//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This tablegen backend emits a DAG instruction selector. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "DAGISelMatcher.h" #include "llvm/Support/Debug.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" using namespace llvm; #define DEBUG_TYPE "dag-isel-emitter" namespace { /// DAGISelEmitter - The top-level class which coordinates construction /// and emission of the instruction selector. class DAGISelEmitter { RecordKeeper &Records; // Just so we can get at the timing functions. CodeGenDAGPatterns CGP; public: explicit DAGISelEmitter(RecordKeeper &R) : Records(R), CGP(R) {} void run(raw_ostream &OS); }; } // End anonymous namespace //===----------------------------------------------------------------------===// // DAGISelEmitter Helper methods // /// getResultPatternCost - Compute the number of instructions for this pattern. /// This is a temporary hack. We should really include the instruction /// latencies in this calculation. static unsigned getResultPatternCost(TreePatternNode *P, CodeGenDAGPatterns &CGP) { if (P->isLeaf()) return 0; unsigned Cost = 0; Record *Op = P->getOperator(); if (Op->isSubClassOf("Instruction")) { Cost++; CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); if (II.usesCustomInserter) Cost += 10; } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) Cost += getResultPatternCost(P->getChild(i), CGP); return Cost; } /// getResultPatternCodeSize - Compute the code size of instructions for this /// pattern. static unsigned getResultPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) { if (P->isLeaf()) return 0; unsigned Cost = 0; Record *Op = P->getOperator(); if (Op->isSubClassOf("Instruction")) { Cost += Op->getValueAsInt("CodeSize"); } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) Cost += getResultPatternSize(P->getChild(i), CGP); return Cost; } namespace { // PatternSortingPredicate - return true if we prefer to match LHS before RHS. // In particular, we want to match maximal patterns first and lowest cost within // a particular complexity first. struct PatternSortingPredicate { PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {} CodeGenDAGPatterns &CGP; bool operator()(const PatternToMatch *LHS, const PatternToMatch *RHS) { const TreePatternNode *LT = LHS->getSrcPattern(); const TreePatternNode *RT = RHS->getSrcPattern(); MVT LHSVT = LT->getNumTypes() != 0 ? LT->getSimpleType(0) : MVT::Other; MVT RHSVT = RT->getNumTypes() != 0 ? RT->getSimpleType(0) : MVT::Other; if (LHSVT.isVector() != RHSVT.isVector()) return RHSVT.isVector(); if (LHSVT.isFloatingPoint() != RHSVT.isFloatingPoint()) return RHSVT.isFloatingPoint(); // Otherwise, if the patterns might both match, sort based on complexity, // which means that we prefer to match patterns that cover more nodes in the // input over nodes that cover fewer. int LHSSize = LHS->getPatternComplexity(CGP); int RHSSize = RHS->getPatternComplexity(CGP); if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost if (LHSSize < RHSSize) return false; // If the patterns have equal complexity, compare generated instruction cost unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP); unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP); if (LHSCost < RHSCost) return true; if (LHSCost > RHSCost) return false; unsigned LHSPatSize = getResultPatternSize(LHS->getDstPattern(), CGP); unsigned RHSPatSize = getResultPatternSize(RHS->getDstPattern(), CGP); if (LHSPatSize < RHSPatSize) return true; if (LHSPatSize > RHSPatSize) return false; // Sort based on the UID of the pattern, to reflect source order. // Note that this is not guaranteed to be unique, since a single source // pattern may have been resolved into multiple match patterns due to // alternative fragments. To ensure deterministic output, always use // std::stable_sort with this predicate. return LHS->ID < RHS->ID; } }; } // End anonymous namespace void DAGISelEmitter::run(raw_ostream &OS) { emitSourceFileHeader("DAG Instruction Selector for the " + CGP.getTargetInfo().getName().str() + " target", OS); OS << "// *** NOTE: This file is #included into the middle of the target\n" << "// *** instruction selector class. These functions are really " << "methods.\n\n"; OS << "// If GET_DAGISEL_DECL is #defined with any value, only function\n" "// declarations will be included when this file is included.\n" "// If GET_DAGISEL_BODY is #defined, its value should be the name of\n" "// the instruction selector class. Function bodies will be emitted\n" "// and each function's name will be qualified with the name of the\n" "// class.\n" "//\n" "// When neither of the GET_DAGISEL* macros is defined, the functions\n" "// are emitted inline.\n\n"; LLVM_DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n"; for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); I != E; ++I) { errs() << "PATTERN: "; I->getSrcPattern()->dump(); errs() << "\nRESULT: "; I->getDstPattern()->dump(); errs() << "\n"; }); // Add all the patterns to a temporary list so we can sort them. Records.startTimer("Sort patterns"); std::vector Patterns; for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); I != E; ++I) Patterns.push_back(&*I); // We want to process the matches in order of minimal cost. Sort the patterns // so the least cost one is at the start. llvm::stable_sort(Patterns, PatternSortingPredicate(CGP)); // Convert each variant of each pattern into a Matcher. Records.startTimer("Convert to matchers"); std::vector PatternMatchers; for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { for (unsigned Variant = 0; ; ++Variant) { if (Matcher *M = ConvertPatternToMatcher(*Patterns[i], Variant, CGP)) PatternMatchers.push_back(M); else break; } } std::unique_ptr TheMatcher = std::make_unique(PatternMatchers); Records.startTimer("Optimize matchers"); OptimizeMatcher(TheMatcher, CGP); //Matcher->dump(); Records.startTimer("Emit matcher table"); EmitMatcherTable(TheMatcher.get(), CGP, OS); } namespace llvm { void EmitDAGISel(RecordKeeper &RK, raw_ostream &OS) { RK.startTimer("Parse patterns"); DAGISelEmitter(RK).run(OS); } } // End llvm namespace