//===- llvm/CodeGen/GlobalISel/CallLowering.h - Call lowering ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file describes how to lower LLVM calls to machine code calls. /// //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_GLOBALISEL_CALLLOWERING_H #define LLVM_CODEGEN_GLOBALISEL_CALLLOWERING_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetCallingConv.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Type.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachineValueType.h" #include #include namespace llvm { class CallBase; class DataLayout; class Function; class FunctionLoweringInfo; class MachineIRBuilder; struct MachinePointerInfo; class MachineRegisterInfo; class TargetLowering; class Value; class CallLowering { const TargetLowering *TLI; virtual void anchor(); public: struct BaseArgInfo { Type *Ty; SmallVector Flags; bool IsFixed; BaseArgInfo(Type *Ty, ArrayRef Flags = ArrayRef(), bool IsFixed = true) : Ty(Ty), Flags(Flags.begin(), Flags.end()), IsFixed(IsFixed) {} BaseArgInfo() : Ty(nullptr), IsFixed(false) {} }; struct ArgInfo : public BaseArgInfo { SmallVector Regs; // If the argument had to be split into multiple parts according to the // target calling convention, then this contains the original vregs // if the argument was an incoming arg. SmallVector OrigRegs; ArgInfo(ArrayRef Regs, Type *Ty, ArrayRef Flags = ArrayRef(), bool IsFixed = true) : BaseArgInfo(Ty, Flags, IsFixed), Regs(Regs.begin(), Regs.end()) { if (!Regs.empty() && Flags.empty()) this->Flags.push_back(ISD::ArgFlagsTy()); // FIXME: We should have just one way of saying "no register". assert(((Ty->isVoidTy() || Ty->isEmptyTy()) == (Regs.empty() || Regs[0] == 0)) && "only void types should have no register"); } ArgInfo() : BaseArgInfo() {} }; struct CallLoweringInfo { /// Calling convention to be used for the call. CallingConv::ID CallConv = CallingConv::C; /// Destination of the call. It should be either a register, globaladdress, /// or externalsymbol. MachineOperand Callee = MachineOperand::CreateImm(0); /// Descriptor for the return type of the function. ArgInfo OrigRet; /// List of descriptors of the arguments passed to the function. SmallVector OrigArgs; /// Valid if the call has a swifterror inout parameter, and contains the /// vreg that the swifterror should be copied into after the call. Register SwiftErrorVReg; MDNode *KnownCallees = nullptr; /// True if the call must be tail call optimized. bool IsMustTailCall = false; /// True if the call passes all target-independent checks for tail call /// optimization. bool IsTailCall = false; /// True if the call was lowered as a tail call. This is consumed by the /// legalizer. This allows the legalizer to lower libcalls as tail calls. bool LoweredTailCall = false; /// True if the call is to a vararg function. bool IsVarArg = false; /// True if the function's return value can be lowered to registers. bool CanLowerReturn = true; /// VReg to hold the hidden sret parameter. Register DemoteRegister; /// The stack index for sret demotion. int DemoteStackIndex; }; /// Argument handling is mostly uniform between the four places that /// make these decisions: function formal arguments, call /// instruction args, call instruction returns and function /// returns. However, once a decision has been made on where an /// argument should go, exactly what happens can vary slightly. This /// class abstracts the differences. struct ValueHandler { ValueHandler(bool IsIncoming, MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, CCAssignFn *AssignFn) : MIRBuilder(MIRBuilder), MRI(MRI), AssignFn(AssignFn), IsIncomingArgumentHandler(IsIncoming) {} virtual ~ValueHandler() = default; /// Returns true if the handler is dealing with incoming arguments, /// i.e. those that move values from some physical location to vregs. bool isIncomingArgumentHandler() const { return IsIncomingArgumentHandler; } /// Materialize a VReg containing the address of the specified /// stack-based object. This is either based on a FrameIndex or /// direct SP manipulation, depending on the context. \p MPO /// should be initialized to an appropriate description of the /// address created. virtual Register getStackAddress(uint64_t Size, int64_t Offset, MachinePointerInfo &MPO) = 0; /// The specified value has been assigned to a physical register, /// handle the appropriate COPY (either to or from) and mark any /// relevant uses/defines as needed. virtual void assignValueToReg(Register ValVReg, Register PhysReg, CCValAssign &VA) = 0; /// The specified value has been assigned to a stack /// location. Load or store it there, with appropriate extension /// if necessary. virtual void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, MachinePointerInfo &MPO, CCValAssign &VA) = 0; /// An overload which takes an ArgInfo if additional information about /// the arg is needed. virtual void assignValueToAddress(const ArgInfo &Arg, Register Addr, uint64_t Size, MachinePointerInfo &MPO, CCValAssign &VA) { assert(Arg.Regs.size() == 1); assignValueToAddress(Arg.Regs[0], Addr, Size, MPO, VA); } /// Handle custom values, which may be passed into one or more of \p VAs. /// \return The number of \p VAs that have been assigned after the first /// one, and which should therefore be skipped from further /// processing. virtual unsigned assignCustomValue(const ArgInfo &Arg, ArrayRef VAs) { // This is not a pure virtual method because not all targets need to worry // about custom values. llvm_unreachable("Custom values not supported"); } /// Extend a register to the location type given in VA, capped at extending /// to at most MaxSize bits. If MaxSizeBits is 0 then no maximum is set. Register extendRegister(Register ValReg, CCValAssign &VA, unsigned MaxSizeBits = 0); virtual bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, const ArgInfo &Info, ISD::ArgFlagsTy Flags, CCState &State) { return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State); } MachineIRBuilder &MIRBuilder; MachineRegisterInfo &MRI; CCAssignFn *AssignFn; private: bool IsIncomingArgumentHandler; virtual void anchor(); }; struct IncomingValueHandler : public ValueHandler { IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, CCAssignFn *AssignFn) : ValueHandler(true, MIRBuilder, MRI, AssignFn) {} }; struct OutgoingValueHandler : public ValueHandler { OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, CCAssignFn *AssignFn) : ValueHandler(false, MIRBuilder, MRI, AssignFn) {} }; protected: /// Getter for generic TargetLowering class. const TargetLowering *getTLI() const { return TLI; } /// Getter for target specific TargetLowering class. template const XXXTargetLowering *getTLI() const { return static_cast(TLI); } /// \returns Flags corresponding to the attributes on the \p ArgIdx-th /// parameter of \p Call. ISD::ArgFlagsTy getAttributesForArgIdx(const CallBase &Call, unsigned ArgIdx) const; /// Adds flags to \p Flags based off of the attributes in \p Attrs. /// \p OpIdx is the index in \p Attrs to add flags from. void addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, const AttributeList &Attrs, unsigned OpIdx) const; template void setArgFlags(ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const FuncInfoTy &FuncInfo) const; /// Generate instructions for packing \p SrcRegs into one big register /// corresponding to the aggregate type \p PackedTy. /// /// \param SrcRegs should contain one virtual register for each base type in /// \p PackedTy, as returned by computeValueLLTs. /// /// \return The packed register. Register packRegs(ArrayRef SrcRegs, Type *PackedTy, MachineIRBuilder &MIRBuilder) const; /// Generate instructions for unpacking \p SrcReg into the \p DstRegs /// corresponding to the aggregate type \p PackedTy. /// /// \param DstRegs should contain one virtual register for each base type in /// \p PackedTy, as returned by computeValueLLTs. void unpackRegs(ArrayRef DstRegs, Register SrcReg, Type *PackedTy, MachineIRBuilder &MIRBuilder) const; /// Invoke Handler::assignArg on each of the given \p Args and then use /// \p Handler to move them to the assigned locations. /// /// \return True if everything has succeeded, false otherwise. bool handleAssignments(MachineIRBuilder &MIRBuilder, SmallVectorImpl &Args, ValueHandler &Handler) const; bool handleAssignments(CCState &CCState, SmallVectorImpl &ArgLocs, MachineIRBuilder &MIRBuilder, SmallVectorImpl &Args, ValueHandler &Handler) const; /// Analyze passed or returned values from a call, supplied in \p ArgInfo, /// incorporating info about the passed values into \p CCState. /// /// Used to check if arguments are suitable for tail call lowering. bool analyzeArgInfo(CCState &CCState, SmallVectorImpl &Args, CCAssignFn &AssignFnFixed, CCAssignFn &AssignFnVarArg) const; /// Check whether parameters to a call that are passed in callee saved /// registers are the same as from the calling function. This needs to be /// checked for tail call eligibility. bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl &ArgLocs, const SmallVectorImpl &OutVals) const; /// \returns True if the calling convention for a callee and its caller pass /// results in the same way. Typically used for tail call eligibility checks. /// /// \p Info is the CallLoweringInfo for the call. /// \p MF is the MachineFunction for the caller. /// \p InArgs contains the results of the call. /// \p CalleeAssignFnFixed is the CCAssignFn to be used for the callee for /// fixed arguments. /// \p CalleeAssignFnVarArg is similar, but for varargs. /// \p CallerAssignFnFixed is the CCAssignFn to be used for the caller for /// fixed arguments. /// \p CallerAssignFnVarArg is similar, but for varargs. bool resultsCompatible(CallLoweringInfo &Info, MachineFunction &MF, SmallVectorImpl &InArgs, CCAssignFn &CalleeAssignFnFixed, CCAssignFn &CalleeAssignFnVarArg, CCAssignFn &CallerAssignFnFixed, CCAssignFn &CallerAssignFnVarArg) const; public: CallLowering(const TargetLowering *TLI) : TLI(TLI) {} virtual ~CallLowering() = default; /// \return true if the target is capable of handling swifterror values that /// have been promoted to a specified register. The extended versions of /// lowerReturn and lowerCall should be implemented. virtual bool supportSwiftError() const { return false; } /// Load the returned value from the stack into virtual registers in \p VRegs. /// It uses the frame index \p FI and the start offset from \p DemoteReg. /// The loaded data size will be determined from \p RetTy. void insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef VRegs, Register DemoteReg, int FI) const; /// Store the return value given by \p VRegs into stack starting at the offset /// specified in \p DemoteReg. void insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef VRegs, Register DemoteReg) const; /// Insert the hidden sret ArgInfo to the beginning of \p SplitArgs. /// This function should be called from the target specific /// lowerFormalArguments when \p F requires the sret demotion. void insertSRetIncomingArgument(const Function &F, SmallVectorImpl &SplitArgs, Register &DemoteReg, MachineRegisterInfo &MRI, const DataLayout &DL) const; /// For the call-base described by \p CB, insert the hidden sret ArgInfo to /// the OrigArgs field of \p Info. void insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, const CallBase &CB, CallLoweringInfo &Info) const; /// \return True if the return type described by \p Outs can be returned /// without performing sret demotion. bool checkReturn(CCState &CCInfo, SmallVectorImpl &Outs, CCAssignFn *Fn) const; /// Get the type and the ArgFlags for the split components of \p RetTy as /// returned by \c ComputeValueVTs. void getReturnInfo(CallingConv::ID CallConv, Type *RetTy, AttributeList Attrs, SmallVectorImpl &Outs, const DataLayout &DL) const; /// Toplevel function to check the return type based on the target calling /// convention. \return True if the return value of \p MF can be returned /// without performing sret demotion. bool checkReturnTypeForCallConv(MachineFunction &MF) const; /// This hook must be implemented to check whether the return values /// described by \p Outs can fit into the return registers. If false /// is returned, an sret-demotion is performed. virtual bool canLowerReturn(MachineFunction &MF, CallingConv::ID CallConv, SmallVectorImpl &Outs, bool IsVarArg) const { return true; } /// This hook must be implemented to lower outgoing return values, described /// by \p Val, into the specified virtual registers \p VRegs. /// This hook is used by GlobalISel. /// /// \p FLI is required for sret demotion. /// /// \p SwiftErrorVReg is non-zero if the function has a swifterror parameter /// that needs to be implicitly returned. /// /// \return True if the lowering succeeds, false otherwise. virtual bool lowerReturn(MachineIRBuilder &MIRBuilder, const Value *Val, ArrayRef VRegs, FunctionLoweringInfo &FLI, Register SwiftErrorVReg) const { if (!supportSwiftError()) { assert(SwiftErrorVReg == 0 && "attempt to use unsupported swifterror"); return lowerReturn(MIRBuilder, Val, VRegs, FLI); } return false; } /// This hook behaves as the extended lowerReturn function, but for targets /// that do not support swifterror value promotion. virtual bool lowerReturn(MachineIRBuilder &MIRBuilder, const Value *Val, ArrayRef VRegs, FunctionLoweringInfo &FLI) const { return false; } virtual bool fallBackToDAGISel(const Function &F) const { return false; } /// This hook must be implemented to lower the incoming (formal) /// arguments, described by \p VRegs, for GlobalISel. Each argument /// must end up in the related virtual registers described by \p VRegs. /// In other words, the first argument should end up in \c VRegs[0], /// the second in \c VRegs[1], and so on. For each argument, there will be one /// register for each non-aggregate type, as returned by \c computeValueLLTs. /// \p MIRBuilder is set to the proper insertion for the argument /// lowering. \p FLI is required for sret demotion. /// /// \return True if the lowering succeeded, false otherwise. virtual bool lowerFormalArguments(MachineIRBuilder &MIRBuilder, const Function &F, ArrayRef> VRegs, FunctionLoweringInfo &FLI) const { return false; } /// This hook must be implemented to lower the given call instruction, /// including argument and return value marshalling. /// /// /// \return true if the lowering succeeded, false otherwise. virtual bool lowerCall(MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info) const { return false; } /// Lower the given call instruction, including argument and return value /// marshalling. /// /// \p CI is the call/invoke instruction. /// /// \p ResRegs are the registers where the call's return value should be /// stored (or 0 if there is no return value). There will be one register for /// each non-aggregate type, as returned by \c computeValueLLTs. /// /// \p ArgRegs is a list of lists of virtual registers containing each /// argument that needs to be passed (argument \c i should be placed in \c /// ArgRegs[i]). For each argument, there will be one register for each /// non-aggregate type, as returned by \c computeValueLLTs. /// /// \p SwiftErrorVReg is non-zero if the call has a swifterror inout /// parameter, and contains the vreg that the swifterror should be copied into /// after the call. /// /// \p GetCalleeReg is a callback to materialize a register for the callee if /// the target determines it cannot jump to the destination based purely on \p /// CI. This might be because \p CI is indirect, or because of the limited /// range of an immediate jump. /// /// \return true if the lowering succeeded, false otherwise. bool lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &Call, ArrayRef ResRegs, ArrayRef> ArgRegs, Register SwiftErrorVReg, std::function GetCalleeReg) const; }; } // end namespace llvm #endif // LLVM_CODEGEN_GLOBALISEL_CALLLOWERING_H