//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the LoopInfo class that is used to identify natural loops // and determine the loop depth of various nodes of the CFG. A natural loop // has exactly one entry-point, which is called the header. Note that natural // loops may actually be several loops that share the same header node. // // This analysis calculates the nesting structure of loops in a function. For // each natural loop identified, this analysis identifies natural loops // contained entirely within the loop and the basic blocks the make up the loop. // // It can calculate on the fly various bits of information, for example: // // * whether there is a preheader for the loop // * the number of back edges to the header // * whether or not a particular block branches out of the loop // * the successor blocks of the loop // * the loop depth // * etc... // // Note that this analysis specifically identifies *Loops* not cycles or SCCs // in the CFG. There can be strongly connected components in the CFG which // this analysis will not recognize and that will not be represented by a Loop // instance. In particular, a Loop might be inside such a non-loop SCC, or a // non-loop SCC might contain a sub-SCC which is a Loop. // // For an overview of terminology used in this API (and thus all of our loop // analyses or transforms), see docs/LoopTerminology.rst. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_LOOPINFO_H #define LLVM_ANALYSIS_LOOPINFO_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" #include "llvm/Support/Allocator.h" #include #include namespace llvm { class DominatorTree; class LoopInfo; class Loop; class InductionDescriptor; class MDNode; class MemorySSAUpdater; class ScalarEvolution; class raw_ostream; template class DominatorTreeBase; template class LoopInfoBase; template class LoopBase; //===----------------------------------------------------------------------===// /// Instances of this class are used to represent loops that are detected in the /// flow graph. /// template class LoopBase { LoopT *ParentLoop; // Loops contained entirely within this one. std::vector SubLoops; // The list of blocks in this loop. First entry is the header node. std::vector Blocks; SmallPtrSet DenseBlockSet; #if LLVM_ENABLE_ABI_BREAKING_CHECKS /// Indicator that this loop is no longer a valid loop. bool IsInvalid = false; #endif LoopBase(const LoopBase &) = delete; const LoopBase & operator=(const LoopBase &) = delete; public: /// Return the nesting level of this loop. An outer-most loop has depth 1, /// for consistency with loop depth values used for basic blocks, where depth /// 0 is used for blocks not inside any loops. unsigned getLoopDepth() const { assert(!isInvalid() && "Loop not in a valid state!"); unsigned D = 1; for (const LoopT *CurLoop = ParentLoop; CurLoop; CurLoop = CurLoop->ParentLoop) ++D; return D; } BlockT *getHeader() const { return getBlocks().front(); } /// Return the parent loop if it exists or nullptr for top /// level loops. /// A loop is either top-level in a function (that is, it is not /// contained in any other loop) or it is entirely enclosed in /// some other loop. /// If a loop is top-level, it has no parent, otherwise its /// parent is the innermost loop in which it is enclosed. LoopT *getParentLoop() const { return ParentLoop; } /// This is a raw interface for bypassing addChildLoop. void setParentLoop(LoopT *L) { assert(!isInvalid() && "Loop not in a valid state!"); ParentLoop = L; } /// Return true if the specified loop is contained within in this loop. bool contains(const LoopT *L) const { assert(!isInvalid() && "Loop not in a valid state!"); if (L == this) return true; if (!L) return false; return contains(L->getParentLoop()); } /// Return true if the specified basic block is in this loop. bool contains(const BlockT *BB) const { assert(!isInvalid() && "Loop not in a valid state!"); return DenseBlockSet.count(BB); } /// Return true if the specified instruction is in this loop. template bool contains(const InstT *Inst) const { return contains(Inst->getParent()); } /// Return the loops contained entirely within this loop. const std::vector &getSubLoops() const { assert(!isInvalid() && "Loop not in a valid state!"); return SubLoops; } std::vector &getSubLoopsVector() { assert(!isInvalid() && "Loop not in a valid state!"); return SubLoops; } typedef typename std::vector::const_iterator iterator; typedef typename std::vector::const_reverse_iterator reverse_iterator; iterator begin() const { return getSubLoops().begin(); } iterator end() const { return getSubLoops().end(); } reverse_iterator rbegin() const { return getSubLoops().rbegin(); } reverse_iterator rend() const { return getSubLoops().rend(); } // LoopInfo does not detect irreducible control flow, just natural // loops. That is, it is possible that there is cyclic control // flow within the "innermost loop" or around the "outermost // loop". /// Return true if the loop does not contain any (natural) loops. bool isInnermost() const { return getSubLoops().empty(); } /// Return true if the loop does not have a parent (natural) loop // (i.e. it is outermost, which is the same as top-level). bool isOutermost() const { return getParentLoop() == nullptr; } /// Get a list of the basic blocks which make up this loop. ArrayRef getBlocks() const { assert(!isInvalid() && "Loop not in a valid state!"); return Blocks; } typedef typename ArrayRef::const_iterator block_iterator; block_iterator block_begin() const { return getBlocks().begin(); } block_iterator block_end() const { return getBlocks().end(); } inline iterator_range blocks() const { assert(!isInvalid() && "Loop not in a valid state!"); return make_range(block_begin(), block_end()); } /// Get the number of blocks in this loop in constant time. /// Invalidate the loop, indicating that it is no longer a loop. unsigned getNumBlocks() const { assert(!isInvalid() && "Loop not in a valid state!"); return Blocks.size(); } /// Return a direct, mutable handle to the blocks vector so that we can /// mutate it efficiently with techniques like `std::remove`. std::vector &getBlocksVector() { assert(!isInvalid() && "Loop not in a valid state!"); return Blocks; } /// Return a direct, mutable handle to the blocks set so that we can /// mutate it efficiently. SmallPtrSetImpl &getBlocksSet() { assert(!isInvalid() && "Loop not in a valid state!"); return DenseBlockSet; } /// Return a direct, immutable handle to the blocks set. const SmallPtrSetImpl &getBlocksSet() const { assert(!isInvalid() && "Loop not in a valid state!"); return DenseBlockSet; } /// Return true if this loop is no longer valid. The only valid use of this /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to /// true by the destructor. In other words, if this accessor returns true, /// the caller has already triggered UB by calling this accessor; and so it /// can only be called in a context where a return value of true indicates a /// programmer error. bool isInvalid() const { #if LLVM_ENABLE_ABI_BREAKING_CHECKS return IsInvalid; #else return false; #endif } /// True if terminator in the block can branch to another block that is /// outside of the current loop. \p BB must be inside the loop. bool isLoopExiting(const BlockT *BB) const { assert(!isInvalid() && "Loop not in a valid state!"); assert(contains(BB) && "Exiting block must be part of the loop"); for (const auto *Succ : children(BB)) { if (!contains(Succ)) return true; } return false; } /// Returns true if \p BB is a loop-latch. /// A latch block is a block that contains a branch back to the header. /// This function is useful when there are multiple latches in a loop /// because \fn getLoopLatch will return nullptr in that case. bool isLoopLatch(const BlockT *BB) const { assert(!isInvalid() && "Loop not in a valid state!"); assert(contains(BB) && "block does not belong to the loop"); BlockT *Header = getHeader(); auto PredBegin = GraphTraits>::child_begin(Header); auto PredEnd = GraphTraits>::child_end(Header); return std::find(PredBegin, PredEnd, BB) != PredEnd; } /// Calculate the number of back edges to the loop header. unsigned getNumBackEdges() const { assert(!isInvalid() && "Loop not in a valid state!"); unsigned NumBackEdges = 0; BlockT *H = getHeader(); for (const auto Pred : children>(H)) if (contains(Pred)) ++NumBackEdges; return NumBackEdges; } //===--------------------------------------------------------------------===// // APIs for simple analysis of the loop. // // Note that all of these methods can fail on general loops (ie, there may not // be a preheader, etc). For best success, the loop simplification and // induction variable canonicalization pass should be used to normalize loops // for easy analysis. These methods assume canonical loops. /// Return all blocks inside the loop that have successors outside of the /// loop. These are the blocks _inside of the current loop_ which branch out. /// The returned list is always unique. void getExitingBlocks(SmallVectorImpl &ExitingBlocks) const; /// If getExitingBlocks would return exactly one block, return that block. /// Otherwise return null. BlockT *getExitingBlock() const; /// Return all of the successor blocks of this loop. These are the blocks /// _outside of the current loop_ which are branched to. void getExitBlocks(SmallVectorImpl &ExitBlocks) const; /// If getExitBlocks would return exactly one block, return that block. /// Otherwise return null. BlockT *getExitBlock() const; /// Return true if no exit block for the loop has a predecessor that is /// outside the loop. bool hasDedicatedExits() const; /// Return all unique successor blocks of this loop. /// These are the blocks _outside of the current loop_ which are branched to. void getUniqueExitBlocks(SmallVectorImpl &ExitBlocks) const; /// Return all unique successor blocks of this loop except successors from /// Latch block are not considered. If the exit comes from Latch has also /// non Latch predecessor in a loop it will be added to ExitBlocks. /// These are the blocks _outside of the current loop_ which are branched to. void getUniqueNonLatchExitBlocks(SmallVectorImpl &ExitBlocks) const; /// If getUniqueExitBlocks would return exactly one block, return that block. /// Otherwise return null. BlockT *getUniqueExitBlock() const; /// Return true if this loop does not have any exit blocks. bool hasNoExitBlocks() const; /// Edge type. typedef std::pair Edge; /// Return all pairs of (_inside_block_,_outside_block_). void getExitEdges(SmallVectorImpl &ExitEdges) const; /// If there is a preheader for this loop, return it. A loop has a preheader /// if there is only one edge to the header of the loop from outside of the /// loop. If this is the case, the block branching to the header of the loop /// is the preheader node. /// /// This method returns null if there is no preheader for the loop. BlockT *getLoopPreheader() const; /// If the given loop's header has exactly one unique predecessor outside the /// loop, return it. Otherwise return null. /// This is less strict that the loop "preheader" concept, which requires /// the predecessor to have exactly one successor. BlockT *getLoopPredecessor() const; /// If there is a single latch block for this loop, return it. /// A latch block is a block that contains a branch back to the header. BlockT *getLoopLatch() const; /// Return all loop latch blocks of this loop. A latch block is a block that /// contains a branch back to the header. void getLoopLatches(SmallVectorImpl &LoopLatches) const { assert(!isInvalid() && "Loop not in a valid state!"); BlockT *H = getHeader(); for (const auto Pred : children>(H)) if (contains(Pred)) LoopLatches.push_back(Pred); } /// Return all inner loops in the loop nest rooted by the loop in preorder, /// with siblings in forward program order. template static void getInnerLoopsInPreorder(const LoopT &L, SmallVectorImpl &PreOrderLoops) { SmallVector PreOrderWorklist; PreOrderWorklist.append(L.rbegin(), L.rend()); while (!PreOrderWorklist.empty()) { LoopT *L = PreOrderWorklist.pop_back_val(); // Sub-loops are stored in forward program order, but will process the // worklist backwards so append them in reverse order. PreOrderWorklist.append(L->rbegin(), L->rend()); PreOrderLoops.push_back(L); } } /// Return all loops in the loop nest rooted by the loop in preorder, with /// siblings in forward program order. SmallVector getLoopsInPreorder() const { SmallVector PreOrderLoops; const LoopT *CurLoop = static_cast(this); PreOrderLoops.push_back(CurLoop); getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); return PreOrderLoops; } SmallVector getLoopsInPreorder() { SmallVector PreOrderLoops; LoopT *CurLoop = static_cast(this); PreOrderLoops.push_back(CurLoop); getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); return PreOrderLoops; } //===--------------------------------------------------------------------===// // APIs for updating loop information after changing the CFG // /// This method is used by other analyses to update loop information. /// NewBB is set to be a new member of the current loop. /// Because of this, it is added as a member of all parent loops, and is added /// to the specified LoopInfo object as being in the current basic block. It /// is not valid to replace the loop header with this method. void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase &LI); /// This is used when splitting loops up. It replaces the OldChild entry in /// our children list with NewChild, and updates the parent pointer of /// OldChild to be null and the NewChild to be this loop. /// This updates the loop depth of the new child. void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); /// Add the specified loop to be a child of this loop. /// This updates the loop depth of the new child. void addChildLoop(LoopT *NewChild) { assert(!isInvalid() && "Loop not in a valid state!"); assert(!NewChild->ParentLoop && "NewChild already has a parent!"); NewChild->ParentLoop = static_cast(this); SubLoops.push_back(NewChild); } /// This removes the specified child from being a subloop of this loop. The /// loop is not deleted, as it will presumably be inserted into another loop. LoopT *removeChildLoop(iterator I) { assert(!isInvalid() && "Loop not in a valid state!"); assert(I != SubLoops.end() && "Cannot remove end iterator!"); LoopT *Child = *I; assert(Child->ParentLoop == this && "Child is not a child of this loop!"); SubLoops.erase(SubLoops.begin() + (I - begin())); Child->ParentLoop = nullptr; return Child; } /// This removes the specified child from being a subloop of this loop. The /// loop is not deleted, as it will presumably be inserted into another loop. LoopT *removeChildLoop(LoopT *Child) { return removeChildLoop(llvm::find(*this, Child)); } /// This adds a basic block directly to the basic block list. /// This should only be used by transformations that create new loops. Other /// transformations should use addBasicBlockToLoop. void addBlockEntry(BlockT *BB) { assert(!isInvalid() && "Loop not in a valid state!"); Blocks.push_back(BB); DenseBlockSet.insert(BB); } /// interface to reverse Blocks[from, end of loop] in this loop void reverseBlock(unsigned from) { assert(!isInvalid() && "Loop not in a valid state!"); std::reverse(Blocks.begin() + from, Blocks.end()); } /// interface to do reserve() for Blocks void reserveBlocks(unsigned size) { assert(!isInvalid() && "Loop not in a valid state!"); Blocks.reserve(size); } /// This method is used to move BB (which must be part of this loop) to be the /// loop header of the loop (the block that dominates all others). void moveToHeader(BlockT *BB) { assert(!isInvalid() && "Loop not in a valid state!"); if (Blocks[0] == BB) return; for (unsigned i = 0;; ++i) { assert(i != Blocks.size() && "Loop does not contain BB!"); if (Blocks[i] == BB) { Blocks[i] = Blocks[0]; Blocks[0] = BB; return; } } } /// This removes the specified basic block from the current loop, updating the /// Blocks as appropriate. This does not update the mapping in the LoopInfo /// class. void removeBlockFromLoop(BlockT *BB) { assert(!isInvalid() && "Loop not in a valid state!"); auto I = find(Blocks, BB); assert(I != Blocks.end() && "N is not in this list!"); Blocks.erase(I); DenseBlockSet.erase(BB); } /// Verify loop structure void verifyLoop() const; /// Verify loop structure of this loop and all nested loops. void verifyLoopNest(DenseSet *Loops) const; /// Returns true if the loop is annotated parallel. /// /// Derived classes can override this method using static template /// polymorphism. bool isAnnotatedParallel() const { return false; } /// Print loop with all the BBs inside it. void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const; protected: friend class LoopInfoBase; /// This creates an empty loop. LoopBase() : ParentLoop(nullptr) {} explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { Blocks.push_back(BB); DenseBlockSet.insert(BB); } // Since loop passes like SCEV are allowed to key analysis results off of // `Loop` pointers, we cannot re-use pointers within a loop pass manager. // This means loop passes should not be `delete` ing `Loop` objects directly // (and risk a later `Loop` allocation re-using the address of a previous one) // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop` // pointer till the end of the lifetime of the `LoopInfo` object. // // To make it easier to follow this rule, we mark the destructor as // non-public. ~LoopBase() { for (auto *SubLoop : SubLoops) SubLoop->~LoopT(); #if LLVM_ENABLE_ABI_BREAKING_CHECKS IsInvalid = true; #endif SubLoops.clear(); Blocks.clear(); DenseBlockSet.clear(); ParentLoop = nullptr; } }; template raw_ostream &operator<<(raw_ostream &OS, const LoopBase &Loop) { Loop.print(OS); return OS; } // Implementation in LoopInfoImpl.h extern template class LoopBase; /// Represents a single loop in the control flow graph. Note that not all SCCs /// in the CFG are necessarily loops. class Loop : public LoopBase { public: /// A range representing the start and end location of a loop. class LocRange { DebugLoc Start; DebugLoc End; public: LocRange() {} LocRange(DebugLoc Start) : Start(Start), End(Start) {} LocRange(DebugLoc Start, DebugLoc End) : Start(std::move(Start)), End(std::move(End)) {} const DebugLoc &getStart() const { return Start; } const DebugLoc &getEnd() const { return End; } /// Check for null. /// explicit operator bool() const { return Start && End; } }; /// Return true if the specified value is loop invariant. bool isLoopInvariant(const Value *V) const; /// Return true if all the operands of the specified instruction are loop /// invariant. bool hasLoopInvariantOperands(const Instruction *I) const; /// If the given value is an instruction inside of the loop and it can be /// hoisted, do so to make it trivially loop-invariant. /// Return true if the value after any hoisting is loop invariant. This /// function can be used as a slightly more aggressive replacement for /// isLoopInvariant. /// /// If InsertPt is specified, it is the point to hoist instructions to. /// If null, the terminator of the loop preheader is used. bool makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt = nullptr, MemorySSAUpdater *MSSAU = nullptr) const; /// If the given instruction is inside of the loop and it can be hoisted, do /// so to make it trivially loop-invariant. /// Return true if the instruction after any hoisting is loop invariant. This /// function can be used as a slightly more aggressive replacement for /// isLoopInvariant. /// /// If InsertPt is specified, it is the point to hoist instructions to. /// If null, the terminator of the loop preheader is used. /// bool makeLoopInvariant(Instruction *I, bool &Changed, Instruction *InsertPt = nullptr, MemorySSAUpdater *MSSAU = nullptr) const; /// Check to see if the loop has a canonical induction variable: an integer /// recurrence that starts at 0 and increments by one each time through the /// loop. If so, return the phi node that corresponds to it. /// /// The IndVarSimplify pass transforms loops to have a canonical induction /// variable. /// PHINode *getCanonicalInductionVariable() const; /// Obtain the unique incoming and back edge. Return false if they are /// non-unique or the loop is dead; otherwise, return true. bool getIncomingAndBackEdge(BasicBlock *&Incoming, BasicBlock *&Backedge) const; /// Below are some utilities to get the loop guard, loop bounds and induction /// variable, and to check if a given phinode is an auxiliary induction /// variable, if the loop is guarded, and if the loop is canonical. /// /// Here is an example: /// \code /// for (int i = lb; i < ub; i+=step) /// /// --- pseudo LLVMIR --- /// beforeloop: /// guardcmp = (lb < ub) /// if (guardcmp) goto preheader; else goto afterloop /// preheader: /// loop: /// i_1 = phi[{lb, preheader}, {i_2, latch}] /// /// i_2 = i_1 + step /// latch: /// cmp = (i_2 < ub) /// if (cmp) goto loop /// exit: /// afterloop: /// \endcode /// /// - getBounds /// - getInitialIVValue --> lb /// - getStepInst --> i_2 = i_1 + step /// - getStepValue --> step /// - getFinalIVValue --> ub /// - getCanonicalPredicate --> '<' /// - getDirection --> Increasing /// /// - getInductionVariable --> i_1 /// - isAuxiliaryInductionVariable(x) --> true if x == i_1 /// - getLoopGuardBranch() /// --> `if (guardcmp) goto preheader; else goto afterloop` /// - isGuarded() --> true /// - isCanonical --> false struct LoopBounds { /// Return the LoopBounds object if /// - the given \p IndVar is an induction variable /// - the initial value of the induction variable can be found /// - the step instruction of the induction variable can be found /// - the final value of the induction variable can be found /// /// Else None. static Optional getBounds(const Loop &L, PHINode &IndVar, ScalarEvolution &SE); /// Get the initial value of the loop induction variable. Value &getInitialIVValue() const { return InitialIVValue; } /// Get the instruction that updates the loop induction variable. Instruction &getStepInst() const { return StepInst; } /// Get the step that the loop induction variable gets updated by in each /// loop iteration. Return nullptr if not found. Value *getStepValue() const { return StepValue; } /// Get the final value of the loop induction variable. Value &getFinalIVValue() const { return FinalIVValue; } /// Return the canonical predicate for the latch compare instruction, if /// able to be calcuated. Else BAD_ICMP_PREDICATE. /// /// A predicate is considered as canonical if requirements below are all /// satisfied: /// 1. The first successor of the latch branch is the loop header /// If not, inverse the predicate. /// 2. One of the operands of the latch comparison is StepInst /// If not, and /// - if the current calcuated predicate is not ne or eq, flip the /// predicate. /// - else if the loop is increasing, return slt /// (notice that it is safe to change from ne or eq to sign compare) /// - else if the loop is decreasing, return sgt /// (notice that it is safe to change from ne or eq to sign compare) /// /// Here is an example when both (1) and (2) are not satisfied: /// \code /// loop.header: /// %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header] /// %inc = add %iv, %step /// %cmp = slt %iv, %finaliv /// br %cmp, %loop.exit, %loop.header /// loop.exit: /// \endcode /// - The second successor of the latch branch is the loop header instead /// of the first successor (slt -> sge) /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv) /// instead of the StepInst (%inc) (sge -> sgt) /// /// The predicate would be sgt if both (1) and (2) are satisfied. /// getCanonicalPredicate() returns sgt for this example. /// Note: The IR is not changed. ICmpInst::Predicate getCanonicalPredicate() const; /// An enum for the direction of the loop /// - for (int i = 0; i < ub; ++i) --> Increasing /// - for (int i = ub; i > 0; --i) --> Descresing /// - for (int i = x; i != y; i+=z) --> Unknown enum class Direction { Increasing, Decreasing, Unknown }; /// Get the direction of the loop. Direction getDirection() const; private: LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F, ScalarEvolution &SE) : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV), FinalIVValue(F), SE(SE) {} const Loop &L; // The initial value of the loop induction variable Value &InitialIVValue; // The instruction that updates the loop induction variable Instruction &StepInst; // The value that the loop induction variable gets updated by in each loop // iteration Value *StepValue; // The final value of the loop induction variable Value &FinalIVValue; ScalarEvolution &SE; }; /// Return the struct LoopBounds collected if all struct members are found, /// else None. Optional getBounds(ScalarEvolution &SE) const; /// Return the loop induction variable if found, else return nullptr. /// An instruction is considered as the loop induction variable if /// - it is an induction variable of the loop; and /// - it is used to determine the condition of the branch in the loop latch /// /// Note: the induction variable doesn't need to be canonical, i.e. starts at /// zero and increments by one each time through the loop (but it can be). PHINode *getInductionVariable(ScalarEvolution &SE) const; /// Get the loop induction descriptor for the loop induction variable. Return /// true if the loop induction variable is found. bool getInductionDescriptor(ScalarEvolution &SE, InductionDescriptor &IndDesc) const; /// Return true if the given PHINode \p AuxIndVar is /// - in the loop header /// - not used outside of the loop /// - incremented by a loop invariant step for each loop iteration /// - step instruction opcode should be add or sub /// Note: auxiliary induction variable is not required to be used in the /// conditional branch in the loop latch. (but it can be) bool isAuxiliaryInductionVariable(PHINode &AuxIndVar, ScalarEvolution &SE) const; /// Return the loop guard branch, if it exists. /// /// This currently only works on simplified loop, as it requires a preheader /// and a latch to identify the guard. It will work on loops of the form: /// \code /// GuardBB: /// br cond1, Preheader, ExitSucc <== GuardBranch /// Preheader: /// br Header /// Header: /// ... /// br Latch /// Latch: /// br cond2, Header, ExitBlock /// ExitBlock: /// br ExitSucc /// ExitSucc: /// \endcode BranchInst *getLoopGuardBranch() const; /// Return true iff the loop is /// - in simplify rotated form, and /// - guarded by a loop guard branch. bool isGuarded() const { return (getLoopGuardBranch() != nullptr); } /// Return true if the loop is in rotated form. /// /// This does not check if the loop was rotated by loop rotation, instead it /// only checks if the loop is in rotated form (has a valid latch that exists /// the loop). bool isRotatedForm() const { assert(!isInvalid() && "Loop not in a valid state!"); BasicBlock *Latch = getLoopLatch(); return Latch && isLoopExiting(Latch); } /// Return true if the loop induction variable starts at zero and increments /// by one each time through the loop. bool isCanonical(ScalarEvolution &SE) const; /// Return true if the Loop is in LCSSA form. bool isLCSSAForm(const DominatorTree &DT) const; /// Return true if this Loop and all inner subloops are in LCSSA form. bool isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI) const; /// Return true if the Loop is in the form that the LoopSimplify form /// transforms loops to, which is sometimes called normal form. bool isLoopSimplifyForm() const; /// Return true if the loop body is safe to clone in practice. bool isSafeToClone() const; /// Returns true if the loop is annotated parallel. /// /// A parallel loop can be assumed to not contain any dependencies between /// iterations by the compiler. That is, any loop-carried dependency checking /// can be skipped completely when parallelizing the loop on the target /// machine. Thus, if the parallel loop information originates from the /// programmer, e.g. via the OpenMP parallel for pragma, it is the /// programmer's responsibility to ensure there are no loop-carried /// dependencies. The final execution order of the instructions across /// iterations is not guaranteed, thus, the end result might or might not /// implement actual concurrent execution of instructions across multiple /// iterations. bool isAnnotatedParallel() const; /// Return the llvm.loop loop id metadata node for this loop if it is present. /// /// If this loop contains the same llvm.loop metadata on each branch to the /// header then the node is returned. If any latch instruction does not /// contain llvm.loop or if multiple latches contain different nodes then /// 0 is returned. MDNode *getLoopID() const; /// Set the llvm.loop loop id metadata for this loop. /// /// The LoopID metadata node will be added to each terminator instruction in /// the loop that branches to the loop header. /// /// The LoopID metadata node should have one or more operands and the first /// operand should be the node itself. void setLoopID(MDNode *LoopID) const; /// Add llvm.loop.unroll.disable to this loop's loop id metadata. /// /// Remove existing unroll metadata and add unroll disable metadata to /// indicate the loop has already been unrolled. This prevents a loop /// from being unrolled more than is directed by a pragma if the loop /// unrolling pass is run more than once (which it generally is). void setLoopAlreadyUnrolled(); /// Add llvm.loop.mustprogress to this loop's loop id metadata. void setLoopMustProgress(); void dump() const; void dumpVerbose() const; /// Return the debug location of the start of this loop. /// This looks for a BB terminating instruction with a known debug /// location by looking at the preheader and header blocks. If it /// cannot find a terminating instruction with location information, /// it returns an unknown location. DebugLoc getStartLoc() const; /// Return the source code span of the loop. LocRange getLocRange() const; StringRef getName() const { if (BasicBlock *Header = getHeader()) if (Header->hasName()) return Header->getName(); return ""; } private: Loop() = default; friend class LoopInfoBase; friend class LoopBase; explicit Loop(BasicBlock *BB) : LoopBase(BB) {} ~Loop() = default; }; //===----------------------------------------------------------------------===// /// This class builds and contains all of the top-level loop /// structures in the specified function. /// template class LoopInfoBase { // BBMap - Mapping of basic blocks to the inner most loop they occur in DenseMap BBMap; std::vector TopLevelLoops; BumpPtrAllocator LoopAllocator; friend class LoopBase; friend class LoopInfo; void operator=(const LoopInfoBase &) = delete; LoopInfoBase(const LoopInfoBase &) = delete; public: LoopInfoBase() {} ~LoopInfoBase() { releaseMemory(); } LoopInfoBase(LoopInfoBase &&Arg) : BBMap(std::move(Arg.BBMap)), TopLevelLoops(std::move(Arg.TopLevelLoops)), LoopAllocator(std::move(Arg.LoopAllocator)) { // We have to clear the arguments top level loops as we've taken ownership. Arg.TopLevelLoops.clear(); } LoopInfoBase &operator=(LoopInfoBase &&RHS) { BBMap = std::move(RHS.BBMap); for (auto *L : TopLevelLoops) L->~LoopT(); TopLevelLoops = std::move(RHS.TopLevelLoops); LoopAllocator = std::move(RHS.LoopAllocator); RHS.TopLevelLoops.clear(); return *this; } void releaseMemory() { BBMap.clear(); //for (auto *L : TopLevelLoops) //L->~LoopT(); TopLevelLoops.clear(); // LoopAllocator.Reset(); } template LoopT *AllocateLoop(ArgsTy &&... Args) { LoopT *Storage = LoopAllocator.Allocate(); return new (Storage) LoopT(std::forward(Args)...); } /// iterator/begin/end - The interface to the top-level loops in the current /// function. /// typedef typename std::vector::const_iterator iterator; typedef typename std::vector::const_reverse_iterator reverse_iterator; iterator begin() const { return TopLevelLoops.begin(); } iterator end() const { return TopLevelLoops.end(); } reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } reverse_iterator rend() const { return TopLevelLoops.rend(); } bool empty() const { return TopLevelLoops.empty(); } /// Return all of the loops in the function in preorder across the loop /// nests, with siblings in forward program order. /// /// Note that because loops form a forest of trees, preorder is equivalent to /// reverse postorder. SmallVector getLoopsInPreorder(); /// Return all of the loops in the function in preorder across the loop /// nests, with siblings in *reverse* program order. /// /// Note that because loops form a forest of trees, preorder is equivalent to /// reverse postorder. /// /// Also note that this is *not* a reverse preorder. Only the siblings are in /// reverse program order. SmallVector getLoopsInReverseSiblingPreorder(); /// Return the inner most loop that BB lives in. If a basic block is in no /// loop (for example the entry node), null is returned. LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); } /// Same as getLoopFor. const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); } /// Return the loop nesting level of the specified block. A depth of 0 means /// the block is not inside any loop. unsigned getLoopDepth(const BlockT *BB) const { const LoopT *L = getLoopFor(BB); return L ? L->getLoopDepth() : 0; } // True if the block is a loop header node bool isLoopHeader(const BlockT *BB) const { const LoopT *L = getLoopFor(BB); return L && L->getHeader() == BB; } /// Return the top-level loops. const std::vector &getTopLevelLoops() const { return TopLevelLoops; } /// Return the top-level loops. std::vector &getTopLevelLoopsVector() { return TopLevelLoops; } /// This removes the specified top-level loop from this loop info object. /// The loop is not deleted, as it will presumably be inserted into /// another loop. LoopT *removeLoop(iterator I) { assert(I != end() && "Cannot remove end iterator!"); LoopT *L = *I; assert(L->isOutermost() && "Not a top-level loop!"); TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin())); return L; } /// Change the top-level loop that contains BB to the specified loop. /// This should be used by transformations that restructure the loop hierarchy /// tree. void changeLoopFor(BlockT *BB, LoopT *L) { if (!L) { BBMap.erase(BB); return; } BBMap[BB] = L; } /// Replace the specified loop in the top-level loops list with the indicated /// loop. void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) { auto I = find(TopLevelLoops, OldLoop); assert(I != TopLevelLoops.end() && "Old loop not at top level!"); *I = NewLoop; assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && "Loops already embedded into a subloop!"); } /// This adds the specified loop to the collection of top-level loops. void addTopLevelLoop(LoopT *New) { assert(New->isOutermost() && "Loop already in subloop!"); TopLevelLoops.push_back(New); } /// This method completely removes BB from all data structures, /// including all of the Loop objects it is nested in and our mapping from /// BasicBlocks to loops. void removeBlock(BlockT *BB) { auto I = BBMap.find(BB); if (I != BBMap.end()) { for (LoopT *L = I->second; L; L = L->getParentLoop()) L->removeBlockFromLoop(BB); BBMap.erase(I); } } // Internals static bool isNotAlreadyContainedIn(const LoopT *SubLoop, const LoopT *ParentLoop) { if (!SubLoop) return true; if (SubLoop == ParentLoop) return false; return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); } /// Create the loop forest using a stable algorithm. void analyze(const DominatorTreeBase &DomTree); // Debugging void print(raw_ostream &OS) const; void verify(const DominatorTreeBase &DomTree) const; /// Destroy a loop that has been removed from the `LoopInfo` nest. /// /// This runs the destructor of the loop object making it invalid to /// reference afterward. The memory is retained so that the *pointer* to the /// loop remains valid. /// /// The caller is responsible for removing this loop from the loop nest and /// otherwise disconnecting it from the broader `LoopInfo` data structures. /// Callers that don't naturally handle this themselves should probably call /// `erase' instead. void destroy(LoopT *L) { L->~LoopT(); // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons // \c L, but the pointer remains valid for non-dereferencing uses. LoopAllocator.Deallocate(L); } }; // Implementation in LoopInfoImpl.h extern template class LoopInfoBase; class LoopInfo : public LoopInfoBase { typedef LoopInfoBase BaseT; friend class LoopBase; void operator=(const LoopInfo &) = delete; LoopInfo(const LoopInfo &) = delete; public: LoopInfo() {} explicit LoopInfo(const DominatorTreeBase &DomTree); LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast(Arg))) {} LoopInfo &operator=(LoopInfo &&RHS) { BaseT::operator=(std::move(static_cast(RHS))); return *this; } /// Handle invalidation explicitly. bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &); // Most of the public interface is provided via LoopInfoBase. /// Update LoopInfo after removing the last backedge from a loop. This updates /// the loop forest and parent loops for each block so that \c L is no longer /// referenced, but does not actually delete \c L immediately. The pointer /// will remain valid until this LoopInfo's memory is released. void erase(Loop *L); /// Returns true if replacing From with To everywhere is guaranteed to /// preserve LCSSA form. bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { // Preserving LCSSA form is only problematic if the replacing value is an // instruction. Instruction *I = dyn_cast(To); if (!I) return true; // If both instructions are defined in the same basic block then replacement // cannot break LCSSA form. if (I->getParent() == From->getParent()) return true; // If the instruction is not defined in a loop then it can safely replace // anything. Loop *ToLoop = getLoopFor(I->getParent()); if (!ToLoop) return true; // If the replacing instruction is defined in the same loop as the original // instruction, or in a loop that contains it as an inner loop, then using // it as a replacement will not break LCSSA form. return ToLoop->contains(getLoopFor(From->getParent())); } /// Checks if moving a specific instruction can break LCSSA in any loop. /// /// Return true if moving \p Inst to before \p NewLoc will break LCSSA, /// assuming that the function containing \p Inst and \p NewLoc is currently /// in LCSSA form. bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) { assert(Inst->getFunction() == NewLoc->getFunction() && "Can't reason about IPO!"); auto *OldBB = Inst->getParent(); auto *NewBB = NewLoc->getParent(); // Movement within the same loop does not break LCSSA (the equality check is // to avoid doing a hashtable lookup in case of intra-block movement). if (OldBB == NewBB) return true; auto *OldLoop = getLoopFor(OldBB); auto *NewLoop = getLoopFor(NewBB); if (OldLoop == NewLoop) return true; // Check if Outer contains Inner; with the null loop counting as the // "outermost" loop. auto Contains = [](const Loop *Outer, const Loop *Inner) { return !Outer || Outer->contains(Inner); }; // To check that the movement of Inst to before NewLoc does not break LCSSA, // we need to check two sets of uses for possible LCSSA violations at // NewLoc: the users of NewInst, and the operands of NewInst. // If we know we're hoisting Inst out of an inner loop to an outer loop, // then the uses *of* Inst don't need to be checked. if (!Contains(NewLoop, OldLoop)) { for (Use &U : Inst->uses()) { auto *UI = cast(U.getUser()); auto *UBB = isa(UI) ? cast(UI)->getIncomingBlock(U) : UI->getParent(); if (UBB != NewBB && getLoopFor(UBB) != NewLoop) return false; } } // If we know we're sinking Inst from an outer loop into an inner loop, then // the *operands* of Inst don't need to be checked. if (!Contains(OldLoop, NewLoop)) { // See below on why we can't handle phi nodes here. if (isa(Inst)) return false; for (Use &U : Inst->operands()) { auto *DefI = dyn_cast(U.get()); if (!DefI) return false; // This would need adjustment if we allow Inst to be a phi node -- the // new use block won't simply be NewBB. auto *DefBlock = DefI->getParent(); if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop) return false; } } return true; } }; // Allow clients to walk the list of nested loops... template <> struct GraphTraits { typedef const Loop *NodeRef; typedef LoopInfo::iterator ChildIteratorType; static NodeRef getEntryNode(const Loop *L) { return L; } static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } static ChildIteratorType child_end(NodeRef N) { return N->end(); } }; template <> struct GraphTraits { typedef Loop *NodeRef; typedef LoopInfo::iterator ChildIteratorType; static NodeRef getEntryNode(Loop *L) { return L; } static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } static ChildIteratorType child_end(NodeRef N) { return N->end(); } }; /// Analysis pass that exposes the \c LoopInfo for a function. class LoopAnalysis : public AnalysisInfoMixin { friend AnalysisInfoMixin; static AnalysisKey Key; public: typedef LoopInfo Result; LoopInfo run(Function &F, FunctionAnalysisManager &AM); }; /// Printer pass for the \c LoopAnalysis results. class LoopPrinterPass : public PassInfoMixin { raw_ostream &OS; public: explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); }; /// Verifier pass for the \c LoopAnalysis results. struct LoopVerifierPass : public PassInfoMixin { PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); }; /// The legacy pass manager's analysis pass to compute loop information. class LoopInfoWrapperPass : public FunctionPass { LoopInfo LI; public: static char ID; // Pass identification, replacement for typeid LoopInfoWrapperPass(); LoopInfo &getLoopInfo() { return LI; } const LoopInfo &getLoopInfo() const { return LI; } /// Calculate the natural loop information for a given function. bool runOnFunction(Function &F) override; void verifyAnalysis() const override; void releaseMemory() override { LI.releaseMemory(); } void print(raw_ostream &O, const Module *M = nullptr) const override; void getAnalysisUsage(AnalysisUsage &AU) const override; }; /// Function to print a loop's contents as LLVM's text IR assembly. void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = ""); /// Find and return the loop attribute node for the attribute @p Name in /// @p LoopID. Return nullptr if there is no such attribute. MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name); /// Find string metadata for a loop. /// /// Returns the MDNode where the first operand is the metadata's name. The /// following operands are the metadata's values. If no metadata with @p Name is /// found, return nullptr. MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name); /// Return whether an MDNode might represent an access group. /// /// Access group metadata nodes have to be distinct and empty. Being /// always-empty ensures that it never needs to be changed (which -- because /// MDNodes are designed immutable -- would require creating a new MDNode). Note /// that this is not a sufficient condition: not every distinct and empty NDNode /// is representing an access group. bool isValidAsAccessGroup(MDNode *AccGroup); /// Create a new LoopID after the loop has been transformed. /// /// This can be used when no follow-up loop attributes are defined /// (llvm::makeFollowupLoopID returning None) to stop transformations to be /// applied again. /// /// @param Context The LLVMContext in which to create the new LoopID. /// @param OrigLoopID The original LoopID; can be nullptr if the original /// loop has no LoopID. /// @param RemovePrefixes Remove all loop attributes that have these prefixes. /// Use to remove metadata of the transformation that has /// been applied. /// @param AddAttrs Add these loop attributes to the new LoopID. /// /// @return A new LoopID that can be applied using Loop::setLoopID(). llvm::MDNode * makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, llvm::ArrayRef RemovePrefixes, llvm::ArrayRef AddAttrs); } // End llvm namespace #endif