info), (match (wip_match_opcode G_UNMERGE_VALUES): $d, [{ return Helper.matchCombineUnmergeConstant(*${d}, ${info}); }]), (apply [{ return Helper.applyCombineUnmergeConstant(*${d}, ${info}); }]) >; // Transform x,y = unmerge z -> x = trunc z. def unmerge_dead_to_trunc : GICombineRule< (defs root:$d), (match (wip_match_opcode G_UNMERGE_VALUES): $d, [{ return Helper.matchCombineUnmergeWithDeadLanesToTrunc(*${d}); }]), (apply [{ return Helper.applyCombineUnmergeWithDeadLanesToTrunc(*${d}); }]) >; // Transform x,y = unmerge(zext(z)) -> x = zext z; y = 0. def unmerge_zext_to_zext : GICombineRule< (defs root:$d), (match (wip_match_opcode G_UNMERGE_VALUES): $d, [{ return Helper.matchCombineUnmergeZExtToZExt(*${d}); }]), (apply [{ return Helper.applyCombineUnmergeZExtToZExt(*${d}); }]) >; // Fold trunc ([asz]ext x) -> x or ([asz]ext x) or (trunc x). def trunc_ext_fold_matchinfo : GIDefMatchData<"std::pair">; def trunc_ext_fold: GICombineRule < (defs root:$root, trunc_ext_fold_matchinfo:$matchinfo), (match (wip_match_opcode G_TRUNC):$root, [{ return Helper.matchCombineTruncOfExt(*${root}, ${matchinfo}); }]), (apply [{ return Helper.applyCombineTruncOfExt(*${root}, ${matchinfo}); }]) >; // Fold trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits(). def trunc_shl_matchinfo : GIDefMatchData<"std::pair">; def trunc_shl: GICombineRule < (defs root:$root, trunc_shl_matchinfo:$matchinfo), (match (wip_match_opcode G_TRUNC):$root, [{ return Helper.matchCombineTruncOfShl(*${root}, ${matchinfo}); }]), (apply [{ return Helper.applyCombineTruncOfShl(*${root}, ${matchinfo}); }]) >; // Transform (mul x, -1) -> (sub 0, x) def mul_by_neg_one: GICombineRule < (defs root:$root), (match (wip_match_opcode G_MUL):$root, [{ return Helper.matchConstantOp(${root}->getOperand(2), -1); }]), (apply [{ return Helper.applyCombineMulByNegativeOne(*${root}); }]) >; // Fold (xor (and x, y), y) -> (and (not x), y) def xor_of_and_with_same_reg_matchinfo : GIDefMatchData<"std::pair">; def xor_of_and_with_same_reg: GICombineRule < (defs root:$root, xor_of_and_with_same_reg_matchinfo:$matchinfo), (match (wip_match_opcode G_XOR):$root, [{ return Helper.matchXorOfAndWithSameReg(*${root}, ${matchinfo}); }]), (apply [{ return Helper.applyXorOfAndWithSameReg(*${root}, ${matchinfo}); }]) >; // Transform (ptr_add 0, x) -> (int_to_ptr x) def ptr_add_with_zero: GICombineRule< (defs root:$root), (match (wip_match_opcode G_PTR_ADD):$root, [{ return Helper.matchPtrAddZero(*${root}); }]), (apply [{ return Helper.applyPtrAddZero(*${root}); }])>; def regs_small_vec : GIDefMatchData<"SmallVector">; def combine_insert_vec_elts_build_vector : GICombineRule< (defs root:$root, regs_small_vec:$info), (match (wip_match_opcode G_INSERT_VECTOR_ELT):$root, [{ return Helper.matchCombineInsertVecElts(*${root}, ${info}); }]), (apply [{ return Helper.applyCombineInsertVecElts(*${root}, ${info}); }])>; def load_or_combine_matchdata : GIDefMatchData<"std::function">; def load_or_combine : GICombineRule< (defs root:$root, load_or_combine_matchdata:$info), (match (wip_match_opcode G_OR):$root, [{ return Helper.matchLoadOrCombine(*${root}, ${info}); }]), (apply [{ return Helper.applyLoadOrCombine(*${root}, ${info}); }])>; // Currently only the one combine above. def insert_vec_elt_combines : GICombineGroup< [combine_insert_vec_elts_build_vector]>; // FIXME: These should use the custom predicate feature once it lands. def undef_combines : GICombineGroup<[undef_to_fp_zero, undef_to_int_zero, undef_to_negative_one, binop_left_undef_to_zero, propagate_undef_any_op, propagate_undef_all_ops, propagate_undef_shuffle_mask, erase_undef_store]>; def identity_combines : GICombineGroup<[select_same_val, right_identity_zero, binop_same_val, binop_left_to_zero, binop_right_to_zero, p2i_to_i2p, i2p_to_p2i, anyext_trunc_fold, fneg_fneg_fold, right_identity_one]>; def const_combines : GICombineGroup<[constant_fp_op, const_ptradd_to_i2p]>; def known_bits_simplifications : GICombineGroup<[ redundant_and, redundant_sext_inreg, redundant_or, urem_pow2_to_mask]>; def width_reduction_combines : GICombineGroup<[reduce_shl_of_extend]>; def select_combines : GICombineGroup<[select_undef_cmp, select_constant_cmp]>; def trivial_combines : GICombineGroup<[copy_prop, mul_to_shl, add_p2i_to_ptradd, mul_by_neg_one]>; def all_combines : GICombineGroup<[trivial_combines, insert_vec_elt_combines, ptr_add_immed_chain, combines_for_extload, combine_indexed_load_store, undef_combines, identity_combines, simplify_add_to_sub, hoist_logic_op_with_same_opcode_hands, shl_ashr_to_sext_inreg, sext_inreg_of_load, width_reduction_combines, select_combines, known_bits_simplifications, ext_ext_fold, not_cmp_fold, opt_brcond_by_inverting_cond, unmerge_merge, fabs_fabs_fold, unmerge_cst, unmerge_dead_to_trunc, unmerge_zext_to_zext, trunc_ext_fold, trunc_shl, const_combines, xor_of_and_with_same_reg, ptr_add_with_zero, shift_immed_chain, shift_of_shifted_logic_chain, load_or_combine]>;