// This file was GENERATED by command: // pump.py gmock-generated-matchers.h.pump // DO NOT EDIT BY HAND!!! // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used variadic matchers. // IWYU pragma: private, include "gmock/gmock.h" #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ #include #include #include #include #include "gmock/gmock-matchers.h" namespace testing { namespace internal { // The type of the i-th (0-based) field of Tuple. #define GMOCK_FIELD_TYPE_(Tuple, i) \ typename ::testing::tuple_element::type // TupleFields is for selecting fields from a // tuple of type Tuple. It has two members: // // type: a tuple type whose i-th field is the ki-th field of Tuple. // GetSelectedFields(t): returns fields k0, ..., and kn of t as a tuple. // // For example, in class TupleFields, 2, 0>, we have: // // type is tuple, and // GetSelectedFields(make_tuple(true, 'a', 42)) is (42, true). template class TupleFields; // This generic version is used when there are 10 selectors. template class TupleFields { public: typedef ::testing::tuple type; static type GetSelectedFields(const Tuple& t) { return type(get(t), get(t), get(t), get(t), get(t), get(t), get(t), get(t), get(t), get(t)); } }; // The following specialization is used for 0 ~ 9 selectors. template class TupleFields { public: typedef ::testing::tuple<> type; static type GetSelectedFields(const Tuple& /* t */) { return type(); } }; template class TupleFields { public: typedef ::testing::tuple type; static type GetSelectedFields(const Tuple& t) { return type(get(t)); } }; template class TupleFields { public: typedef ::testing::tuple type; static type GetSelectedFields(const Tuple& t) { return type(get(t), get(t)); } }; template class TupleFields { public: typedef ::testing::tuple type; static type GetSelectedFields(const Tuple& t) { return type(get(t), get(t), get(t)); } }; template class TupleFields { public: typedef ::testing::tuple type; static type GetSelectedFields(const Tuple& t) { return type(get(t), get(t), get(t), get(t)); } }; template class TupleFields { public: typedef ::testing::tuple type; static type GetSelectedFields(const Tuple& t) { return type(get(t), get(t), get(t), get(t), get(t)); } }; template class TupleFields { public: typedef ::testing::tuple type; static type GetSelectedFields(const Tuple& t) { return type(get(t), get(t), get(t), get(t), get(t), get(t)); } }; template class TupleFields { public: typedef ::testing::tuple type; static type GetSelectedFields(const Tuple& t) { return type(get(t), get(t), get(t), get(t), get(t), get(t), get(t)); } }; template class TupleFields { public: typedef ::testing::tuple type; static type GetSelectedFields(const Tuple& t) { return type(get(t), get(t), get(t), get(t), get(t), get(t), get(t), get(t)); } }; template class TupleFields { public: typedef ::testing::tuple type; static type GetSelectedFields(const Tuple& t) { return type(get(t), get(t), get(t), get(t), get(t), get(t), get(t), get(t), get(t)); } }; #undef GMOCK_FIELD_TYPE_ // Implements the Args() matcher. template class ArgsMatcherImpl : public MatcherInterface { public: // ArgsTuple may have top-level const or reference modifiers. typedef GTEST_REMOVE_REFERENCE_AND_CONST_(ArgsTuple) RawArgsTuple; typedef typename internal::TupleFields::type SelectedArgs; typedef Matcher MonomorphicInnerMatcher; template explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) : inner_matcher_(SafeMatcherCast(inner_matcher)) {} virtual bool MatchAndExplain(ArgsTuple args, MatchResultListener* listener) const { const SelectedArgs& selected_args = GetSelectedArgs(args); if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); PrintIndices(listener->stream()); *listener << "are " << PrintToString(selected_args); StringMatchResultListener inner_listener; const bool match = inner_matcher_.MatchAndExplain(selected_args, &inner_listener); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } virtual void DescribeTo(::std::ostream* os) const { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeNegationTo(os); } private: static SelectedArgs GetSelectedArgs(ArgsTuple args) { return TupleFields::GetSelectedFields(args); } // Prints the indices of the selected fields. static void PrintIndices(::std::ostream* os) { *os << "whose fields ("; const int indices[10] = { k0, k1, k2, k3, k4, k5, k6, k7, k8, k9 }; for (int i = 0; i < 10; i++) { if (indices[i] < 0) break; if (i >= 1) *os << ", "; *os << "#" << indices[i]; } *os << ") "; } const MonomorphicInnerMatcher inner_matcher_; GTEST_DISALLOW_ASSIGN_(ArgsMatcherImpl); }; template class ArgsMatcher { public: explicit ArgsMatcher(const InnerMatcher& inner_matcher) : inner_matcher_(inner_matcher) {} template operator Matcher() const { return MakeMatcher(new ArgsMatcherImpl(inner_matcher_)); } private: const InnerMatcher inner_matcher_; GTEST_DISALLOW_ASSIGN_(ArgsMatcher); }; // A set of metafunctions for computing the result type of AllOf. // AllOf(m1, ..., mN) returns // AllOfResultN::type. // Although AllOf isn't defined for one argument, AllOfResult1 is defined // to simplify the implementation. template struct AllOfResult1 { typedef M1 type; }; template struct AllOfResult2 { typedef BothOfMatcher< typename AllOfResult1::type, typename AllOfResult1::type > type; }; template struct AllOfResult3 { typedef BothOfMatcher< typename AllOfResult1::type, typename AllOfResult2::type > type; }; template struct AllOfResult4 { typedef BothOfMatcher< typename AllOfResult2::type, typename AllOfResult2::type > type; }; template struct AllOfResult5 { typedef BothOfMatcher< typename AllOfResult2::type, typename AllOfResult3::type > type; }; template struct AllOfResult6 { typedef BothOfMatcher< typename AllOfResult3::type, typename AllOfResult3::type > type; }; template struct AllOfResult7 { typedef BothOfMatcher< typename AllOfResult3::type, typename AllOfResult4::type > type; }; template struct AllOfResult8 { typedef BothOfMatcher< typename AllOfResult4::type, typename AllOfResult4::type > type; }; template struct AllOfResult9 { typedef BothOfMatcher< typename AllOfResult4::type, typename AllOfResult5::type > type; }; template struct AllOfResult10 { typedef BothOfMatcher< typename AllOfResult5::type, typename AllOfResult5::type > type; }; // A set of metafunctions for computing the result type of AnyOf. // AnyOf(m1, ..., mN) returns // AnyOfResultN::type. // Although AnyOf isn't defined for one argument, AnyOfResult1 is defined // to simplify the implementation. template struct AnyOfResult1 { typedef M1 type; }; template struct AnyOfResult2 { typedef EitherOfMatcher< typename AnyOfResult1::type, typename AnyOfResult1::type > type; }; template struct AnyOfResult3 { typedef EitherOfMatcher< typename AnyOfResult1::type, typename AnyOfResult2::type > type; }; template struct AnyOfResult4 { typedef EitherOfMatcher< typename AnyOfResult2::type, typename AnyOfResult2::type > type; }; template struct AnyOfResult5 { typedef EitherOfMatcher< typename AnyOfResult2::type, typename AnyOfResult3::type > type; }; template struct AnyOfResult6 { typedef EitherOfMatcher< typename AnyOfResult3::type, typename AnyOfResult3::type > type; }; template struct AnyOfResult7 { typedef EitherOfMatcher< typename AnyOfResult3::type, typename AnyOfResult4::type > type; }; template struct AnyOfResult8 { typedef EitherOfMatcher< typename AnyOfResult4::type, typename AnyOfResult4::type > type; }; template struct AnyOfResult9 { typedef EitherOfMatcher< typename AnyOfResult4::type, typename AnyOfResult5::type > type; }; template struct AnyOfResult10 { typedef EitherOfMatcher< typename AnyOfResult5::type, typename AnyOfResult5::type > type; }; } // namespace internal // Args(a_matcher) matches a tuple if the selected // fields of it matches a_matcher. C++ doesn't support default // arguments for function templates, so we have to overload it. template inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } template inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } template inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } template inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } template inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } template inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } template inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } template inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } template inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } template inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } template inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } // ElementsAre(e_1, e_2, ... e_n) matches an STL-style container with // n elements, where the i-th element in the container must // match the i-th argument in the list. Each argument of // ElementsAre() can be either a value or a matcher. We support up to // 10 arguments. // // The use of DecayArray in the implementation allows ElementsAre() // to accept string literals, whose type is const char[N], but we // want to treat them as const char*. // // NOTE: Since ElementsAre() cares about the order of the elements, it // must not be used with containers whose elements's order is // undefined (e.g. hash_map). inline internal::ElementsAreMatcher< ::testing::tuple<> > ElementsAre() { typedef ::testing::tuple<> Args; return internal::ElementsAreMatcher(Args()); } template inline internal::ElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type> > ElementsAre(const T1& e1) { typedef ::testing::tuple< typename internal::DecayArray::type> Args; return internal::ElementsAreMatcher(Args(e1)); } template inline internal::ElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type> > ElementsAre(const T1& e1, const T2& e2) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::ElementsAreMatcher(Args(e1, e2)); } template inline internal::ElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > ElementsAre(const T1& e1, const T2& e2, const T3& e3) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::ElementsAreMatcher(Args(e1, e2, e3)); } template inline internal::ElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::ElementsAreMatcher(Args(e1, e2, e3, e4)); } template inline internal::ElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::ElementsAreMatcher(Args(e1, e2, e3, e4, e5)); } template inline internal::ElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::ElementsAreMatcher(Args(e1, e2, e3, e4, e5, e6)); } template inline internal::ElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::ElementsAreMatcher(Args(e1, e2, e3, e4, e5, e6, e7)); } template inline internal::ElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::ElementsAreMatcher(Args(e1, e2, e3, e4, e5, e6, e7, e8)); } template inline internal::ElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::ElementsAreMatcher(Args(e1, e2, e3, e4, e5, e6, e7, e8, e9)); } template inline internal::ElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9, const T10& e10) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::ElementsAreMatcher(Args(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10)); } // UnorderedElementsAre(e_1, e_2, ..., e_n) is an ElementsAre extension // that matches n elements in any order. We support up to n=10 arguments. inline internal::UnorderedElementsAreMatcher< ::testing::tuple<> > UnorderedElementsAre() { typedef ::testing::tuple<> Args; return internal::UnorderedElementsAreMatcher(Args()); } template inline internal::UnorderedElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type> > UnorderedElementsAre(const T1& e1) { typedef ::testing::tuple< typename internal::DecayArray::type> Args; return internal::UnorderedElementsAreMatcher(Args(e1)); } template inline internal::UnorderedElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type> > UnorderedElementsAre(const T1& e1, const T2& e2) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::UnorderedElementsAreMatcher(Args(e1, e2)); } template inline internal::UnorderedElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::UnorderedElementsAreMatcher(Args(e1, e2, e3)); } template inline internal::UnorderedElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::UnorderedElementsAreMatcher(Args(e1, e2, e3, e4)); } template inline internal::UnorderedElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::UnorderedElementsAreMatcher(Args(e1, e2, e3, e4, e5)); } template inline internal::UnorderedElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::UnorderedElementsAreMatcher(Args(e1, e2, e3, e4, e5, e6)); } template inline internal::UnorderedElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::UnorderedElementsAreMatcher(Args(e1, e2, e3, e4, e5, e6, e7)); } template inline internal::UnorderedElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::UnorderedElementsAreMatcher(Args(e1, e2, e3, e4, e5, e6, e7, e8)); } template inline internal::UnorderedElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::UnorderedElementsAreMatcher(Args(e1, e2, e3, e4, e5, e6, e7, e8, e9)); } template inline internal::UnorderedElementsAreMatcher< ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> > UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9, const T10& e10) { typedef ::testing::tuple< typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type, typename internal::DecayArray::type> Args; return internal::UnorderedElementsAreMatcher(Args(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10)); } // AllOf(m1, m2, ..., mk) matches any value that matches all of the given // sub-matchers. AllOf is called fully qualified to prevent ADL from firing. template inline typename internal::AllOfResult2::type AllOf(M1 m1, M2 m2) { return typename internal::AllOfResult2::type( m1, m2); } template inline typename internal::AllOfResult3::type AllOf(M1 m1, M2 m2, M3 m3) { return typename internal::AllOfResult3::type( m1, ::testing::AllOf(m2, m3)); } template inline typename internal::AllOfResult4::type AllOf(M1 m1, M2 m2, M3 m3, M4 m4) { return typename internal::AllOfResult4::type( ::testing::AllOf(m1, m2), ::testing::AllOf(m3, m4)); } template inline typename internal::AllOfResult5::type AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5) { return typename internal::AllOfResult5::type( ::testing::AllOf(m1, m2), ::testing::AllOf(m3, m4, m5)); } template inline typename internal::AllOfResult6::type AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6) { return typename internal::AllOfResult6::type( ::testing::AllOf(m1, m2, m3), ::testing::AllOf(m4, m5, m6)); } template inline typename internal::AllOfResult7::type AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7) { return typename internal::AllOfResult7::type( ::testing::AllOf(m1, m2, m3), ::testing::AllOf(m4, m5, m6, m7)); } template inline typename internal::AllOfResult8::type AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8) { return typename internal::AllOfResult8::type( ::testing::AllOf(m1, m2, m3, m4), ::testing::AllOf(m5, m6, m7, m8)); } template inline typename internal::AllOfResult9::type AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9) { return typename internal::AllOfResult9::type( ::testing::AllOf(m1, m2, m3, m4), ::testing::AllOf(m5, m6, m7, m8, m9)); } template inline typename internal::AllOfResult10::type AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9, M10 m10) { return typename internal::AllOfResult10::type( ::testing::AllOf(m1, m2, m3, m4, m5), ::testing::AllOf(m6, m7, m8, m9, m10)); } // AnyOf(m1, m2, ..., mk) matches any value that matches any of the given // sub-matchers. AnyOf is called fully qualified to prevent ADL from firing. template inline typename internal::AnyOfResult2::type AnyOf(M1 m1, M2 m2) { return typename internal::AnyOfResult2::type( m1, m2); } template inline typename internal::AnyOfResult3::type AnyOf(M1 m1, M2 m2, M3 m3) { return typename internal::AnyOfResult3::type( m1, ::testing::AnyOf(m2, m3)); } template inline typename internal::AnyOfResult4::type AnyOf(M1 m1, M2 m2, M3 m3, M4 m4) { return typename internal::AnyOfResult4::type( ::testing::AnyOf(m1, m2), ::testing::AnyOf(m3, m4)); } template inline typename internal::AnyOfResult5::type AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5) { return typename internal::AnyOfResult5::type( ::testing::AnyOf(m1, m2), ::testing::AnyOf(m3, m4, m5)); } template inline typename internal::AnyOfResult6::type AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6) { return typename internal::AnyOfResult6::type( ::testing::AnyOf(m1, m2, m3), ::testing::AnyOf(m4, m5, m6)); } template inline typename internal::AnyOfResult7::type AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7) { return typename internal::AnyOfResult7::type( ::testing::AnyOf(m1, m2, m3), ::testing::AnyOf(m4, m5, m6, m7)); } template inline typename internal::AnyOfResult8::type AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8) { return typename internal::AnyOfResult8::type( ::testing::AnyOf(m1, m2, m3, m4), ::testing::AnyOf(m5, m6, m7, m8)); } template inline typename internal::AnyOfResult9::type AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9) { return typename internal::AnyOfResult9::type( ::testing::AnyOf(m1, m2, m3, m4), ::testing::AnyOf(m5, m6, m7, m8, m9)); } template inline typename internal::AnyOfResult10::type AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9, M10 m10) { return typename internal::AnyOfResult10::type( ::testing::AnyOf(m1, m2, m3, m4, m5), ::testing::AnyOf(m6, m7, m8, m9, m10)); } } // namespace testing // The MATCHER* family of macros can be used in a namespace scope to // define custom matchers easily. // // Basic Usage // =========== // // The syntax // // MATCHER(name, description_string) { statements; } // // defines a matcher with the given name that executes the statements, // which must return a bool to indicate if the match succeeds. Inside // the statements, you can refer to the value being matched by 'arg', // and refer to its type by 'arg_type'. // // The description string documents what the matcher does, and is used // to generate the failure message when the match fails. Since a // MATCHER() is usually defined in a header file shared by multiple // C++ source files, we require the description to be a C-string // literal to avoid possible side effects. It can be empty, in which // case we'll use the sequence of words in the matcher name as the // description. // // For example: // // MATCHER(IsEven, "") { return (arg % 2) == 0; } // // allows you to write // // // Expects mock_foo.Bar(n) to be called where n is even. // EXPECT_CALL(mock_foo, Bar(IsEven())); // // or, // // // Verifies that the value of some_expression is even. // EXPECT_THAT(some_expression, IsEven()); // // If the above assertion fails, it will print something like: // // Value of: some_expression // Expected: is even // Actual: 7 // // where the description "is even" is automatically calculated from the // matcher name IsEven. // // Argument Type // ============= // // Note that the type of the value being matched (arg_type) is // determined by the context in which you use the matcher and is // supplied to you by the compiler, so you don't need to worry about // declaring it (nor can you). This allows the matcher to be // polymorphic. For example, IsEven() can be used to match any type // where the value of "(arg % 2) == 0" can be implicitly converted to // a bool. In the "Bar(IsEven())" example above, if method Bar() // takes an int, 'arg_type' will be int; if it takes an unsigned long, // 'arg_type' will be unsigned long; and so on. // // Parameterizing Matchers // ======================= // // Sometimes you'll want to parameterize the matcher. For that you // can use another macro: // // MATCHER_P(name, param_name, description_string) { statements; } // // For example: // // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } // // will allow you to write: // // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); // // which may lead to this message (assuming n is 10): // // Value of: Blah("a") // Expected: has absolute value 10 // Actual: -9 // // Note that both the matcher description and its parameter are // printed, making the message human-friendly. // // In the matcher definition body, you can write 'foo_type' to // reference the type of a parameter named 'foo'. For example, in the // body of MATCHER_P(HasAbsoluteValue, value) above, you can write // 'value_type' to refer to the type of 'value'. // // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P10 to // support multi-parameter matchers. // // Describing Parameterized Matchers // ================================= // // The last argument to MATCHER*() is a string-typed expression. The // expression can reference all of the matcher's parameters and a // special bool-typed variable named 'negation'. When 'negation' is // false, the expression should evaluate to the matcher's description; // otherwise it should evaluate to the description of the negation of // the matcher. For example, // // using testing::PrintToString; // // MATCHER_P2(InClosedRange, low, hi, // string(negation ? "is not" : "is") + " in range [" + // PrintToString(low) + ", " + PrintToString(hi) + "]") { // return low <= arg && arg <= hi; // } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: is in range [4, 6] // ... // Expected: is not in range [2, 4] // // If you specify "" as the description, the failure message will // contain the sequence of words in the matcher name followed by the // parameter values printed as a tuple. For example, // // MATCHER_P2(InClosedRange, low, hi, "") { ... } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: in closed range (4, 6) // ... // Expected: not (in closed range (2, 4)) // // Types of Matcher Parameters // =========================== // // For the purpose of typing, you can view // // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } // // as shorthand for // // template // FooMatcherPk // Foo(p1_type p1, ..., pk_type pk) { ... } // // When you write Foo(v1, ..., vk), the compiler infers the types of // the parameters v1, ..., and vk for you. If you are not happy with // the result of the type inference, you can specify the types by // explicitly instantiating the template, as in Foo(5, // false). As said earlier, you don't get to (or need to) specify // 'arg_type' as that's determined by the context in which the matcher // is used. You can assign the result of expression Foo(p1, ..., pk) // to a variable of type FooMatcherPk. This // can be useful when composing matchers. // // While you can instantiate a matcher template with reference types, // passing the parameters by pointer usually makes your code more // readable. If, however, you still want to pass a parameter by // reference, be aware that in the failure message generated by the // matcher you will see the value of the referenced object but not its // address. // // Explaining Match Results // ======================== // // Sometimes the matcher description alone isn't enough to explain why // the match has failed or succeeded. For example, when expecting a // long string, it can be very helpful to also print the diff between // the expected string and the actual one. To achieve that, you can // optionally stream additional information to a special variable // named result_listener, whose type is a pointer to class // MatchResultListener: // // MATCHER_P(EqualsLongString, str, "") { // if (arg == str) return true; // // *result_listener << "the difference: " /// << DiffStrings(str, arg); // return false; // } // // Overloading Matchers // ==================== // // You can overload matchers with different numbers of parameters: // // MATCHER_P(Blah, a, description_string1) { ... } // MATCHER_P2(Blah, a, b, description_string2) { ... } // // Caveats // ======= // // When defining a new matcher, you should also consider implementing // MatcherInterface or using MakePolymorphicMatcher(). These // approaches require more work than the MATCHER* macros, but also // give you more control on the types of the value being matched and // the matcher parameters, which may leads to better compiler error // messages when the matcher is used wrong. They also allow // overloading matchers based on parameter types (as opposed to just // based on the number of parameters). // // MATCHER*() can only be used in a namespace scope. The reason is // that C++ doesn't yet allow function-local types to be used to // instantiate templates. The up-coming C++0x standard will fix this. // Once that's done, we'll consider supporting using MATCHER*() inside // a function. // // More Information // ================ // // To learn more about using these macros, please search for 'MATCHER' // on http://code.google.com/p/googlemock/wiki/CookBook. #define MATCHER(name, description)\ class name##Matcher {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ gmock_Impl()\ {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple<>()));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl());\ }\ name##Matcher() {\ }\ private:\ GTEST_DISALLOW_ASSIGN_(name##Matcher);\ };\ inline name##Matcher name() {\ return name##Matcher();\ }\ template \ bool name##Matcher::gmock_Impl::MatchAndExplain(\ arg_type arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P(name, p0, description)\ template \ class name##MatcherP {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ explicit gmock_Impl(p0##_type gmock_p0)\ : p0(gmock_p0) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple(p0)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl(p0));\ }\ explicit name##MatcherP(p0##_type gmock_p0) : p0(gmock_p0) {\ }\ p0##_type p0;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP);\ };\ template \ inline name##MatcherP name(p0##_type p0) {\ return name##MatcherP(p0);\ }\ template \ template \ bool name##MatcherP::gmock_Impl::MatchAndExplain(\ arg_type arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P2(name, p0, p1, description)\ template \ class name##MatcherP2 {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1)\ : p0(gmock_p0), p1(gmock_p1) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple(p0, p1)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl(p0, p1));\ }\ name##MatcherP2(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \ p1(gmock_p1) {\ }\ p0##_type p0;\ p1##_type p1;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP2);\ };\ template \ inline name##MatcherP2 name(p0##_type p0, \ p1##_type p1) {\ return name##MatcherP2(p0, p1);\ }\ template \ template \ bool name##MatcherP2::gmock_Impl::MatchAndExplain(\ arg_type arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P3(name, p0, p1, p2, description)\ template \ class name##MatcherP3 {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple(p0, p1, \ p2)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl(p0, p1, p2));\ }\ name##MatcherP3(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP3);\ };\ template \ inline name##MatcherP3 name(p0##_type p0, \ p1##_type p1, p2##_type p2) {\ return name##MatcherP3(p0, p1, p2);\ }\ template \ template \ bool name##MatcherP3::gmock_Impl::MatchAndExplain(\ arg_type arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P4(name, p0, p1, p2, p3, description)\ template \ class name##MatcherP4 {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple(p0, p1, p2, p3)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl(p0, p1, p2, p3));\ }\ name##MatcherP4(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP4);\ };\ template \ inline name##MatcherP4 name(p0##_type p0, p1##_type p1, p2##_type p2, \ p3##_type p3) {\ return name##MatcherP4(p0, \ p1, p2, p3);\ }\ template \ template \ bool name##MatcherP4::gmock_Impl::MatchAndExplain(\ arg_type arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)\ template \ class name##MatcherP5 {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple(p0, p1, p2, p3, p4)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl(p0, p1, p2, p3, p4));\ }\ name##MatcherP5(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, \ p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP5);\ };\ template \ inline name##MatcherP5 name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4) {\ return name##MatcherP5(p0, p1, p2, p3, p4);\ }\ template \ template \ bool name##MatcherP5::gmock_Impl::MatchAndExplain(\ arg_type arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description)\ template \ class name##MatcherP6 {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4), p5(gmock_p5) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple(p0, p1, p2, p3, p4, p5)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl(p0, p1, p2, p3, p4, p5));\ }\ name##MatcherP6(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP6);\ };\ template \ inline name##MatcherP6 name(p0##_type p0, p1##_type p1, p2##_type p2, \ p3##_type p3, p4##_type p4, p5##_type p5) {\ return name##MatcherP6(p0, p1, p2, p3, p4, p5);\ }\ template \ template \ bool name##MatcherP6::gmock_Impl::MatchAndExplain(\ arg_type arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description)\ template \ class name##MatcherP7 {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple(p0, p1, p2, p3, p4, p5, \ p6)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl(p0, p1, p2, p3, p4, p5, p6));\ }\ name##MatcherP7(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), \ p6(gmock_p6) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP7);\ };\ template \ inline name##MatcherP7 name(p0##_type p0, p1##_type p1, \ p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ p6##_type p6) {\ return name##MatcherP7(p0, p1, p2, p3, p4, p5, p6);\ }\ template \ template \ bool name##MatcherP7::gmock_Impl::MatchAndExplain(\ arg_type arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description)\ template \ class name##MatcherP8 {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple(p0, p1, p2, \ p3, p4, p5, p6, p7)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl(p0, p1, p2, p3, p4, p5, p6, p7));\ }\ name##MatcherP8(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, \ p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP8);\ };\ template \ inline name##MatcherP8 name(p0##_type p0, \ p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ p6##_type p6, p7##_type p7) {\ return name##MatcherP8(p0, p1, p2, p3, p4, p5, \ p6, p7);\ }\ template \ template \ bool name##MatcherP8::gmock_Impl::MatchAndExplain(\ arg_type arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description)\ template \ class name##MatcherP9 {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple(p0, p1, p2, p3, p4, p5, p6, p7, p8)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl(p0, p1, p2, p3, p4, p5, p6, p7, p8));\ }\ name##MatcherP9(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP9);\ };\ template \ inline name##MatcherP9 name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, \ p8##_type p8) {\ return name##MatcherP9(p0, p1, p2, \ p3, p4, p5, p6, p7, p8);\ }\ template \ template \ bool name##MatcherP9::gmock_Impl::MatchAndExplain(\ arg_type arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description)\ template \ class name##MatcherP10 {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ p9##_type gmock_p9)\ : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ p8(gmock_p8), p9(gmock_p9) {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ p9##_type p9;\ private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9));\ }\ name##MatcherP10(p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8, p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), \ p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {\ }\ p0##_type p0;\ p1##_type p1;\ p2##_type p2;\ p3##_type p3;\ p4##_type p4;\ p5##_type p5;\ p6##_type p6;\ p7##_type p7;\ p8##_type p8;\ p9##_type p9;\ private:\ GTEST_DISALLOW_ASSIGN_(name##MatcherP10);\ };\ template \ inline name##MatcherP10 name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ p9##_type p9) {\ return name##MatcherP10(p0, \ p1, p2, p3, p4, p5, p6, p7, p8, p9);\ }\ template \ template \ bool name##MatcherP10::gmock_Impl::MatchAndExplain(\ arg_type arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_