//===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_PARALLEL_H #define LLVM_SUPPORT_PARALLEL_H #include "llvm/ADT/STLExtras.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/Error.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Threading.h" #include #include #include #include namespace llvm { namespace parallel { // Strategy for the default executor used by the parallel routines provided by // this file. It defaults to using all hardware threads and should be // initialized before the first use of parallel routines. extern ThreadPoolStrategy strategy; namespace detail { #if LLVM_ENABLE_THREADS class Latch { uint32_t Count; mutable std::mutex Mutex; mutable std::condition_variable Cond; public: explicit Latch(uint32_t Count = 0) : Count(Count) {} ~Latch() { sync(); } void inc() { std::lock_guard lock(Mutex); ++Count; } void dec() { std::lock_guard lock(Mutex); if (--Count == 0) Cond.notify_all(); } void sync() const { std::unique_lock lock(Mutex); Cond.wait(lock, [&] { return Count == 0; }); } }; class TaskGroup { Latch L; bool Parallel; public: TaskGroup(); ~TaskGroup(); void spawn(std::function f); void sync() const { L.sync(); } }; const ptrdiff_t MinParallelSize = 1024; /// Inclusive median. template RandomAccessIterator medianOf3(RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp) { RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2); return Comp(*Start, *(End - 1)) ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start) : End - 1) : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1) : Start); } template void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp, TaskGroup &TG, size_t Depth) { // Do a sequential sort for small inputs. if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) { llvm::sort(Start, End, Comp); return; } // Partition. auto Pivot = medianOf3(Start, End, Comp); // Move Pivot to End. std::swap(*(End - 1), *Pivot); Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) { return Comp(V, *(End - 1)); }); // Move Pivot to middle of partition. std::swap(*Pivot, *(End - 1)); // Recurse. TG.spawn([=, &Comp, &TG] { parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1); }); parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1); } template void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp) { TaskGroup TG; parallel_quick_sort(Start, End, Comp, TG, llvm::Log2_64(std::distance(Start, End)) + 1); } // TaskGroup has a relatively high overhead, so we want to reduce // the number of spawn() calls. We'll create up to 1024 tasks here. // (Note that 1024 is an arbitrary number. This code probably needs // improving to take the number of available cores into account.) enum { MaxTasksPerGroup = 1024 }; template void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) { // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling // overhead on large inputs. ptrdiff_t TaskSize = std::distance(Begin, End) / MaxTasksPerGroup; if (TaskSize == 0) TaskSize = 1; TaskGroup TG; while (TaskSize < std::distance(Begin, End)) { TG.spawn([=, &Fn] { std::for_each(Begin, Begin + TaskSize, Fn); }); Begin += TaskSize; } std::for_each(Begin, End, Fn); } template void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) { // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling // overhead on large inputs. ptrdiff_t TaskSize = (End - Begin) / MaxTasksPerGroup; if (TaskSize == 0) TaskSize = 1; TaskGroup TG; IndexTy I = Begin; for (; I + TaskSize < End; I += TaskSize) { TG.spawn([=, &Fn] { for (IndexTy J = I, E = I + TaskSize; J != E; ++J) Fn(J); }); } for (IndexTy J = I; J < End; ++J) Fn(J); } template ResultTy parallel_transform_reduce(IterTy Begin, IterTy End, ResultTy Init, ReduceFuncTy Reduce, TransformFuncTy Transform) { // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling // overhead on large inputs. size_t NumInputs = std::distance(Begin, End); if (NumInputs == 0) return std::move(Init); size_t NumTasks = std::min(static_cast(MaxTasksPerGroup), NumInputs); std::vector Results(NumTasks, Init); { // Each task processes either TaskSize or TaskSize+1 inputs. Any inputs // remaining after dividing them equally amongst tasks are distributed as // one extra input over the first tasks. TaskGroup TG; size_t TaskSize = NumInputs / NumTasks; size_t RemainingInputs = NumInputs % NumTasks; IterTy TBegin = Begin; for (size_t TaskId = 0; TaskId < NumTasks; ++TaskId) { IterTy TEnd = TBegin + TaskSize + (TaskId < RemainingInputs ? 1 : 0); TG.spawn([=, &Transform, &Reduce, &Results] { // Reduce the result of transformation eagerly within each task. ResultTy R = Init; for (IterTy It = TBegin; It != TEnd; ++It) R = Reduce(R, Transform(*It)); Results[TaskId] = R; }); TBegin = TEnd; } assert(TBegin == End); } // Do a final reduction. There are at most 1024 tasks, so this only adds // constant single-threaded overhead for large inputs. Hopefully most // reductions are cheaper than the transformation. ResultTy FinalResult = std::move(Results.front()); for (ResultTy &PartialResult : makeMutableArrayRef(Results.data() + 1, Results.size() - 1)) FinalResult = Reduce(FinalResult, std::move(PartialResult)); return std::move(FinalResult); } #endif } // namespace detail } // namespace parallel template ::value_type>> void parallelSort(RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp = Comparator()) { #if LLVM_ENABLE_THREADS if (parallel::strategy.ThreadsRequested != 1) { parallel::detail::parallel_sort(Start, End, Comp); return; } #endif llvm::sort(Start, End, Comp); } template void parallelForEach(IterTy Begin, IterTy End, FuncTy Fn) { #if LLVM_ENABLE_THREADS if (parallel::strategy.ThreadsRequested != 1) { parallel::detail::parallel_for_each(Begin, End, Fn); return; } #endif std::for_each(Begin, End, Fn); } template void parallelForEachN(size_t Begin, size_t End, FuncTy Fn) { #if LLVM_ENABLE_THREADS if (parallel::strategy.ThreadsRequested != 1) { parallel::detail::parallel_for_each_n(Begin, End, Fn); return; } #endif for (size_t I = Begin; I != End; ++I) Fn(I); } template ResultTy parallelTransformReduce(IterTy Begin, IterTy End, ResultTy Init, ReduceFuncTy Reduce, TransformFuncTy Transform) { #if LLVM_ENABLE_THREADS if (parallel::strategy.ThreadsRequested != 1) { return parallel::detail::parallel_transform_reduce(Begin, End, Init, Reduce, Transform); } #endif for (IterTy I = Begin; I != End; ++I) Init = Reduce(std::move(Init), Transform(*I)); return std::move(Init); } // Range wrappers. template > void parallelSort(RangeTy &&R, const Comparator &Comp = Comparator()) { parallelSort(std::begin(R), std::end(R), Comp); } template void parallelForEach(RangeTy &&R, FuncTy Fn) { parallelForEach(std::begin(R), std::end(R), Fn); } template ResultTy parallelTransformReduce(RangeTy &&R, ResultTy Init, ReduceFuncTy Reduce, TransformFuncTy Transform) { return parallelTransformReduce(std::begin(R), std::end(R), Init, Reduce, Transform); } // Parallel for-each, but with error handling. template Error parallelForEachError(RangeTy &&R, FuncTy Fn) { // The transform_reduce algorithm requires that the initial value be copyable. // Error objects are uncopyable. We only need to copy initial success values, // so work around this mismatch via the C API. The C API represents success // values with a null pointer. The joinErrors discards null values and joins // multiple errors into an ErrorList. return unwrap(parallelTransformReduce( std::begin(R), std::end(R), wrap(Error::success()), [](LLVMErrorRef Lhs, LLVMErrorRef Rhs) { return wrap(joinErrors(unwrap(Lhs), unwrap(Rhs))); }, [&Fn](auto &&V) { return wrap(Fn(V)); })); } } // namespace llvm #endif // LLVM_SUPPORT_PARALLEL_H