//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This class wraps target description classes used by the various code // generation TableGen backends. This makes it easier to access the data and // provides a single place that needs to check it for validity. All of these // classes abort on error conditions. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "CodeGenDAGPatterns.h" #include "CodeGenIntrinsics.h" #include "CodeGenSchedule.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Timer.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include using namespace llvm; cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); static cl::opt AsmParserNum("asmparsernum", cl::init(0), cl::desc("Make -gen-asm-parser emit assembly parser #N"), cl::cat(AsmParserCat)); static cl::opt AsmWriterNum("asmwriternum", cl::init(0), cl::desc("Make -gen-asm-writer emit assembly writer #N"), cl::cat(AsmWriterCat)); /// getValueType - Return the MVT::SimpleValueType that the specified TableGen /// record corresponds to. MVT::SimpleValueType llvm::getValueType(Record *Rec) { return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); } StringRef llvm::getName(MVT::SimpleValueType T) { switch (T) { case MVT::Other: return "UNKNOWN"; case MVT::iPTR: return "TLI.getPointerTy()"; case MVT::iPTRAny: return "TLI.getPointerTy()"; default: return getEnumName(T); } } StringRef llvm::getEnumName(MVT::SimpleValueType T) { switch (T) { case MVT::Other: return "MVT::Other"; case MVT::i1: return "MVT::i1"; case MVT::i8: return "MVT::i8"; case MVT::i16: return "MVT::i16"; case MVT::i32: return "MVT::i32"; case MVT::i64: return "MVT::i64"; case MVT::i128: return "MVT::i128"; case MVT::Any: return "MVT::Any"; case MVT::iAny: return "MVT::iAny"; case MVT::fAny: return "MVT::fAny"; case MVT::vAny: return "MVT::vAny"; case MVT::f16: return "MVT::f16"; case MVT::bf16: return "MVT::bf16"; case MVT::f32: return "MVT::f32"; case MVT::f64: return "MVT::f64"; case MVT::f80: return "MVT::f80"; case MVT::f128: return "MVT::f128"; case MVT::ppcf128: return "MVT::ppcf128"; case MVT::x86mmx: return "MVT::x86mmx"; case MVT::x86amx: return "MVT::x86amx"; case MVT::Glue: return "MVT::Glue"; case MVT::isVoid: return "MVT::isVoid"; case MVT::v1i1: return "MVT::v1i1"; case MVT::v2i1: return "MVT::v2i1"; case MVT::v4i1: return "MVT::v4i1"; case MVT::v8i1: return "MVT::v8i1"; case MVT::v16i1: return "MVT::v16i1"; case MVT::v32i1: return "MVT::v32i1"; case MVT::v64i1: return "MVT::v64i1"; case MVT::v128i1: return "MVT::v128i1"; case MVT::v256i1: return "MVT::v256i1"; case MVT::v512i1: return "MVT::v512i1"; case MVT::v1024i1: return "MVT::v1024i1"; case MVT::v1i8: return "MVT::v1i8"; case MVT::v2i8: return "MVT::v2i8"; case MVT::v4i8: return "MVT::v4i8"; case MVT::v8i8: return "MVT::v8i8"; case MVT::v16i8: return "MVT::v16i8"; case MVT::v32i8: return "MVT::v32i8"; case MVT::v64i8: return "MVT::v64i8"; case MVT::v128i8: return "MVT::v128i8"; case MVT::v256i8: return "MVT::v256i8"; case MVT::v1i16: return "MVT::v1i16"; case MVT::v2i16: return "MVT::v2i16"; case MVT::v3i16: return "MVT::v3i16"; case MVT::v4i16: return "MVT::v4i16"; case MVT::v8i16: return "MVT::v8i16"; case MVT::v16i16: return "MVT::v16i16"; case MVT::v32i16: return "MVT::v32i16"; case MVT::v64i16: return "MVT::v64i16"; case MVT::v128i16: return "MVT::v128i16"; case MVT::v1i32: return "MVT::v1i32"; case MVT::v2i32: return "MVT::v2i32"; case MVT::v3i32: return "MVT::v3i32"; case MVT::v4i32: return "MVT::v4i32"; case MVT::v5i32: return "MVT::v5i32"; case MVT::v8i32: return "MVT::v8i32"; case MVT::v16i32: return "MVT::v16i32"; case MVT::v32i32: return "MVT::v32i32"; case MVT::v64i32: return "MVT::v64i32"; case MVT::v128i32: return "MVT::v128i32"; case MVT::v256i32: return "MVT::v256i32"; case MVT::v512i32: return "MVT::v512i32"; case MVT::v1024i32: return "MVT::v1024i32"; case MVT::v2048i32: return "MVT::v2048i32"; case MVT::v1i64: return "MVT::v1i64"; case MVT::v2i64: return "MVT::v2i64"; case MVT::v4i64: return "MVT::v4i64"; case MVT::v8i64: return "MVT::v8i64"; case MVT::v16i64: return "MVT::v16i64"; case MVT::v32i64: return "MVT::v32i64"; case MVT::v64i64: return "MVT::v64i64"; case MVT::v128i64: return "MVT::v128i64"; case MVT::v256i64: return "MVT::v256i64"; case MVT::v1i128: return "MVT::v1i128"; case MVT::v2f16: return "MVT::v2f16"; case MVT::v3f16: return "MVT::v3f16"; case MVT::v4f16: return "MVT::v4f16"; case MVT::v8f16: return "MVT::v8f16"; case MVT::v16f16: return "MVT::v16f16"; case MVT::v32f16: return "MVT::v32f16"; case MVT::v64f16: return "MVT::v64f16"; case MVT::v128f16: return "MVT::v128f16"; case MVT::v2bf16: return "MVT::v2bf16"; case MVT::v3bf16: return "MVT::v3bf16"; case MVT::v4bf16: return "MVT::v4bf16"; case MVT::v8bf16: return "MVT::v8bf16"; case MVT::v16bf16: return "MVT::v16bf16"; case MVT::v32bf16: return "MVT::v32bf16"; case MVT::v64bf16: return "MVT::v64bf16"; case MVT::v128bf16: return "MVT::v128bf16"; case MVT::v1f32: return "MVT::v1f32"; case MVT::v2f32: return "MVT::v2f32"; case MVT::v3f32: return "MVT::v3f32"; case MVT::v4f32: return "MVT::v4f32"; case MVT::v5f32: return "MVT::v5f32"; case MVT::v8f32: return "MVT::v8f32"; case MVT::v16f32: return "MVT::v16f32"; case MVT::v32f32: return "MVT::v32f32"; case MVT::v64f32: return "MVT::v64f32"; case MVT::v128f32: return "MVT::v128f32"; case MVT::v256f32: return "MVT::v256f32"; case MVT::v512f32: return "MVT::v512f32"; case MVT::v1024f32: return "MVT::v1024f32"; case MVT::v2048f32: return "MVT::v2048f32"; case MVT::v1f64: return "MVT::v1f64"; case MVT::v2f64: return "MVT::v2f64"; case MVT::v4f64: return "MVT::v4f64"; case MVT::v8f64: return "MVT::v8f64"; case MVT::v16f64: return "MVT::v16f64"; case MVT::v32f64: return "MVT::v32f64"; case MVT::v64f64: return "MVT::v64f64"; case MVT::v128f64: return "MVT::v128f64"; case MVT::v256f64: return "MVT::v256f64"; case MVT::nxv1i1: return "MVT::nxv1i1"; case MVT::nxv2i1: return "MVT::nxv2i1"; case MVT::nxv4i1: return "MVT::nxv4i1"; case MVT::nxv8i1: return "MVT::nxv8i1"; case MVT::nxv16i1: return "MVT::nxv16i1"; case MVT::nxv32i1: return "MVT::nxv32i1"; case MVT::nxv64i1: return "MVT::nxv64i1"; case MVT::nxv1i8: return "MVT::nxv1i8"; case MVT::nxv2i8: return "MVT::nxv2i8"; case MVT::nxv4i8: return "MVT::nxv4i8"; case MVT::nxv8i8: return "MVT::nxv8i8"; case MVT::nxv16i8: return "MVT::nxv16i8"; case MVT::nxv32i8: return "MVT::nxv32i8"; case MVT::nxv64i8: return "MVT::nxv64i8"; case MVT::nxv1i16: return "MVT::nxv1i16"; case MVT::nxv2i16: return "MVT::nxv2i16"; case MVT::nxv4i16: return "MVT::nxv4i16"; case MVT::nxv8i16: return "MVT::nxv8i16"; case MVT::nxv16i16: return "MVT::nxv16i16"; case MVT::nxv32i16: return "MVT::nxv32i16"; case MVT::nxv1i32: return "MVT::nxv1i32"; case MVT::nxv2i32: return "MVT::nxv2i32"; case MVT::nxv4i32: return "MVT::nxv4i32"; case MVT::nxv8i32: return "MVT::nxv8i32"; case MVT::nxv16i32: return "MVT::nxv16i32"; case MVT::nxv32i32: return "MVT::nxv32i32"; case MVT::nxv1i64: return "MVT::nxv1i64"; case MVT::nxv2i64: return "MVT::nxv2i64"; case MVT::nxv4i64: return "MVT::nxv4i64"; case MVT::nxv8i64: return "MVT::nxv8i64"; case MVT::nxv16i64: return "MVT::nxv16i64"; case MVT::nxv32i64: return "MVT::nxv32i64"; case MVT::nxv1f16: return "MVT::nxv1f16"; case MVT::nxv2f16: return "MVT::nxv2f16"; case MVT::nxv4f16: return "MVT::nxv4f16"; case MVT::nxv8f16: return "MVT::nxv8f16"; case MVT::nxv16f16: return "MVT::nxv16f16"; case MVT::nxv32f16: return "MVT::nxv32f16"; case MVT::nxv2bf16: return "MVT::nxv2bf16"; case MVT::nxv4bf16: return "MVT::nxv4bf16"; case MVT::nxv8bf16: return "MVT::nxv8bf16"; case MVT::nxv1f32: return "MVT::nxv1f32"; case MVT::nxv2f32: return "MVT::nxv2f32"; case MVT::nxv4f32: return "MVT::nxv4f32"; case MVT::nxv8f32: return "MVT::nxv8f32"; case MVT::nxv16f32: return "MVT::nxv16f32"; case MVT::nxv1f64: return "MVT::nxv1f64"; case MVT::nxv2f64: return "MVT::nxv2f64"; case MVT::nxv4f64: return "MVT::nxv4f64"; case MVT::nxv8f64: return "MVT::nxv8f64"; case MVT::token: return "MVT::token"; case MVT::Metadata: return "MVT::Metadata"; case MVT::iPTR: return "MVT::iPTR"; case MVT::iPTRAny: return "MVT::iPTRAny"; case MVT::Untyped: return "MVT::Untyped"; case MVT::funcref: return "MVT::funcref"; case MVT::externref: return "MVT::externref"; default: llvm_unreachable("ILLEGAL VALUE TYPE!"); } } /// getQualifiedName - Return the name of the specified record, with a /// namespace qualifier if the record contains one. /// std::string llvm::getQualifiedName(const Record *R) { std::string Namespace; if (R->getValue("Namespace")) Namespace = std::string(R->getValueAsString("Namespace")); if (Namespace.empty()) return std::string(R->getName()); return Namespace + "::" + R->getName().str(); } /// getTarget - Return the current instance of the Target class. /// CodeGenTarget::CodeGenTarget(RecordKeeper &records) : Records(records), CGH(records) { std::vector Targets = Records.getAllDerivedDefinitions("Target"); if (Targets.size() == 0) PrintFatalError("ERROR: No 'Target' subclasses defined!"); if (Targets.size() != 1) PrintFatalError("ERROR: Multiple subclasses of Target defined!"); TargetRec = Targets[0]; } CodeGenTarget::~CodeGenTarget() { } StringRef CodeGenTarget::getName() const { return TargetRec->getName(); } /// getInstNamespace - Find and return the target machine's instruction /// namespace. The namespace is cached because it is requested multiple times. StringRef CodeGenTarget::getInstNamespace() const { if (InstNamespace.empty()) { for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { // We are not interested in the "TargetOpcode" namespace. if (Inst->Namespace != "TargetOpcode") { InstNamespace = Inst->Namespace; break; } } } return InstNamespace; } StringRef CodeGenTarget::getRegNamespace() const { auto &RegClasses = RegBank->getRegClasses(); return RegClasses.size() > 0 ? RegClasses.front().Namespace : ""; } Record *CodeGenTarget::getInstructionSet() const { return TargetRec->getValueAsDef("InstructionSet"); } bool CodeGenTarget::getAllowRegisterRenaming() const { return TargetRec->getValueAsInt("AllowRegisterRenaming"); } /// getAsmParser - Return the AssemblyParser definition for this target. /// Record *CodeGenTarget::getAsmParser() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); if (AsmParserNum >= LI.size()) PrintFatalError("Target does not have an AsmParser #" + Twine(AsmParserNum) + "!"); return LI[AsmParserNum]; } /// getAsmParserVariant - Return the AssemblyParserVariant definition for /// this target. /// Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); if (i >= LI.size()) PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + "!"); return LI[i]; } /// getAsmParserVariantCount - Return the AssemblyParserVariant definition /// available for this target. /// unsigned CodeGenTarget::getAsmParserVariantCount() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); return LI.size(); } /// getAsmWriter - Return the AssemblyWriter definition for this target. /// Record *CodeGenTarget::getAsmWriter() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); if (AsmWriterNum >= LI.size()) PrintFatalError("Target does not have an AsmWriter #" + Twine(AsmWriterNum) + "!"); return LI[AsmWriterNum]; } CodeGenRegBank &CodeGenTarget::getRegBank() const { if (!RegBank) RegBank = std::make_unique(Records, getHwModes()); return *RegBank; } Optional CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy, CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx, bool MustBeAllocatable) const { std::vector Candidates; auto &RegClasses = RegBank.getRegClasses(); // Try to find a register class which supports ValueTy, and also contains // SubIdx. for (CodeGenRegisterClass &RC : RegClasses) { // Is there a subclass of this class which contains this subregister index? CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx); if (!SubClassWithSubReg) continue; // We have a class. Check if it supports this value type. if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy)) continue; // If necessary, check that it is allocatable. if (MustBeAllocatable && !SubClassWithSubReg->Allocatable) continue; // We have a register class which supports both the value type and // subregister index. Remember it. Candidates.push_back(SubClassWithSubReg); } // If we didn't find anything, we're done. if (Candidates.empty()) return None; // Find and return the largest of our candidate classes. llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A, const CodeGenRegisterClass *B) { if (A->getMembers().size() > B->getMembers().size()) return true; if (A->getMembers().size() < B->getMembers().size()) return false; // Order by name as a tie-breaker. return StringRef(A->getName()) < B->getName(); }); return Candidates[0]; } void CodeGenTarget::ReadRegAltNameIndices() const { RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); llvm::sort(RegAltNameIndices, LessRecord()); } /// getRegisterByName - If there is a register with the specific AsmName, /// return it. const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { return getRegBank().getRegistersByName().lookup(Name); } std::vector CodeGenTarget::getRegisterVTs(Record *R) const { const CodeGenRegister *Reg = getRegBank().getReg(R); std::vector Result; for (const auto &RC : getRegBank().getRegClasses()) { if (RC.contains(Reg)) { ArrayRef InVTs = RC.getValueTypes(); llvm::append_range(Result, InVTs); } } // Remove duplicates. llvm::sort(Result); Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); return Result; } void CodeGenTarget::ReadLegalValueTypes() const { for (const auto &RC : getRegBank().getRegClasses()) llvm::append_range(LegalValueTypes, RC.VTs); // Remove duplicates. llvm::sort(LegalValueTypes); LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), LegalValueTypes.end()), LegalValueTypes.end()); } CodeGenSchedModels &CodeGenTarget::getSchedModels() const { if (!SchedModels) SchedModels = std::make_unique(Records, *this); return *SchedModels; } void CodeGenTarget::ReadInstructions() const { std::vector Insts = Records.getAllDerivedDefinitions("Instruction"); if (Insts.size() <= 2) PrintFatalError("No 'Instruction' subclasses defined!"); // Parse the instructions defined in the .td file. for (unsigned i = 0, e = Insts.size(); i != e; ++i) Instructions[Insts[i]] = std::make_unique(Insts[i]); } static const CodeGenInstruction * GetInstByName(const char *Name, const DenseMap> &Insts, RecordKeeper &Records) { const Record *Rec = Records.getDef(Name); const auto I = Insts.find(Rec); if (!Rec || I == Insts.end()) PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); return I->second.get(); } static const char *const FixedInstrs[] = { #define HANDLE_TARGET_OPCODE(OPC) #OPC, #include "llvm/Support/TargetOpcodes.def" nullptr}; unsigned CodeGenTarget::getNumFixedInstructions() { return array_lengthof(FixedInstrs) - 1; } /// Return all of the instructions defined by the target, ordered by /// their enum value. void CodeGenTarget::ComputeInstrsByEnum() const { const auto &Insts = getInstructions(); for (const char *const *p = FixedInstrs; *p; ++p) { const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); assert(Instr && "Missing target independent instruction"); assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); InstrsByEnum.push_back(Instr); } unsigned EndOfPredefines = InstrsByEnum.size(); assert(EndOfPredefines == getNumFixedInstructions() && "Missing generic opcode"); for (const auto &I : Insts) { const CodeGenInstruction *CGI = I.second.get(); if (CGI->Namespace != "TargetOpcode") { InstrsByEnum.push_back(CGI); if (CGI->TheDef->getValueAsBit("isPseudo")) ++NumPseudoInstructions; } } assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); // All of the instructions are now in random order based on the map iteration. llvm::sort( InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { const auto &D1 = *Rec1->TheDef; const auto &D2 = *Rec2->TheDef; return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); }); } /// isLittleEndianEncoding - Return whether this target encodes its instruction /// in little-endian format, i.e. bits laid out in the order [0..n] /// bool CodeGenTarget::isLittleEndianEncoding() const { return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); } /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit /// encodings, reverse the bit order of all instructions. void CodeGenTarget::reverseBitsForLittleEndianEncoding() { if (!isLittleEndianEncoding()) return; std::vector Insts = Records.getAllDerivedDefinitions("InstructionEncoding"); for (Record *R : Insts) { if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) continue; BitsInit *BI = R->getValueAsBitsInit("Inst"); unsigned numBits = BI->getNumBits(); SmallVector NewBits(numBits); for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { unsigned bitSwapIdx = numBits - bit - 1; Init *OrigBit = BI->getBit(bit); Init *BitSwap = BI->getBit(bitSwapIdx); NewBits[bit] = BitSwap; NewBits[bitSwapIdx] = OrigBit; } if (numBits % 2) { unsigned middle = (numBits + 1) / 2; NewBits[middle] = BI->getBit(middle); } BitsInit *NewBI = BitsInit::get(NewBits); // Update the bits in reversed order so that emitInstrOpBits will get the // correct endianness. R->getValue("Inst")->setValue(NewBI); } } /// guessInstructionProperties - Return true if it's OK to guess instruction /// properties instead of raising an error. /// /// This is configurable as a temporary migration aid. It will eventually be /// permanently false. bool CodeGenTarget::guessInstructionProperties() const { return getInstructionSet()->getValueAsBit("guessInstructionProperties"); } //===----------------------------------------------------------------------===// // ComplexPattern implementation // ComplexPattern::ComplexPattern(Record *R) { Ty = ::getValueType(R->getValueAsDef("Ty")); NumOperands = R->getValueAsInt("NumOperands"); SelectFunc = std::string(R->getValueAsString("SelectFunc")); RootNodes = R->getValueAsListOfDefs("RootNodes"); // FIXME: This is a hack to statically increase the priority of patterns which // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best // possible pattern match we'll need to dynamically calculate the complexity // of all patterns a dag can potentially map to. int64_t RawComplexity = R->getValueAsInt("Complexity"); if (RawComplexity == -1) Complexity = NumOperands * 3; else Complexity = RawComplexity; // FIXME: Why is this different from parseSDPatternOperatorProperties? // Parse the properties. Properties = 0; std::vector PropList = R->getValueAsListOfDefs("Properties"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; } else if (PropList[i]->getName() == "SDNPOptInGlue") { Properties |= 1 << SDNPOptInGlue; } else if (PropList[i]->getName() == "SDNPMayStore") { Properties |= 1 << SDNPMayStore; } else if (PropList[i]->getName() == "SDNPMayLoad") { Properties |= 1 << SDNPMayLoad; } else if (PropList[i]->getName() == "SDNPSideEffect") { Properties |= 1 << SDNPSideEffect; } else if (PropList[i]->getName() == "SDNPMemOperand") { Properties |= 1 << SDNPMemOperand; } else if (PropList[i]->getName() == "SDNPVariadic") { Properties |= 1 << SDNPVariadic; } else if (PropList[i]->getName() == "SDNPWantRoot") { Properties |= 1 << SDNPWantRoot; } else if (PropList[i]->getName() == "SDNPWantParent") { Properties |= 1 << SDNPWantParent; } else { PrintFatalError(R->getLoc(), "Unsupported SD Node property '" + PropList[i]->getName() + "' on ComplexPattern '" + R->getName() + "'!"); } } //===----------------------------------------------------------------------===// // CodeGenIntrinsic Implementation //===----------------------------------------------------------------------===// CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) { std::vector IntrProperties = RC.getAllDerivedDefinitions("IntrinsicProperty"); std::vector DefaultProperties; for (Record *Rec : IntrProperties) if (Rec->getValueAsBit("IsDefault")) DefaultProperties.push_back(Rec); std::vector Defs = RC.getAllDerivedDefinitions("Intrinsic"); Intrinsics.reserve(Defs.size()); for (unsigned I = 0, e = Defs.size(); I != e; ++I) Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties)); llvm::sort(Intrinsics, [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { return std::tie(LHS.TargetPrefix, LHS.Name) < std::tie(RHS.TargetPrefix, RHS.Name); }); Targets.push_back({"", 0, 0}); for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) if (Intrinsics[I].TargetPrefix != Targets.back().Name) { Targets.back().Count = I - Targets.back().Offset; Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); } Targets.back().Count = Intrinsics.size() - Targets.back().Offset; } CodeGenIntrinsic::CodeGenIntrinsic(Record *R, std::vector DefaultProperties) { TheDef = R; std::string DefName = std::string(R->getName()); ArrayRef DefLoc = R->getLoc(); ModRef = ReadWriteMem; Properties = 0; isOverloaded = false; isCommutative = false; canThrow = false; isNoReturn = false; isNoSync = false; isNoFree = false; isWillReturn = false; isCold = false; isNoDuplicate = false; isConvergent = false; isSpeculatable = false; hasSideEffects = false; if (DefName.size() <= 4 || std::string(DefName.begin(), DefName.begin() + 4) != "int_") PrintFatalError(DefLoc, "Intrinsic '" + DefName + "' does not start with 'int_'!"); EnumName = std::string(DefName.begin()+4, DefName.end()); if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. GCCBuiltinName = std::string(R->getValueAsString("GCCBuiltinName")); if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName")); TargetPrefix = std::string(R->getValueAsString("TargetPrefix")); Name = std::string(R->getValueAsString("LLVMName")); if (Name == "") { // If an explicit name isn't specified, derive one from the DefName. Name = "llvm."; for (unsigned i = 0, e = EnumName.size(); i != e; ++i) Name += (EnumName[i] == '_') ? '.' : EnumName[i]; } else { // Verify it starts with "llvm.". if (Name.size() <= 5 || std::string(Name.begin(), Name.begin() + 5) != "llvm.") PrintFatalError(DefLoc, "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); } // If TargetPrefix is specified, make sure that Name starts with // "llvm..". if (!TargetPrefix.empty()) { if (Name.size() < 6+TargetPrefix.size() || std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) != (TargetPrefix + ".")) PrintFatalError(DefLoc, "Intrinsic '" + DefName + "' does not start with 'llvm." + TargetPrefix + ".'!"); } ListInit *RetTypes = R->getValueAsListInit("RetTypes"); ListInit *ParamTypes = R->getValueAsListInit("ParamTypes"); // First collate a list of overloaded types. std::vector OverloadedVTs; for (ListInit *TypeList : {RetTypes, ParamTypes}) { for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { Record *TyEl = TypeList->getElementAsRecord(i); assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); if (TyEl->isSubClassOf("LLVMMatchType")) continue; MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT")); if (MVT(VT).isOverloaded()) { OverloadedVTs.push_back(VT); isOverloaded = true; } } } // Parse the list of return types. ListInit *TypeList = RetTypes; for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { Record *TyEl = TypeList->getElementAsRecord(i); assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); MVT::SimpleValueType VT; if (TyEl->isSubClassOf("LLVMMatchType")) { unsigned MatchTy = TyEl->getValueAsInt("Number"); assert(MatchTy < OverloadedVTs.size() && "Invalid matching number!"); VT = OverloadedVTs[MatchTy]; // It only makes sense to use the extended and truncated vector element // variants with iAny types; otherwise, if the intrinsic is not // overloaded, all the types can be specified directly. assert(((!TyEl->isSubClassOf("LLVMExtendedType") && !TyEl->isSubClassOf("LLVMTruncatedType")) || VT == MVT::iAny || VT == MVT::vAny) && "Expected iAny or vAny type"); } else { VT = getValueType(TyEl->getValueAsDef("VT")); } // Reject invalid types. if (VT == MVT::isVoid) PrintFatalError(DefLoc, "Intrinsic '" + DefName + " has void in result type list!"); IS.RetVTs.push_back(VT); IS.RetTypeDefs.push_back(TyEl); } // Parse the list of parameter types. TypeList = ParamTypes; for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { Record *TyEl = TypeList->getElementAsRecord(i); assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); MVT::SimpleValueType VT; if (TyEl->isSubClassOf("LLVMMatchType")) { unsigned MatchTy = TyEl->getValueAsInt("Number"); if (MatchTy >= OverloadedVTs.size()) { PrintError(R->getLoc(), "Parameter #" + Twine(i) + " has out of bounds matching " "number " + Twine(MatchTy)); PrintFatalError(DefLoc, Twine("ParamTypes is ") + TypeList->getAsString()); } VT = OverloadedVTs[MatchTy]; // It only makes sense to use the extended and truncated vector element // variants with iAny types; otherwise, if the intrinsic is not // overloaded, all the types can be specified directly. assert(((!TyEl->isSubClassOf("LLVMExtendedType") && !TyEl->isSubClassOf("LLVMTruncatedType")) || VT == MVT::iAny || VT == MVT::vAny) && "Expected iAny or vAny type"); } else VT = getValueType(TyEl->getValueAsDef("VT")); // Reject invalid types. if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) PrintFatalError(DefLoc, "Intrinsic '" + DefName + " has void in result type list!"); IS.ParamVTs.push_back(VT); IS.ParamTypeDefs.push_back(TyEl); } // Parse the intrinsic properties. ListInit *PropList = R->getValueAsListInit("IntrProperties"); for (unsigned i = 0, e = PropList->size(); i != e; ++i) { Record *Property = PropList->getElementAsRecord(i); assert(Property->isSubClassOf("IntrinsicProperty") && "Expected a property!"); setProperty(Property); } // Set default properties to true. setDefaultProperties(R, DefaultProperties); // Also record the SDPatternOperator Properties. Properties = parseSDPatternOperatorProperties(R); // Sort the argument attributes for later benefit. llvm::sort(ArgumentAttributes); } void CodeGenIntrinsic::setDefaultProperties( Record *R, std::vector DefaultProperties) { // opt-out of using default attributes. if (R->getValueAsBit("DisableDefaultAttributes")) return; for (Record *Rec : DefaultProperties) setProperty(Rec); } void CodeGenIntrinsic::setProperty(Record *R) { if (R->getName() == "IntrNoMem") ModRef = NoMem; else if (R->getName() == "IntrReadMem") { if (!(ModRef & MR_Ref)) PrintFatalError(TheDef->getLoc(), Twine("IntrReadMem cannot be used after IntrNoMem or " "IntrWriteMem. Default is ReadWrite")); ModRef = ModRefBehavior(ModRef & ~MR_Mod); } else if (R->getName() == "IntrWriteMem") { if (!(ModRef & MR_Mod)) PrintFatalError(TheDef->getLoc(), Twine("IntrWriteMem cannot be used after IntrNoMem or " "IntrReadMem. Default is ReadWrite")); ModRef = ModRefBehavior(ModRef & ~MR_Ref); } else if (R->getName() == "IntrArgMemOnly") ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); else if (R->getName() == "IntrInaccessibleMemOnly") ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly") ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | MR_InaccessibleMem); else if (R->getName() == "Commutative") isCommutative = true; else if (R->getName() == "Throws") canThrow = true; else if (R->getName() == "IntrNoDuplicate") isNoDuplicate = true; else if (R->getName() == "IntrConvergent") isConvergent = true; else if (R->getName() == "IntrNoReturn") isNoReturn = true; else if (R->getName() == "IntrNoSync") isNoSync = true; else if (R->getName() == "IntrNoFree") isNoFree = true; else if (R->getName() == "IntrWillReturn") isWillReturn = !isNoReturn; else if (R->getName() == "IntrCold") isCold = true; else if (R->getName() == "IntrSpeculatable") isSpeculatable = true; else if (R->getName() == "IntrHasSideEffects") hasSideEffects = true; else if (R->isSubClassOf("NoCapture")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); ArgumentAttributes.emplace_back(ArgNo, NoCapture, 0); } else if (R->isSubClassOf("NoAlias")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); ArgumentAttributes.emplace_back(ArgNo, NoAlias, 0); } else if (R->isSubClassOf("NoUndef")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); ArgumentAttributes.emplace_back(ArgNo, NoUndef, 0); } else if (R->isSubClassOf("Returned")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); ArgumentAttributes.emplace_back(ArgNo, Returned, 0); } else if (R->isSubClassOf("ReadOnly")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); ArgumentAttributes.emplace_back(ArgNo, ReadOnly, 0); } else if (R->isSubClassOf("WriteOnly")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); ArgumentAttributes.emplace_back(ArgNo, WriteOnly, 0); } else if (R->isSubClassOf("ReadNone")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); ArgumentAttributes.emplace_back(ArgNo, ReadNone, 0); } else if (R->isSubClassOf("ImmArg")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); ArgumentAttributes.emplace_back(ArgNo, ImmArg, 0); } else if (R->isSubClassOf("Align")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); uint64_t Align = R->getValueAsInt("Align"); ArgumentAttributes.emplace_back(ArgNo, Alignment, Align); } else llvm_unreachable("Unknown property!"); } bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const { if (ParamIdx >= IS.ParamVTs.size()) return false; MVT ParamType = MVT(IS.ParamVTs[ParamIdx]); return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny; } bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const { // Convert argument index to attribute index starting from `FirstArgIndex`. ArgAttribute Val{ParamIdx + 1, ImmArg, 0}; return std::binary_search(ArgumentAttributes.begin(), ArgumentAttributes.end(), Val); }