//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file defines a set of templates that efficiently compute a dominator /// tree over a generic graph. This is used typically in LLVM for fast /// dominance queries on the CFG, but is fully generic w.r.t. the underlying /// graph types. /// /// Unlike ADT/* graph algorithms, generic dominator tree has more requirements /// on the graph's NodeRef. The NodeRef should be a pointer and, /// NodeRef->getParent() must return the parent node that is also a pointer. /// /// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits. /// //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_GENERICDOMTREE_H #define LLVM_SUPPORT_GENERICDOMTREE_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/CFGDiff.h" #include "llvm/Support/CFGUpdate.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include namespace llvm { template class DominatorTreeBase; namespace DomTreeBuilder { template struct SemiNCAInfo; } // namespace DomTreeBuilder /// Base class for the actual dominator tree node. template class DomTreeNodeBase { friend class PostDominatorTree; friend class DominatorTreeBase; friend class DominatorTreeBase; friend struct DomTreeBuilder::SemiNCAInfo>; friend struct DomTreeBuilder::SemiNCAInfo>; NodeT *TheBB; DomTreeNodeBase *IDom; unsigned Level; SmallVector Children; mutable unsigned DFSNumIn = ~0; mutable unsigned DFSNumOut = ~0; public: DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom) : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {} using iterator = typename SmallVector::iterator; using const_iterator = typename SmallVector::const_iterator; iterator begin() { return Children.begin(); } iterator end() { return Children.end(); } const_iterator begin() const { return Children.begin(); } const_iterator end() const { return Children.end(); } DomTreeNodeBase *const &back() const { return Children.back(); } DomTreeNodeBase *&back() { return Children.back(); } iterator_range children() { return make_range(begin(), end()); } iterator_range children() const { return make_range(begin(), end()); } NodeT *getBlock() const { return TheBB; } DomTreeNodeBase *getIDom() const { return IDom; } unsigned getLevel() const { return Level; } std::unique_ptr addChild( std::unique_ptr C) { Children.push_back(C.get()); return C; } bool isLeaf() const { return Children.empty(); } size_t getNumChildren() const { return Children.size(); } void clearAllChildren() { Children.clear(); } bool compare(const DomTreeNodeBase *Other) const { if (getNumChildren() != Other->getNumChildren()) return true; if (Level != Other->Level) return true; SmallPtrSet OtherChildren; for (const DomTreeNodeBase *I : *Other) { const NodeT *Nd = I->getBlock(); OtherChildren.insert(Nd); } for (const DomTreeNodeBase *I : *this) { const NodeT *N = I->getBlock(); if (OtherChildren.count(N) == 0) return true; } return false; } void setIDom(DomTreeNodeBase *NewIDom) { assert(IDom && "No immediate dominator?"); if (IDom == NewIDom) return; auto I = find(IDom->Children, this); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); // Switch to new dominator IDom = NewIDom; IDom->Children.push_back(this); UpdateLevel(); } /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes /// in the dominator tree. They are only guaranteed valid if /// updateDFSNumbers() has been called. unsigned getDFSNumIn() const { return DFSNumIn; } unsigned getDFSNumOut() const { return DFSNumOut; } private: // Return true if this node is dominated by other. Use this only if DFS info // is valid. bool DominatedBy(const DomTreeNodeBase *other) const { return this->DFSNumIn >= other->DFSNumIn && this->DFSNumOut <= other->DFSNumOut; } void UpdateLevel() { assert(IDom); if (Level == IDom->Level + 1) return; SmallVector WorkStack = {this}; while (!WorkStack.empty()) { DomTreeNodeBase *Current = WorkStack.pop_back_val(); Current->Level = Current->IDom->Level + 1; for (DomTreeNodeBase *C : *Current) { assert(C->IDom); if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C); } } } }; template raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase *Node) { if (Node->getBlock()) Node->getBlock()->printAsOperand(O, false); else O << " <>"; O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} [" << Node->getLevel() << "]\n"; return O; } template void PrintDomTree(const DomTreeNodeBase *N, raw_ostream &O, unsigned Lev) { O.indent(2 * Lev) << "[" << Lev << "] " << N; for (typename DomTreeNodeBase::const_iterator I = N->begin(), E = N->end(); I != E; ++I) PrintDomTree(*I, O, Lev + 1); } namespace DomTreeBuilder { // The routines below are provided in a separate header but referenced here. template void Calculate(DomTreeT &DT); template void CalculateWithUpdates(DomTreeT &DT, ArrayRef Updates); template void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, typename DomTreeT::NodePtr To); template void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, typename DomTreeT::NodePtr To); template void ApplyUpdates(DomTreeT &DT, GraphDiff &PreViewCFG, GraphDiff *PostViewCFG); template bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL); } // namespace DomTreeBuilder /// Core dominator tree base class. /// /// This class is a generic template over graph nodes. It is instantiated for /// various graphs in the LLVM IR or in the code generator. template class DominatorTreeBase { public: static_assert(std::is_pointer::NodeRef>::value, "Currently DominatorTreeBase supports only pointer nodes"); using NodeType = NodeT; using NodePtr = NodeT *; using ParentPtr = decltype(std::declval()->getParent()); static_assert(std::is_pointer::value, "Currently NodeT's parent must be a pointer type"); using ParentType = std::remove_pointer_t; static constexpr bool IsPostDominator = IsPostDom; using UpdateType = cfg::Update; using UpdateKind = cfg::UpdateKind; static constexpr UpdateKind Insert = UpdateKind::Insert; static constexpr UpdateKind Delete = UpdateKind::Delete; enum class VerificationLevel { Fast, Basic, Full }; protected: // Dominators always have a single root, postdominators can have more. SmallVector Roots; using DomTreeNodeMapType = DenseMap>>; DomTreeNodeMapType DomTreeNodes; DomTreeNodeBase *RootNode = nullptr; ParentPtr Parent = nullptr; mutable bool DFSInfoValid = false; mutable unsigned int SlowQueries = 0; friend struct DomTreeBuilder::SemiNCAInfo; public: DominatorTreeBase() {} DominatorTreeBase(DominatorTreeBase &&Arg) : Roots(std::move(Arg.Roots)), DomTreeNodes(std::move(Arg.DomTreeNodes)), RootNode(Arg.RootNode), Parent(Arg.Parent), DFSInfoValid(Arg.DFSInfoValid), SlowQueries(Arg.SlowQueries) { Arg.wipe(); } DominatorTreeBase &operator=(DominatorTreeBase &&RHS) { Roots = std::move(RHS.Roots); DomTreeNodes = std::move(RHS.DomTreeNodes); RootNode = RHS.RootNode; Parent = RHS.Parent; DFSInfoValid = RHS.DFSInfoValid; SlowQueries = RHS.SlowQueries; RHS.wipe(); return *this; } DominatorTreeBase(const DominatorTreeBase &) = delete; DominatorTreeBase &operator=(const DominatorTreeBase &) = delete; /// Iteration over roots. /// /// This may include multiple blocks if we are computing post dominators. /// For forward dominators, this will always be a single block (the entry /// block). using root_iterator = typename SmallVectorImpl::iterator; using const_root_iterator = typename SmallVectorImpl::const_iterator; root_iterator root_begin() { return Roots.begin(); } const_root_iterator root_begin() const { return Roots.begin(); } root_iterator root_end() { return Roots.end(); } const_root_iterator root_end() const { return Roots.end(); } size_t root_size() const { return Roots.size(); } iterator_range roots() { return make_range(root_begin(), root_end()); } iterator_range roots() const { return make_range(root_begin(), root_end()); } /// isPostDominator - Returns true if analysis based of postdoms /// bool isPostDominator() const { return IsPostDominator; } /// compare - Return false if the other dominator tree base matches this /// dominator tree base. Otherwise return true. bool compare(const DominatorTreeBase &Other) const { if (Parent != Other.Parent) return true; if (Roots.size() != Other.Roots.size()) return true; if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin())) return true; const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; if (DomTreeNodes.size() != OtherDomTreeNodes.size()) return true; for (const auto &DomTreeNode : DomTreeNodes) { NodeT *BB = DomTreeNode.first; typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB); if (OI == OtherDomTreeNodes.end()) return true; DomTreeNodeBase &MyNd = *DomTreeNode.second; DomTreeNodeBase &OtherNd = *OI->second; if (MyNd.compare(&OtherNd)) return true; } return false; } /// getNode - return the (Post)DominatorTree node for the specified basic /// block. This is the same as using operator[] on this class. The result /// may (but is not required to) be null for a forward (backwards) /// statically unreachable block. DomTreeNodeBase *getNode(const NodeT *BB) const { auto I = DomTreeNodes.find(BB); if (I != DomTreeNodes.end()) return I->second.get(); return nullptr; } /// See getNode. DomTreeNodeBase *operator[](const NodeT *BB) const { return getNode(BB); } /// getRootNode - This returns the entry node for the CFG of the function. If /// this tree represents the post-dominance relations for a function, however, /// this root may be a node with the block == NULL. This is the case when /// there are multiple exit nodes from a particular function. Consumers of /// post-dominance information must be capable of dealing with this /// possibility. /// DomTreeNodeBase *getRootNode() { return RootNode; } const DomTreeNodeBase *getRootNode() const { return RootNode; } /// Get all nodes dominated by R, including R itself. void getDescendants(NodeT *R, SmallVectorImpl &Result) const { Result.clear(); const DomTreeNodeBase *RN = getNode(R); if (!RN) return; // If R is unreachable, it will not be present in the DOM tree. SmallVector *, 8> WL; WL.push_back(RN); while (!WL.empty()) { const DomTreeNodeBase *N = WL.pop_back_val(); Result.push_back(N->getBlock()); WL.append(N->begin(), N->end()); } } /// properlyDominates - Returns true iff A dominates B and A != B. /// Note that this is not a constant time operation! /// bool properlyDominates(const DomTreeNodeBase *A, const DomTreeNodeBase *B) const { if (!A || !B) return false; if (A == B) return false; return dominates(A, B); } bool properlyDominates(const NodeT *A, const NodeT *B) const; /// isReachableFromEntry - Return true if A is dominated by the entry /// block of the function containing it. bool isReachableFromEntry(const NodeT *A) const { assert(!this->isPostDominator() && "This is not implemented for post dominators"); return isReachableFromEntry(getNode(const_cast(A))); } bool isReachableFromEntry(const DomTreeNodeBase *A) const { return A; } /// dominates - Returns true iff A dominates B. Note that this is not a /// constant time operation! /// bool dominates(const DomTreeNodeBase *A, const DomTreeNodeBase *B) const { // A node trivially dominates itself. if (B == A) return true; // An unreachable node is dominated by anything. if (!isReachableFromEntry(B)) return true; // And dominates nothing. if (!isReachableFromEntry(A)) return false; if (B->getIDom() == A) return true; if (A->getIDom() == B) return false; // A can only dominate B if it is higher in the tree. if (A->getLevel() >= B->getLevel()) return false; // Compare the result of the tree walk and the dfs numbers, if expensive // checks are enabled. #ifdef EXPENSIVE_CHECKS assert((!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && "Tree walk disagrees with dfs numbers!"); #endif if (DFSInfoValid) return B->DominatedBy(A); // If we end up with too many slow queries, just update the // DFS numbers on the theory that we are going to keep querying. SlowQueries++; if (SlowQueries > 32) { updateDFSNumbers(); return B->DominatedBy(A); } return dominatedBySlowTreeWalk(A, B); } bool dominates(const NodeT *A, const NodeT *B) const; NodeT *getRoot() const { assert(this->Roots.size() == 1 && "Should always have entry node!"); return this->Roots[0]; } /// Find nearest common dominator basic block for basic block A and B. A and B /// must have tree nodes. NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const { assert(A && B && "Pointers are not valid"); assert(A->getParent() == B->getParent() && "Two blocks are not in same function"); // If either A or B is a entry block then it is nearest common dominator // (for forward-dominators). if (!isPostDominator()) { NodeT &Entry = A->getParent()->front(); if (A == &Entry || B == &Entry) return &Entry; } DomTreeNodeBase *NodeA = getNode(A); DomTreeNodeBase *NodeB = getNode(B); assert(NodeA && "A must be in the tree"); assert(NodeB && "B must be in the tree"); // Use level information to go up the tree until the levels match. Then // continue going up til we arrive at the same node. while (NodeA != NodeB) { if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB); NodeA = NodeA->IDom; } return NodeA->getBlock(); } const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) const { // Cast away the const qualifiers here. This is ok since // const is re-introduced on the return type. return findNearestCommonDominator(const_cast(A), const_cast(B)); } bool isVirtualRoot(const DomTreeNodeBase *A) const { return isPostDominator() && !A->getBlock(); } //===--------------------------------------------------------------------===// // API to update (Post)DominatorTree information based on modifications to // the CFG... /// Inform the dominator tree about a sequence of CFG edge insertions and /// deletions and perform a batch update on the tree. /// /// This function should be used when there were multiple CFG updates after /// the last dominator tree update. It takes care of performing the updates /// in sync with the CFG and optimizes away the redundant operations that /// cancel each other. /// The functions expects the sequence of updates to be balanced. Eg.: /// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because /// logically it results in a single insertions. /// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make /// sense to insert the same edge twice. /// /// What's more, the functions assumes that it's safe to ask every node in the /// CFG about its children and inverse children. This implies that deletions /// of CFG edges must not delete the CFG nodes before calling this function. /// /// The applyUpdates function can reorder the updates and remove redundant /// ones internally. The batch updater is also able to detect sequences of /// zero and exactly one update -- it's optimized to do less work in these /// cases. /// /// Note that for postdominators it automatically takes care of applying /// updates on reverse edges internally (so there's no need to swap the /// From and To pointers when constructing DominatorTree::UpdateType). /// The type of updates is the same for DomTreeBase and PostDomTreeBase /// with the same template parameter T. /// /// \param Updates An unordered sequence of updates to perform. The current /// CFG and the reverse of these updates provides the pre-view of the CFG. /// void applyUpdates(ArrayRef Updates) { GraphDiff PreViewCFG( Updates, /*ReverseApplyUpdates=*/true); DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr); } /// \param Updates An unordered sequence of updates to perform. The current /// CFG and the reverse of these updates provides the pre-view of the CFG. /// \param PostViewUpdates An unordered sequence of update to perform in order /// to obtain a post-view of the CFG. The DT will be updated assuming the /// obtained PostViewCFG is the desired end state. void applyUpdates(ArrayRef Updates, ArrayRef PostViewUpdates) { if (Updates.empty()) { GraphDiff PostViewCFG(PostViewUpdates); DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG); } else { // PreViewCFG needs to merge Updates and PostViewCFG. The updates in // Updates need to be reversed, and match the direction in PostViewCFG. // The PostViewCFG is created with updates reversed (equivalent to changes // made to the CFG), so the PreViewCFG needs all the updates reverse // applied. SmallVector AllUpdates(Updates.begin(), Updates.end()); for (auto &Update : PostViewUpdates) AllUpdates.push_back(Update); GraphDiff PreViewCFG(AllUpdates, /*ReverseApplyUpdates=*/true); GraphDiff PostViewCFG(PostViewUpdates); DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, &PostViewCFG); } } /// Inform the dominator tree about a CFG edge insertion and update the tree. /// /// This function has to be called just before or just after making the update /// on the actual CFG. There cannot be any other updates that the dominator /// tree doesn't know about. /// /// Note that for postdominators it automatically takes care of inserting /// a reverse edge internally (so there's no need to swap the parameters). /// void insertEdge(NodeT *From, NodeT *To) { assert(From); assert(To); assert(From->getParent() == Parent); assert(To->getParent() == Parent); DomTreeBuilder::InsertEdge(*this, From, To); } /// Inform the dominator tree about a CFG edge deletion and update the tree. /// /// This function has to be called just after making the update on the actual /// CFG. An internal functions checks if the edge doesn't exist in the CFG in /// DEBUG mode. There cannot be any other updates that the /// dominator tree doesn't know about. /// /// Note that for postdominators it automatically takes care of deleting /// a reverse edge internally (so there's no need to swap the parameters). /// void deleteEdge(NodeT *From, NodeT *To) { assert(From); assert(To); assert(From->getParent() == Parent); assert(To->getParent() == Parent); DomTreeBuilder::DeleteEdge(*this, From, To); } /// Add a new node to the dominator tree information. /// /// This creates a new node as a child of DomBB dominator node, linking it /// into the children list of the immediate dominator. /// /// \param BB New node in CFG. /// \param DomBB CFG node that is dominator for BB. /// \returns New dominator tree node that represents new CFG node. /// DomTreeNodeBase *addNewBlock(NodeT *BB, NodeT *DomBB) { assert(getNode(BB) == nullptr && "Block already in dominator tree!"); DomTreeNodeBase *IDomNode = getNode(DomBB); assert(IDomNode && "Not immediate dominator specified for block!"); DFSInfoValid = false; return createChild(BB, IDomNode); } /// Add a new node to the forward dominator tree and make it a new root. /// /// \param BB New node in CFG. /// \returns New dominator tree node that represents new CFG node. /// DomTreeNodeBase *setNewRoot(NodeT *BB) { assert(getNode(BB) == nullptr && "Block already in dominator tree!"); assert(!this->isPostDominator() && "Cannot change root of post-dominator tree"); DFSInfoValid = false; DomTreeNodeBase *NewNode = createNode(BB); if (Roots.empty()) { addRoot(BB); } else { assert(Roots.size() == 1); NodeT *OldRoot = Roots.front(); auto &OldNode = DomTreeNodes[OldRoot]; OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot])); OldNode->IDom = NewNode; OldNode->UpdateLevel(); Roots[0] = BB; } return RootNode = NewNode; } /// changeImmediateDominator - This method is used to update the dominator /// tree information when a node's immediate dominator changes. /// void changeImmediateDominator(DomTreeNodeBase *N, DomTreeNodeBase *NewIDom) { assert(N && NewIDom && "Cannot change null node pointers!"); DFSInfoValid = false; N->setIDom(NewIDom); } void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { changeImmediateDominator(getNode(BB), getNode(NewBB)); } /// eraseNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Removes node from its immediate dominator's /// children list. Deletes dominator node associated with basic block BB. void eraseNode(NodeT *BB) { DomTreeNodeBase *Node = getNode(BB); assert(Node && "Removing node that isn't in dominator tree."); assert(Node->isLeaf() && "Node is not a leaf node."); DFSInfoValid = false; // Remove node from immediate dominator's children list. DomTreeNodeBase *IDom = Node->getIDom(); if (IDom) { const auto I = find(IDom->Children, Node); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); } DomTreeNodes.erase(BB); if (!IsPostDom) return; // Remember to update PostDominatorTree roots. auto RIt = llvm::find(Roots, BB); if (RIt != Roots.end()) { std::swap(*RIt, Roots.back()); Roots.pop_back(); } } /// splitBlock - BB is split and now it has one successor. Update dominator /// tree to reflect this change. void splitBlock(NodeT *NewBB) { if (IsPostDominator) Split>(NewBB); else Split(NewBB); } /// print - Convert to human readable form /// void print(raw_ostream &O) const { O << "=============================--------------------------------\n"; if (IsPostDominator) O << "Inorder PostDominator Tree: "; else O << "Inorder Dominator Tree: "; if (!DFSInfoValid) O << "DFSNumbers invalid: " << SlowQueries << " slow queries."; O << "\n"; // The postdom tree can have a null root if there are no returns. if (getRootNode()) PrintDomTree(getRootNode(), O, 1); O << "Roots: "; for (const NodePtr Block : Roots) { Block->printAsOperand(O, false); O << " "; } O << "\n"; } public: /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking /// dominator tree in dfs order. void updateDFSNumbers() const { if (DFSInfoValid) { SlowQueries = 0; return; } SmallVector *, typename DomTreeNodeBase::const_iterator>, 32> WorkStack; const DomTreeNodeBase *ThisRoot = getRootNode(); assert((!Parent || ThisRoot) && "Empty constructed DomTree"); if (!ThisRoot) return; // Both dominators and postdominators have a single root node. In the case // case of PostDominatorTree, this node is a virtual root. WorkStack.push_back({ThisRoot, ThisRoot->begin()}); unsigned DFSNum = 0; ThisRoot->DFSNumIn = DFSNum++; while (!WorkStack.empty()) { const DomTreeNodeBase *Node = WorkStack.back().first; const auto ChildIt = WorkStack.back().second; // If we visited all of the children of this node, "recurse" back up the // stack setting the DFOutNum. if (ChildIt == Node->end()) { Node->DFSNumOut = DFSNum++; WorkStack.pop_back(); } else { // Otherwise, recursively visit this child. const DomTreeNodeBase *Child = *ChildIt; ++WorkStack.back().second; WorkStack.push_back({Child, Child->begin()}); Child->DFSNumIn = DFSNum++; } } SlowQueries = 0; DFSInfoValid = true; } /// recalculate - compute a dominator tree for the given function void recalculate(ParentType &Func) { Parent = &Func; DomTreeBuilder::Calculate(*this); } void recalculate(ParentType &Func, ArrayRef Updates) { Parent = &Func; DomTreeBuilder::CalculateWithUpdates(*this, Updates); } /// verify - checks if the tree is correct. There are 3 level of verification: /// - Full -- verifies if the tree is correct by making sure all the /// properties (including the parent and the sibling property) /// hold. /// Takes O(N^3) time. /// /// - Basic -- checks if the tree is correct, but compares it to a freshly /// constructed tree instead of checking the sibling property. /// Takes O(N^2) time. /// /// - Fast -- checks basic tree structure and compares it with a freshly /// constructed tree. /// Takes O(N^2) time worst case, but is faster in practise (same /// as tree construction). bool verify(VerificationLevel VL = VerificationLevel::Full) const { return DomTreeBuilder::Verify(*this, VL); } void reset() { DomTreeNodes.clear(); Roots.clear(); RootNode = nullptr; Parent = nullptr; DFSInfoValid = false; SlowQueries = 0; } protected: void addRoot(NodeT *BB) { this->Roots.push_back(BB); } DomTreeNodeBase *createChild(NodeT *BB, DomTreeNodeBase *IDom) { return (DomTreeNodes[BB] = IDom->addChild( std::make_unique>(BB, IDom))) .get(); } DomTreeNodeBase *createNode(NodeT *BB) { return (DomTreeNodes[BB] = std::make_unique>(BB, nullptr)) .get(); } // NewBB is split and now it has one successor. Update dominator tree to // reflect this change. template void Split(typename GraphTraits::NodeRef NewBB) { using GraphT = GraphTraits; using NodeRef = typename GraphT::NodeRef; assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 && "NewBB should have a single successor!"); NodeRef NewBBSucc = *GraphT::child_begin(NewBB); SmallVector PredBlocks(children>(NewBB)); assert(!PredBlocks.empty() && "No predblocks?"); bool NewBBDominatesNewBBSucc = true; for (auto Pred : children>(NewBBSucc)) { if (Pred != NewBB && !dominates(NewBBSucc, Pred) && isReachableFromEntry(Pred)) { NewBBDominatesNewBBSucc = false; break; } } // Find NewBB's immediate dominator and create new dominator tree node for // NewBB. NodeT *NewBBIDom = nullptr; unsigned i = 0; for (i = 0; i < PredBlocks.size(); ++i) if (isReachableFromEntry(PredBlocks[i])) { NewBBIDom = PredBlocks[i]; break; } // It's possible that none of the predecessors of NewBB are reachable; // in that case, NewBB itself is unreachable, so nothing needs to be // changed. if (!NewBBIDom) return; for (i = i + 1; i < PredBlocks.size(); ++i) { if (isReachableFromEntry(PredBlocks[i])) NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]); } // Create the new dominator tree node... and set the idom of NewBB. DomTreeNodeBase *NewBBNode = addNewBlock(NewBB, NewBBIDom); // If NewBB strictly dominates other blocks, then it is now the immediate // dominator of NewBBSucc. Update the dominator tree as appropriate. if (NewBBDominatesNewBBSucc) { DomTreeNodeBase *NewBBSuccNode = getNode(NewBBSucc); changeImmediateDominator(NewBBSuccNode, NewBBNode); } } private: bool dominatedBySlowTreeWalk(const DomTreeNodeBase *A, const DomTreeNodeBase *B) const { assert(A != B); assert(isReachableFromEntry(B)); assert(isReachableFromEntry(A)); const unsigned ALevel = A->getLevel(); const DomTreeNodeBase *IDom; // Don't walk nodes above A's subtree. When we reach A's level, we must // either find A or be in some other subtree not dominated by A. while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel) B = IDom; // Walk up the tree return B == A; } /// Wipe this tree's state without releasing any resources. /// /// This is essentially a post-move helper only. It leaves the object in an /// assignable and destroyable state, but otherwise invalid. void wipe() { DomTreeNodes.clear(); RootNode = nullptr; Parent = nullptr; } }; template using DomTreeBase = DominatorTreeBase; template using PostDomTreeBase = DominatorTreeBase; // These two functions are declared out of line as a workaround for building // with old (< r147295) versions of clang because of pr11642. template bool DominatorTreeBase::dominates(const NodeT *A, const NodeT *B) const { if (A == B) return true; // Cast away the const qualifiers here. This is ok since // this function doesn't actually return the values returned // from getNode. return dominates(getNode(const_cast(A)), getNode(const_cast(B))); } template bool DominatorTreeBase::properlyDominates( const NodeT *A, const NodeT *B) const { if (A == B) return false; // Cast away the const qualifiers here. This is ok since // this function doesn't actually return the values returned // from getNode. return dominates(getNode(const_cast(A)), getNode(const_cast(B))); } } // end namespace llvm #endif // LLVM_SUPPORT_GENERICDOMTREE_H