//===-LTOCodeGenerator.h - LLVM Link Time Optimizer -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares the LTOCodeGenerator class. // // LTO compilation consists of three phases: Pre-IPO, IPO and Post-IPO. // // The Pre-IPO phase compiles source code into bitcode file. The resulting // bitcode files, along with object files and libraries, will be fed to the // linker to through the IPO and Post-IPO phases. By using obj-file extension, // the resulting bitcode file disguises itself as an object file, and therefore // obviates the need of writing a special set of the make-rules only for LTO // compilation. // // The IPO phase perform inter-procedural analyses and optimizations, and // the Post-IPO consists two sub-phases: intra-procedural scalar optimizations // (SOPT), and intra-procedural target-dependent code generator (CG). // // As of this writing, we don't separate IPO and the Post-IPO SOPT. They // are intermingled together, and are driven by a single pass manager (see // PassManagerBuilder::populateLTOPassManager()). // // The "LTOCodeGenerator" is the driver for the IPO and Post-IPO stages. // The "CodeGenerator" here is bit confusing. Don't confuse the "CodeGenerator" // with the machine specific code generator. // //===----------------------------------------------------------------------===// #ifndef LLVM_LTO_LTOCODEGENERATOR_H #define LLVM_LTO_LTOCODEGENERATOR_H #include "llvm-c/lto.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSet.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Module.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Error.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include /// Enable global value internalization in LTO. extern llvm::cl::opt EnableLTOInternalization; namespace llvm { template class ArrayRef; class LLVMContext; class DiagnosticInfo; class Linker; class Mangler; class MemoryBuffer; class TargetLibraryInfo; class TargetMachine; class raw_ostream; class raw_pwrite_stream; //===----------------------------------------------------------------------===// /// C++ class which implements the opaque lto_code_gen_t type. /// struct LTOCodeGenerator { static const char *getVersionString(); LTOCodeGenerator(LLVMContext &Context); ~LTOCodeGenerator(); /// Merge given module. Return true on success. /// /// Resets \a HasVerifiedInput. bool addModule(struct LTOModule *); /// Set the destination module. /// /// Resets \a HasVerifiedInput. void setModule(std::unique_ptr M); void setAsmUndefinedRefs(struct LTOModule *); void setTargetOptions(const TargetOptions &Options); void setDebugInfo(lto_debug_model); void setCodePICModel(Optional Model) { RelocModel = Model; } /// Set the file type to be emitted (assembly or object code). /// The default is CGFT_ObjectFile. void setFileType(CodeGenFileType FT) { FileType = FT; } void setCpu(StringRef MCpu) { this->MCpu = std::string(MCpu); } void setAttrs(std::vector MAttrs) { this->MAttrs = MAttrs; } void setOptLevel(unsigned OptLevel); void setShouldInternalize(bool Value) { ShouldInternalize = Value; } void setShouldEmbedUselists(bool Value) { ShouldEmbedUselists = Value; } /// Restore linkage of globals /// /// When set, the linkage of globals will be restored prior to code /// generation. That is, a global symbol that had external linkage prior to /// LTO will be emitted with external linkage again; and a local will remain /// local. Note that this option only affects the end result - globals may /// still be internalized in the process of LTO and may be modified and/or /// deleted where legal. /// /// The default behavior will internalize globals (unless on the preserve /// list) and, if parallel code generation is enabled, will externalize /// all locals. void setShouldRestoreGlobalsLinkage(bool Value) { ShouldRestoreGlobalsLinkage = Value; } void addMustPreserveSymbol(StringRef Sym) { MustPreserveSymbols.insert(Sym); } /// Pass options to the driver and optimization passes. /// /// These options are not necessarily for debugging purpose (the function /// name is misleading). This function should be called before /// LTOCodeGenerator::compilexxx(), and /// LTOCodeGenerator::writeMergedModules(). void setCodeGenDebugOptions(ArrayRef Opts); /// Parse the options set in setCodeGenDebugOptions. /// /// Like \a setCodeGenDebugOptions(), this must be called before /// LTOCodeGenerator::compilexxx() and /// LTOCodeGenerator::writeMergedModules(). void parseCodeGenDebugOptions(); /// Write the merged module to the file specified by the given path. Return /// true on success. /// /// Calls \a verifyMergedModuleOnce(). bool writeMergedModules(StringRef Path); /// Compile the merged module into a *single* output file; the path to output /// file is returned to the caller via argument "name". Return true on /// success. /// /// \note It is up to the linker to remove the intermediate output file. Do /// not try to remove the object file in LTOCodeGenerator's destructor as we /// don't who (LTOCodeGenerator or the output file) will last longer. bool compile_to_file(const char **Name); /// As with compile_to_file(), this function compiles the merged module into /// single output file. Instead of returning the output file path to the /// caller (linker), it brings the output to a buffer, and returns the buffer /// to the caller. This function should delete the intermediate file once /// its content is brought to memory. Return NULL if the compilation was not /// successful. std::unique_ptr compile(); /// Optimizes the merged module. Returns true on success. /// /// Calls \a verifyMergedModuleOnce(). bool optimize(); /// Compiles the merged optimized module into a single output file. It brings /// the output to a buffer, and returns the buffer to the caller. Return NULL /// if the compilation was not successful. std::unique_ptr compileOptimized(); /// Compile the merged optimized module into out.size() output files each /// representing a linkable partition of the module. If out contains more /// than one element, code generation is done in parallel with out.size() /// threads. Output files will be written to members of out. Returns true on /// success. /// /// Calls \a verifyMergedModuleOnce(). bool compileOptimized(ArrayRef Out); /// Enable the Freestanding mode: indicate that the optimizer should not /// assume builtins are present on the target. void setFreestanding(bool Enabled) { Freestanding = Enabled; } void setDisableVerify(bool Value) { DisableVerify = Value; } void setDiagnosticHandler(lto_diagnostic_handler_t, void *); LLVMContext &getContext() { return Context; } void resetMergedModule() { MergedModule.reset(); } void DiagnosticHandler(const DiagnosticInfo &DI); private: void initializeLTOPasses(); /// Verify the merged module on first call. /// /// Sets \a HasVerifiedInput on first call and doesn't run again on the same /// input. void verifyMergedModuleOnce(); bool compileOptimizedToFile(const char **Name); void restoreLinkageForExternals(); void applyScopeRestrictions(); void preserveDiscardableGVs( Module &TheModule, llvm::function_ref mustPreserveGV); bool determineTarget(); std::unique_ptr createTargetMachine(); void emitError(const std::string &ErrMsg); void emitWarning(const std::string &ErrMsg); void finishOptimizationRemarks(); LLVMContext &Context; std::unique_ptr MergedModule; std::unique_ptr TheLinker; std::unique_ptr TargetMach; bool EmitDwarfDebugInfo = false; bool ScopeRestrictionsDone = false; bool HasVerifiedInput = false; Optional RelocModel; StringSet<> MustPreserveSymbols; StringSet<> AsmUndefinedRefs; StringMap ExternalSymbols; std::vector CodegenOptions; std::string FeatureStr; std::string MCpu; std::vector MAttrs; std::string NativeObjectPath; TargetOptions Options; CodeGenOpt::Level CGOptLevel = CodeGenOpt::Default; const Target *MArch = nullptr; std::string TripleStr; unsigned OptLevel = 2; lto_diagnostic_handler_t DiagHandler = nullptr; void *DiagContext = nullptr; bool ShouldInternalize = EnableLTOInternalization; bool ShouldEmbedUselists = false; bool ShouldRestoreGlobalsLinkage = false; CodeGenFileType FileType = CGFT_ObjectFile; std::unique_ptr DiagnosticOutputFile; bool Freestanding = false; std::unique_ptr StatsFile = nullptr; bool DisableVerify = false; }; } #endif