//===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopPassManager.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/AsmParser/Parser.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/SourceMgr.h" #include "gmock/gmock.h" #include "gtest/gtest.h" using namespace llvm; namespace { using testing::DoDefault; using testing::Return; using testing::Expectation; using testing::Invoke; using testing::InvokeWithoutArgs; using testing::_; template , typename... ExtraArgTs> class MockAnalysisHandleBase { public: class Analysis : public AnalysisInfoMixin { friend AnalysisInfoMixin; friend MockAnalysisHandleBase; static AnalysisKey Key; DerivedT *Handle; Analysis(DerivedT &Handle) : Handle(&Handle) { static_assert(std::is_base_of::value, "Must pass the derived type to this template!"); } public: class Result { friend MockAnalysisHandleBase; DerivedT *Handle; Result(DerivedT &Handle) : Handle(&Handle) {} public: // Forward invalidation events to the mock handle. bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA, typename AnalysisManagerT::Invalidator &Inv) { return Handle->invalidate(IR, PA, Inv); } }; Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) { return Handle->run(IR, AM, ExtraArgs...); } }; Analysis getAnalysis() { return Analysis(static_cast(*this)); } typename Analysis::Result getResult() { return typename Analysis::Result(static_cast(*this)); } protected: // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within // the template, so we use a boring static function. static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA, typename AnalysisManagerT::Invalidator &Inv) { auto PAC = PA.template getChecker(); return !PAC.preserved() && !PAC.template preservedSet>(); } /// Derived classes should call this in their constructor to set up default /// mock actions. (We can't do this in our constructor because this has to /// run after the DerivedT is constructed.) void setDefaults() { ON_CALL(static_cast(*this), run(_, _, testing::Matcher(_)...)) .WillByDefault(Return(this->getResult())); ON_CALL(static_cast(*this), invalidate(_, _, _)) .WillByDefault(Invoke(&invalidateCallback)); } }; template AnalysisKey MockAnalysisHandleBase::Analysis::Key; /// Mock handle for loop analyses. /// /// This is provided as a template accepting an (optional) integer. Because /// analyses are identified and queried by type, this allows constructing /// multiple handles with distinctly typed nested 'Analysis' types that can be /// registered and queried. If you want to register multiple loop analysis /// passes, you'll need to instantiate this type with different values for I. /// For example: /// /// MockLoopAnalysisHandleTemplate<0> h0; /// MockLoopAnalysisHandleTemplate<1> h1; /// typedef decltype(h0)::Analysis Analysis0; /// typedef decltype(h1)::Analysis Analysis1; template (-1)> struct MockLoopAnalysisHandleTemplate : MockAnalysisHandleBase, Loop, LoopAnalysisManager, LoopStandardAnalysisResults &> { typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis; MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &, LoopStandardAnalysisResults &)); MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &, LoopAnalysisManager::Invalidator &)); MockLoopAnalysisHandleTemplate() { this->setDefaults(); } }; typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle; struct MockFunctionAnalysisHandle : MockAnalysisHandleBase { MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &)); MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &, FunctionAnalysisManager::Invalidator &)); MockFunctionAnalysisHandle() { setDefaults(); } }; template , typename... ExtraArgTs> class MockPassHandleBase { public: class Pass : public PassInfoMixin { friend MockPassHandleBase; DerivedT *Handle; Pass(DerivedT &Handle) : Handle(&Handle) { static_assert(std::is_base_of::value, "Must pass the derived type to this template!"); } public: PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) { return Handle->run(IR, AM, ExtraArgs...); } }; Pass getPass() { return Pass(static_cast(*this)); } protected: /// Derived classes should call this in their constructor to set up default /// mock actions. (We can't do this in our constructor because this has to /// run after the DerivedT is constructed.) void setDefaults() { ON_CALL(static_cast(*this), run(_, _, testing::Matcher(_)...)) .WillByDefault(Return(PreservedAnalyses::all())); } }; struct MockLoopPassHandle : MockPassHandleBase { MOCK_METHOD4(run, PreservedAnalyses(Loop &, LoopAnalysisManager &, LoopStandardAnalysisResults &, LPMUpdater &)); MockLoopPassHandle() { setDefaults(); } }; struct MockLoopNestPassHandle : MockPassHandleBase { MOCK_METHOD4(run, PreservedAnalyses(LoopNest &, LoopAnalysisManager &, LoopStandardAnalysisResults &, LPMUpdater &)); MockLoopNestPassHandle() { setDefaults(); } }; struct MockFunctionPassHandle : MockPassHandleBase { MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &)); MockFunctionPassHandle() { setDefaults(); } }; struct MockModulePassHandle : MockPassHandleBase { MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &)); MockModulePassHandle() { setDefaults(); } }; /// Define a custom matcher for objects which support a 'getName' method /// returning a StringRef. /// /// LLVM often has IR objects or analysis objects which expose a StringRef name /// and in tests it is convenient to match these by name for readability. This /// matcher supports any type exposing a getName() method of this form. /// /// It should be used as: /// /// HasName("my_function") /// /// No namespace or other qualification is required. MATCHER_P(HasName, Name, "") { // The matcher's name and argument are printed in the case of failure, but we // also want to print out the name of the argument. This uses an implicitly // avaiable std::ostream, so we have to construct a std::string. *result_listener << "has name '" << arg.getName().str() << "'"; return Name == arg.getName(); } std::unique_ptr parseIR(LLVMContext &C, const char *IR) { SMDiagnostic Err; return parseAssemblyString(IR, Err, C); } class LoopPassManagerTest : public ::testing::Test { protected: LLVMContext Context; std::unique_ptr M; LoopAnalysisManager LAM; FunctionAnalysisManager FAM; ModuleAnalysisManager MAM; MockLoopAnalysisHandle MLAHandle; MockLoopPassHandle MLPHandle; MockLoopNestPassHandle MLNPHandle; MockFunctionPassHandle MFPHandle; MockModulePassHandle MMPHandle; static PreservedAnalyses getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &) { (void)AM.getResult(L, AR); return PreservedAnalyses::all(); }; public: LoopPassManagerTest() : M(parseIR(Context, "define void @f(i1* %ptr) {\n" "entry:\n" " br label %loop.0\n" "loop.0:\n" " %cond.0 = load volatile i1, i1* %ptr\n" " br i1 %cond.0, label %loop.0.0.ph, label %end\n" "loop.0.0.ph:\n" " br label %loop.0.0\n" "loop.0.0:\n" " %cond.0.0 = load volatile i1, i1* %ptr\n" " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n" "loop.0.1.ph:\n" " br label %loop.0.1\n" "loop.0.1:\n" " %cond.0.1 = load volatile i1, i1* %ptr\n" " br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n" "loop.0.latch:\n" " br label %loop.0\n" "end:\n" " ret void\n" "}\n" "\n" "define void @g(i1* %ptr) {\n" "entry:\n" " br label %loop.g.0\n" "loop.g.0:\n" " %cond.0 = load volatile i1, i1* %ptr\n" " br i1 %cond.0, label %loop.g.0, label %end\n" "end:\n" " ret void\n" "}\n")), LAM(true), FAM(true), MAM(true) { // Register our mock analysis. LAM.registerPass([&] { return MLAHandle.getAnalysis(); }); // We need DominatorTreeAnalysis for LoopAnalysis. FAM.registerPass([&] { return DominatorTreeAnalysis(); }); FAM.registerPass([&] { return LoopAnalysis(); }); // We also allow loop passes to assume a set of other analyses and so need // those. FAM.registerPass([&] { return AAManager(); }); FAM.registerPass([&] { return AssumptionAnalysis(); }); FAM.registerPass([&] { return BlockFrequencyAnalysis(); }); FAM.registerPass([&] { return BranchProbabilityAnalysis(); }); FAM.registerPass([&] { return PostDominatorTreeAnalysis(); }); FAM.registerPass([&] { return MemorySSAAnalysis(); }); FAM.registerPass([&] { return ScalarEvolutionAnalysis(); }); FAM.registerPass([&] { return TargetLibraryAnalysis(); }); FAM.registerPass([&] { return TargetIRAnalysis(); }); // Register required pass instrumentation analysis. LAM.registerPass([&] { return PassInstrumentationAnalysis(); }); FAM.registerPass([&] { return PassInstrumentationAnalysis(); }); MAM.registerPass([&] { return PassInstrumentationAnalysis(); }); // Cross-register proxies. LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); }); FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); }); FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); }); MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); }); } }; TEST_F(LoopPassManagerTest, Basic) { ModulePassManager MPM(true); ::testing::InSequence MakeExpectationsSequenced; // First we just visit all the loops in all the functions and get their // analysis results. This will run the analysis a total of four times, // once for each loop. EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); // Wire the loop pass through pass managers into the module pipeline. { LoopPassManager LPM(true); LPM.addPass(MLPHandle.getPass()); FunctionPassManager FPM(true); FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); } // Next we run two passes over the loops. The first one invalidates the // analyses for one loop, the second ones try to get the analysis results. // This should force only one analysis to re-run within the loop PM, but will // also invalidate everything after the loop pass manager finishes. EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .WillOnce(DoDefault()) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); })) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .WillOnce(DoDefault()) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) .WillOnce(DoDefault()) .WillOnce(Invoke(getLoopAnalysisResult)); // Wire two loop pass runs into the module pipeline. { LoopPassManager LPM(true); LPM.addPass(MLPHandle.getPass()); LPM.addPass(MLPHandle.getPass()); FunctionPassManager FPM(true); FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); } // And now run the pipeline across the module. MPM.run(*M, MAM); } TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) { ModulePassManager MPM(true); FunctionPassManager FPM(true); // We process each function completely in sequence. ::testing::Sequence FSequence, GSequence; // First, force the analysis result to be computed for each loop. EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)) .InSequence(FSequence) .WillOnce(DoDefault()); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)) .InSequence(FSequence) .WillOnce(DoDefault()); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)) .InSequence(FSequence) .WillOnce(DoDefault()); EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)) .InSequence(GSequence) .WillOnce(DoDefault()); FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); // No need to re-run if we require again from a fresh loop pass manager. FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); // For 'f', preserve most things but not the specific loop analyses. auto PA = getLoopPassPreservedAnalyses(); if (EnableMSSALoopDependency) PA.preserve(); EXPECT_CALL(MFPHandle, run(HasName("f"), _)) .InSequence(FSequence) .WillOnce(Return(PA)); EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _)) .InSequence(FSequence) .WillOnce(DoDefault()); // On one loop, skip the invalidation (as though we did an internal update). EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _)) .InSequence(FSequence) .WillOnce(Return(false)); EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _)) .InSequence(FSequence) .WillOnce(DoDefault()); // Now two loops still have to be recomputed. EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)) .InSequence(FSequence) .WillOnce(DoDefault()); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)) .InSequence(FSequence) .WillOnce(DoDefault()); // Preserve things in the second function to ensure invalidation remains // isolated to one function. EXPECT_CALL(MFPHandle, run(HasName("g"), _)) .InSequence(GSequence) .WillOnce(DoDefault()); FPM.addPass(MFPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); EXPECT_CALL(MFPHandle, run(HasName("f"), _)) .InSequence(FSequence) .WillOnce(DoDefault()); // For 'g', fail to preserve anything, causing the loops themselves to be // cleared. We don't get an invalidation event here as the loop is gone, but // we should still have to recompute the analysis. EXPECT_CALL(MFPHandle, run(HasName("g"), _)) .InSequence(GSequence) .WillOnce(Return(PreservedAnalyses::none())); EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)) .InSequence(GSequence) .WillOnce(DoDefault()); FPM.addPass(MFPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); // Verify with a separate function pass run that we didn't mess up 'f's // cache. No analysis runs should be necessary here. MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass()))); MPM.run(*M, MAM); } TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) { ModulePassManager MPM(true); ::testing::InSequence MakeExpectationsSequenced; // First, force the analysis result to be computed for each loop. EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass()))); // Walking all the way out and all the way back in doesn't re-run the // analysis. MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass()))); // But a module pass that doesn't preserve the actual mock loop analysis // invalidates all the way down and forces recomputing. EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] { auto PA = getLoopPassPreservedAnalyses(); PA.preserve(); if (EnableMSSALoopDependency) PA.preserve(); return PA; })); // All the loop analyses from both functions get invalidated before we // recompute anything. EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _)); // On one loop, again skip the invalidation (as though we did an internal // update). EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _)) .WillOnce(Return(false)); EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _)); EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _)); // Now all but one of the loops gets re-analyzed. EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); MPM.addPass(MMPHandle.getPass()); MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass()))); // Verify that the cached values persist. MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass()))); // Now we fail to preserve the loop analysis and observe that the loop // analyses are cleared (so no invalidation event) as the loops themselves // are no longer valid. EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] { auto PA = PreservedAnalyses::none(); PA.preserve(); return PA; })); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); MPM.addPass(MMPHandle.getPass()); MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass()))); // Verify that the cached values persist. MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass()))); // Next, check that even if we preserve everything within the function itelf, // if the function's module pass proxy isn't preserved and the potential set // of functions changes, the clear reaches the loop analyses as well. This // will again trigger re-runs but not invalidation events. EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] { auto PA = PreservedAnalyses::none(); PA.preserveSet>(); PA.preserveSet>(); return PA; })); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); MPM.addPass(MMPHandle.getPass()); MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass()))); MPM.run(*M, MAM); } // Test that if any of the bundled analyses provided in the LPM's signature // become invalid, the analysis proxy itself becomes invalid and we clear all // loop analysis results. TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) { ModulePassManager MPM(true); FunctionPassManager FPM(true); ::testing::InSequence MakeExpectationsSequenced; // First, force the analysis result to be computed for each loop. EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); // No need to re-run if we require again from a fresh loop pass manager. FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); // Preserving everything but the loop analyses themselves results in // invalidation and running. EXPECT_CALL(MFPHandle, run(HasName("f"), _)) .WillOnce(Return(getLoopPassPreservedAnalyses())); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); FPM.addPass(MFPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); // The rest don't invalidate analyses, they only trigger re-runs because we // clear the cache completely. EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { auto PA = PreservedAnalyses::none(); // Not preserving `AAManager`. PA.preserve(); PA.preserve(); PA.preserve(); PA.preserve(); return PA; })); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); FPM.addPass(MFPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { auto PA = PreservedAnalyses::none(); PA.preserve(); // Not preserving `DominatorTreeAnalysis`. PA.preserve(); PA.preserve(); PA.preserve(); return PA; })); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); FPM.addPass(MFPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { auto PA = PreservedAnalyses::none(); PA.preserve(); PA.preserve(); // Not preserving the `LoopAnalysis`. PA.preserve(); PA.preserve(); return PA; })); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); FPM.addPass(MFPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { auto PA = PreservedAnalyses::none(); PA.preserve(); PA.preserve(); PA.preserve(); // Not preserving the `LoopAnalysisManagerFunctionProxy`. PA.preserve(); return PA; })); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); FPM.addPass(MFPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { auto PA = PreservedAnalyses::none(); PA.preserve(); PA.preserve(); PA.preserve(); PA.preserve(); // Not preserving `ScalarEvolutionAnalysis`. return PA; })); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); FPM.addPass(MFPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor( RequireAnalysisLoopPass())); // After all the churn on 'f', we'll compute the loop analysis results for // 'g' once with a requires pass and then run our mock pass over g a bunch // but just get cached results each time. EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); MPM.run(*M, MAM); } TEST_F(LoopPassManagerTest, IndirectInvalidation) { // We need two distinct analysis types and handles. enum { A, B }; MockLoopAnalysisHandleTemplate MLAHandleA; MockLoopAnalysisHandleTemplate MLAHandleB; LAM.registerPass([&] { return MLAHandleA.getAnalysis(); }); LAM.registerPass([&] { return MLAHandleB.getAnalysis(); }); typedef decltype(MLAHandleA)::Analysis AnalysisA; typedef decltype(MLAHandleB)::Analysis AnalysisB; // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just // need to get the AnalysisB results in AnalysisA's run method and check if // AnalysisB gets invalidated in AnalysisA's invalidate method. ON_CALL(MLAHandleA, run(_, _, _)) .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR) { (void)AM.getResult(L, AR); return MLAHandleA.getResult(); })); ON_CALL(MLAHandleA, invalidate(_, _, _)) .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA, LoopAnalysisManager::Invalidator &Inv) { auto PAC = PA.getChecker(); return !(PAC.preserved() || PAC.preservedSet>()) || Inv.invalidate(L, PA); })); ::testing::InSequence MakeExpectationsSequenced; // Compute the analyses across all of 'f' first. EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _)); EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _)); // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and // preserve everything for the rest. This in turn triggers that one loop to // recompute both AnalysisB *and* AnalysisA if indirect invalidation is // working. EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .WillOnce(InvokeWithoutArgs([] { auto PA = getLoopPassPreservedAnalyses(); // Specifically preserve AnalysisA so that it would survive if it // didn't depend on AnalysisB. PA.preserve(); return PA; })); // It happens that AnalysisB is invalidated first. That shouldn't matter // though, and we should still call AnalysisA's invalidation. EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &) { (void)AM.getResult(L, AR); return PreservedAnalyses::all(); })); EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _)); // The rest of the loops should run and get cached results. EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .Times(2) .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &) { (void)AM.getResult(L, AR); return PreservedAnalyses::all(); })); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .Times(2) .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &) { (void)AM.getResult(L, AR); return PreservedAnalyses::all(); })); // The run over 'g' should be boring, with us just computing the analyses once // up front and then running loop passes and getting cached results. EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _)); EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) .Times(2) .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &) { (void)AM.getResult(L, AR); return PreservedAnalyses::all(); })); // Build the pipeline and run it. ModulePassManager MPM(true); FunctionPassManager FPM(true); FPM.addPass( createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass())); LoopPassManager LPM(true); LPM.addPass(MLPHandle.getPass()); LPM.addPass(MLPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); MPM.run(*M, MAM); } TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) { typedef decltype(MLAHandle)::Analysis LoopAnalysis; MockFunctionAnalysisHandle MFAHandle; FAM.registerPass([&] { return MFAHandle.getAnalysis(); }); typedef decltype(MFAHandle)::Analysis FunctionAnalysis; // Set up the loop analysis to depend on both the function and module // analysis. ON_CALL(MLAHandle, run(_, _, _)) .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR) { auto &FAMP = AM.getResult(L, AR); Function &F = *L.getHeader()->getParent(); // This call will assert when trying to get the actual analysis if the // FunctionAnalysis can be invalidated. Only check its existence. // Alternatively, use FAM above, for the purposes of this unittest. if (FAMP.cachedResultExists(F)) FAMP.registerOuterAnalysisInvalidation(); return MLAHandle.getResult(); })); ::testing::InSequence MakeExpectationsSequenced; // Compute the analyses across all of 'f' first. EXPECT_CALL(MFPHandle, run(HasName("f"), _)) .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) { // Force the computing of the function analysis so it is available in // this function. (void)AM.getResult(F); return PreservedAnalyses::all(); })); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); // Now invalidate the function analysis but preserve the loop analyses. // This should trigger immediate invalidation of the loop analyses, despite // the fact that they were preserved. EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] { auto PA = getLoopPassPreservedAnalyses(); if (EnableMSSALoopDependency) PA.preserve(); PA.preserveSet>(); return PA; })); EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _)); // And re-running a requires pass recomputes them. EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); // When we run over 'g' we don't populate the cache with the function // analysis. EXPECT_CALL(MFPHandle, run(HasName("g"), _)) .WillOnce(Return(PreservedAnalyses::all())); EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _)); // Which means that no extra invalidation occurs and cached values are used. EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] { auto PA = getLoopPassPreservedAnalyses(); if (EnableMSSALoopDependency) PA.preserve(); PA.preserveSet>(); return PA; })); // Build the pipeline and run it. ModulePassManager MPM(true); FunctionPassManager FPM(true); FPM.addPass(MFPHandle.getPass()); FPM.addPass( createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass())); FPM.addPass(MFPHandle.getPass()); FPM.addPass( createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass())); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); MPM.run(*M, MAM); } TEST_F(LoopPassManagerTest, LoopChildInsertion) { // Super boring module with three loops in a single loop nest. M = parseIR(Context, "define void @f(i1* %ptr) {\n" "entry:\n" " br label %loop.0\n" "loop.0:\n" " %cond.0 = load volatile i1, i1* %ptr\n" " br i1 %cond.0, label %loop.0.0.ph, label %end\n" "loop.0.0.ph:\n" " br label %loop.0.0\n" "loop.0.0:\n" " %cond.0.0 = load volatile i1, i1* %ptr\n" " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n" "loop.0.1.ph:\n" " br label %loop.0.1\n" "loop.0.1:\n" " %cond.0.1 = load volatile i1, i1* %ptr\n" " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n" "loop.0.2.ph:\n" " br label %loop.0.2\n" "loop.0.2:\n" " %cond.0.2 = load volatile i1, i1* %ptr\n" " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n" "loop.0.latch:\n" " br label %loop.0\n" "end:\n" " ret void\n" "}\n"); // Build up variables referring into the IR so we can rewrite it below // easily. Function &F = *M->begin(); ASSERT_THAT(F, HasName("f")); Argument &Ptr = *F.arg_begin(); auto BBI = F.begin(); BasicBlock &EntryBB = *BBI++; ASSERT_THAT(EntryBB, HasName("entry")); BasicBlock &Loop0BB = *BBI++; ASSERT_THAT(Loop0BB, HasName("loop.0")); BasicBlock &Loop00PHBB = *BBI++; ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph")); BasicBlock &Loop00BB = *BBI++; ASSERT_THAT(Loop00BB, HasName("loop.0.0")); BasicBlock &Loop01PHBB = *BBI++; ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph")); BasicBlock &Loop01BB = *BBI++; ASSERT_THAT(Loop01BB, HasName("loop.0.1")); BasicBlock &Loop02PHBB = *BBI++; ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph")); BasicBlock &Loop02BB = *BBI++; ASSERT_THAT(Loop02BB, HasName("loop.0.2")); BasicBlock &Loop0LatchBB = *BBI++; ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch")); BasicBlock &EndBB = *BBI++; ASSERT_THAT(EndBB, HasName("end")); ASSERT_THAT(BBI, F.end()); auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB, const char *Name, BasicBlock *BB) { auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name, /*isVolatile*/ true, BB); BranchInst::Create(TrueBB, FalseBB, Cond, BB); }; // Build the pass managers and register our pipeline. We build a single loop // pass pipeline consisting of three mock pass runs over each loop. After // this we run both domtree and loop verification passes to make sure that // the IR remained valid during our mutations. ModulePassManager MPM(true); FunctionPassManager FPM(true); LoopPassManager LPM(true); LPM.addPass(MLPHandle.getPass()); LPM.addPass(MLPHandle.getPass()); LPM.addPass(MLPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); FPM.addPass(DominatorTreeVerifierPass()); FPM.addPass(LoopVerifierPass()); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); // All the visit orders are deterministic, so we use simple fully order // expectations. ::testing::InSequence MakeExpectationsSequenced; // We run loop passes three times over each of the loops. EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); // When running over the middle loop, the second run inserts two new child // loops, inserting them and itself into the worklist. BasicBlock *NewLoop010BB, *NewLoop01LatchBB; EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { auto *NewLoop = AR.LI.AllocateLoop(); L.addChildLoop(NewLoop); auto *NewLoop010PHBB = BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB); NewLoop010BB = BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB); NewLoop01LatchBB = BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB); Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB); BranchInst::Create(NewLoop010BB, NewLoop010PHBB); CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0", NewLoop010BB); BranchInst::Create(&Loop01BB, NewLoop01LatchBB); AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB); AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB); AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB); EXPECT_TRUE(AR.DT.verify()); L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI); NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI); L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI); NewLoop->verifyLoop(); L.verifyLoop(); Updater.addChildLoops({NewLoop}); return PreservedAnalyses::all(); })); // We should immediately drop down to fully visit the new inner loop. EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); // After visiting the inner loop, we should re-visit the second loop // reflecting its new loop nest structure. EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); // In the second run over the middle loop after we've visited the new child, // we add another child to check that we can repeatedly add children, and add // children to a loop that already has children. EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { auto *NewLoop = AR.LI.AllocateLoop(); L.addChildLoop(NewLoop); auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB); auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB); NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB, NewLoop011PHBB); BranchInst::Create(NewLoop011BB, NewLoop011PHBB); CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1", NewLoop011BB); AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB); auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB); AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode); EXPECT_TRUE(AR.DT.verify()); L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI); NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI); NewLoop->verifyLoop(); L.verifyLoop(); Updater.addChildLoops({NewLoop}); return PreservedAnalyses::all(); })); // Again, we should immediately drop down to visit the new, unvisited child // loop. We don't need to revisit the other child though. EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); // And now we should pop back up to the second loop and do a full pipeline of // three passes on its current form. EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .Times(3) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); // Now that all the expected actions are registered, run the pipeline over // our module. All of our expectations are verified when the test finishes. MPM.run(*M, MAM); } TEST_F(LoopPassManagerTest, LoopPeerInsertion) { // Super boring module with two loop nests and loop nest with two child // loops. M = parseIR(Context, "define void @f(i1* %ptr) {\n" "entry:\n" " br label %loop.0\n" "loop.0:\n" " %cond.0 = load volatile i1, i1* %ptr\n" " br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n" "loop.0.0.ph:\n" " br label %loop.0.0\n" "loop.0.0:\n" " %cond.0.0 = load volatile i1, i1* %ptr\n" " br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n" "loop.0.2.ph:\n" " br label %loop.0.2\n" "loop.0.2:\n" " %cond.0.2 = load volatile i1, i1* %ptr\n" " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n" "loop.0.latch:\n" " br label %loop.0\n" "loop.2.ph:\n" " br label %loop.2\n" "loop.2:\n" " %cond.2 = load volatile i1, i1* %ptr\n" " br i1 %cond.2, label %loop.2, label %end\n" "end:\n" " ret void\n" "}\n"); // Build up variables referring into the IR so we can rewrite it below // easily. Function &F = *M->begin(); ASSERT_THAT(F, HasName("f")); Argument &Ptr = *F.arg_begin(); auto BBI = F.begin(); BasicBlock &EntryBB = *BBI++; ASSERT_THAT(EntryBB, HasName("entry")); BasicBlock &Loop0BB = *BBI++; ASSERT_THAT(Loop0BB, HasName("loop.0")); BasicBlock &Loop00PHBB = *BBI++; ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph")); BasicBlock &Loop00BB = *BBI++; ASSERT_THAT(Loop00BB, HasName("loop.0.0")); BasicBlock &Loop02PHBB = *BBI++; ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph")); BasicBlock &Loop02BB = *BBI++; ASSERT_THAT(Loop02BB, HasName("loop.0.2")); BasicBlock &Loop0LatchBB = *BBI++; ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch")); BasicBlock &Loop2PHBB = *BBI++; ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph")); BasicBlock &Loop2BB = *BBI++; ASSERT_THAT(Loop2BB, HasName("loop.2")); BasicBlock &EndBB = *BBI++; ASSERT_THAT(EndBB, HasName("end")); ASSERT_THAT(BBI, F.end()); auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB, const char *Name, BasicBlock *BB) { auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name, /*isVolatile*/ true, BB); BranchInst::Create(TrueBB, FalseBB, Cond, BB); }; // Build the pass managers and register our pipeline. We build a single loop // pass pipeline consisting of three mock pass runs over each loop. After // this we run both domtree and loop verification passes to make sure that // the IR remained valid during our mutations. ModulePassManager MPM(true); FunctionPassManager FPM(true); LoopPassManager LPM(true); LPM.addPass(MLPHandle.getPass()); LPM.addPass(MLPHandle.getPass()); LPM.addPass(MLPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); FPM.addPass(DominatorTreeVerifierPass()); FPM.addPass(LoopVerifierPass()); MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); // All the visit orders are deterministic, so we use simple fully order // expectations. ::testing::InSequence MakeExpectationsSequenced; // We run loop passes three times over each of the loops. EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); // On the second run, we insert a sibling loop. EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { auto *NewLoop = AR.LI.AllocateLoop(); L.getParentLoop()->addChildLoop(NewLoop); auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB); auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB); BranchInst::Create(NewLoop01BB, NewLoop01PHBB); CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB); Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB); AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB); auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB); AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode); EXPECT_TRUE(AR.DT.verify()); L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI); NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI); L.getParentLoop()->verifyLoop(); Updater.addSiblingLoops({NewLoop}); return PreservedAnalyses::all(); })); // We finish processing this loop as sibling loops don't perturb the // postorder walk. EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); // We visit the inserted sibling next. EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); // Next, on the third pass run on the last inner loop we add more new // siblings, more than one, and one with nested child loops. By doing this at // the end we make sure that edge case works well. EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(), AR.LI.AllocateLoop()}; L.getParentLoop()->addChildLoop(NewLoops[0]); L.getParentLoop()->addChildLoop(NewLoops[1]); NewLoops[1]->addChildLoop(NewLoops[2]); auto *NewLoop03PHBB = BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB); auto *NewLoop03BB = BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB); auto *NewLoop04PHBB = BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB); auto *NewLoop04BB = BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB); auto *NewLoop040PHBB = BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB); auto *NewLoop040BB = BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB); auto *NewLoop04LatchBB = BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB); Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB); BranchInst::Create(NewLoop03BB, NewLoop03PHBB); CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB); BranchInst::Create(NewLoop04BB, NewLoop04PHBB); CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB); BranchInst::Create(NewLoop040BB, NewLoop040PHBB); CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB); BranchInst::Create(NewLoop04BB, NewLoop04LatchBB); AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB); AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB); AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB); auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB); AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode); AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB); AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB); AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB); EXPECT_TRUE(AR.DT.verify()); L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI); NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI); L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI); NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI); NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI); NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI); NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI); L.getParentLoop()->verifyLoop(); Updater.addSiblingLoops({NewLoops[0], NewLoops[1]}); return PreservedAnalyses::all(); })); EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); // Note that we need to visit the inner loop of this added sibling before the // sibling itself! EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); // And only now do we visit the outermost loop of the nest. EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); // On the second pass, we add sibling loops which become new top-level loops. EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { auto *NewLoop = AR.LI.AllocateLoop(); AR.LI.addTopLevelLoop(NewLoop); auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB); auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB); BranchInst::Create(NewLoop1BB, NewLoop1PHBB); CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB); Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB); AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB); auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB); AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode); EXPECT_TRUE(AR.DT.verify()); NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI); NewLoop->verifyLoop(); Updater.addSiblingLoops({NewLoop}); return PreservedAnalyses::all(); })); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); // Now that all the expected actions are registered, run the pipeline over // our module. All of our expectations are verified when the test finishes. MPM.run(*M, MAM); } TEST_F(LoopPassManagerTest, LoopDeletion) { // Build a module with a single loop nest that contains one outer loop with // three subloops, and one of those with its own subloop. We will // incrementally delete all of these to test different deletion scenarios. M = parseIR(Context, "define void @f(i1* %ptr) {\n" "entry:\n" " br label %loop.0\n" "loop.0:\n" " %cond.0 = load volatile i1, i1* %ptr\n" " br i1 %cond.0, label %loop.0.0.ph, label %end\n" "loop.0.0.ph:\n" " br label %loop.0.0\n" "loop.0.0:\n" " %cond.0.0 = load volatile i1, i1* %ptr\n" " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n" "loop.0.1.ph:\n" " br label %loop.0.1\n" "loop.0.1:\n" " %cond.0.1 = load volatile i1, i1* %ptr\n" " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n" "loop.0.2.ph:\n" " br label %loop.0.2\n" "loop.0.2:\n" " %cond.0.2 = load volatile i1, i1* %ptr\n" " br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n" "loop.0.2.0.ph:\n" " br label %loop.0.2.0\n" "loop.0.2.0:\n" " %cond.0.2.0 = load volatile i1, i1* %ptr\n" " br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n" "loop.0.2.latch:\n" " br label %loop.0.2\n" "loop.0.latch:\n" " br label %loop.0\n" "end:\n" " ret void\n" "}\n"); // Build up variables referring into the IR so we can rewrite it below // easily. Function &F = *M->begin(); ASSERT_THAT(F, HasName("f")); Argument &Ptr = *F.arg_begin(); auto BBI = F.begin(); BasicBlock &EntryBB = *BBI++; ASSERT_THAT(EntryBB, HasName("entry")); BasicBlock &Loop0BB = *BBI++; ASSERT_THAT(Loop0BB, HasName("loop.0")); BasicBlock &Loop00PHBB = *BBI++; ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph")); BasicBlock &Loop00BB = *BBI++; ASSERT_THAT(Loop00BB, HasName("loop.0.0")); BasicBlock &Loop01PHBB = *BBI++; ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph")); BasicBlock &Loop01BB = *BBI++; ASSERT_THAT(Loop01BB, HasName("loop.0.1")); BasicBlock &Loop02PHBB = *BBI++; ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph")); BasicBlock &Loop02BB = *BBI++; ASSERT_THAT(Loop02BB, HasName("loop.0.2")); BasicBlock &Loop020PHBB = *BBI++; ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph")); BasicBlock &Loop020BB = *BBI++; ASSERT_THAT(Loop020BB, HasName("loop.0.2.0")); BasicBlock &Loop02LatchBB = *BBI++; ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch")); BasicBlock &Loop0LatchBB = *BBI++; ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch")); BasicBlock &EndBB = *BBI++; ASSERT_THAT(EndBB, HasName("end")); ASSERT_THAT(BBI, F.end()); // Helper to do the actual deletion of a loop. We directly encode this here // to isolate ourselves from the rest of LLVM and for simplicity. Here we can // egregiously cheat based on knowledge of the test case. For example, we // have no PHI nodes and there is always a single i-dom. auto EraseLoop = [](Loop &L, BasicBlock &IDomBB, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { assert(L.isInnermost() && "Can only delete leaf loops with this routine!"); SmallVector LoopBBs(L.block_begin(), L.block_end()); Updater.markLoopAsDeleted(L, L.getName()); IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(), L.getUniqueExitBlock()); for (BasicBlock *LoopBB : LoopBBs) { SmallVector ChildNodes(AR.DT[LoopBB]->begin(), AR.DT[LoopBB]->end()); for (DomTreeNode *ChildNode : ChildNodes) AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]); AR.DT.eraseNode(LoopBB); AR.LI.removeBlock(LoopBB); LoopBB->dropAllReferences(); } for (BasicBlock *LoopBB : LoopBBs) LoopBB->eraseFromParent(); AR.LI.erase(&L); }; // Build up the pass managers. ModulePassManager MPM(true); FunctionPassManager FPM(true); // We run several loop pass pipelines across the loop nest, but they all take // the same form of three mock pass runs in a loop pipeline followed by // domtree and loop verification. We use a lambda to stamp this out each // time. auto AddLoopPipelineAndVerificationPasses = [&] { LoopPassManager LPM(true); LPM.addPass(MLPHandle.getPass()); LPM.addPass(MLPHandle.getPass()); LPM.addPass(MLPHandle.getPass()); FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM))); FPM.addPass(DominatorTreeVerifierPass()); FPM.addPass(LoopVerifierPass()); }; // All the visit orders are deterministic so we use simple fully order // expectations. ::testing::InSequence MakeExpectationsSequenced; // We run the loop pipeline with three passes over each of the loops. When // running over the middle loop, the second pass in the pipeline deletes it. // This should prevent the third pass from visiting it but otherwise leave // the process unimpacted. AddLoopPipelineAndVerificationPasses(); EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .WillOnce( Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { Loop *ParentL = L.getParentLoop(); AR.SE.forgetLoop(&L); EraseLoop(L, Loop01PHBB, AR, Updater); ParentL->verifyLoop(); return PreservedAnalyses::all(); })); EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); // Run the loop pipeline again. This time we delete the last loop, which // contains a nested loop within it and insert a new loop into the nest. This // makes sure we can handle nested loop deletion. AddLoopPipelineAndVerificationPasses(); EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .Times(3) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _)) .Times(3) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); BasicBlock *NewLoop03PHBB; EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _)) .WillOnce( Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { AR.SE.forgetLoop(*L.begin()); EraseLoop(**L.begin(), Loop020PHBB, AR, Updater); auto *ParentL = L.getParentLoop(); AR.SE.forgetLoop(&L); EraseLoop(L, Loop02PHBB, AR, Updater); // Now insert a new sibling loop. auto *NewSibling = AR.LI.AllocateLoop(); ParentL->addChildLoop(NewSibling); NewLoop03PHBB = BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB); auto *NewLoop03BB = BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB); BranchInst::Create(NewLoop03BB, NewLoop03PHBB); auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3", /*isVolatile*/ true, NewLoop03BB); BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB); Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB); AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB); AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB); AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], AR.DT[NewLoop03BB]); EXPECT_TRUE(AR.DT.verify()); ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI); NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI); NewSibling->verifyLoop(); ParentL->verifyLoop(); Updater.addSiblingLoops({NewSibling}); return PreservedAnalyses::all(); })); // To respect our inner-to-outer traversal order, we must visit the // newly-inserted sibling of the loop we just deleted before we visit the // outer loop. When we do so, this must compute a fresh analysis result, even // though our new loop has the same pointer value as the loop we deleted. EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) .Times(2) .WillRepeatedly(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .Times(3) .WillRepeatedly(Invoke(getLoopAnalysisResult)); // In the final loop pipeline run we delete every loop, including the last // loop of the nest. We do this again in the second pass in the pipeline, and // as a consequence we never make it to three runs on any loop. We also cover // deleting multiple loops in a single pipeline, deleting the first loop and // deleting the (last) top level loop. AddLoopPipelineAndVerificationPasses(); EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .WillOnce( Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { AR.SE.forgetLoop(&L); EraseLoop(L, Loop00PHBB, AR, Updater); return PreservedAnalyses::all(); })); EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _)) .WillOnce( Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { AR.SE.forgetLoop(&L); EraseLoop(L, *NewLoop03PHBB, AR, Updater); return PreservedAnalyses::all(); })); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .WillOnce(Invoke(getLoopAnalysisResult)); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)) .WillOnce( Invoke([&](Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &Updater) { AR.SE.forgetLoop(&L); EraseLoop(L, EntryBB, AR, Updater); return PreservedAnalyses::all(); })); // Add the function pass pipeline now that it is fully built up and run it // over the module's one function. MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); MPM.run(*M, MAM); } TEST_F(LoopPassManagerTest, HandleLoopNestPass) { ::testing::Sequence FSequence, GSequence; EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _)) .Times(2) .InSequence(FSequence); EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _)) .Times(2) .InSequence(FSequence); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)).InSequence(FSequence); EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _)) .InSequence(FSequence); EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _)).InSequence(FSequence); EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _)) .InSequence(FSequence); EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) .InSequence(GSequence); EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _)) .InSequence(GSequence); EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _)) .InSequence(GSequence); EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _)) .InSequence(GSequence); EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _)) .InSequence(FSequence); EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _)) .InSequence(GSequence); EXPECT_CALL(MLNPHandle, run(HasName("loop.0"), _, _, _)) .InSequence(FSequence); EXPECT_CALL(MLNPHandle, run(HasName("loop.g.0"), _, _, _)) .InSequence(GSequence); ModulePassManager MPM(true); FunctionPassManager FPM(true); { LoopPassManager LPM(true); LPM.addPass(MLPHandle.getPass()); LPM.addPass(MLNPHandle.getPass()); LPM.addPass(MLPHandle.getPass()); LPM.addPass(MLNPHandle.getPass()); auto Adaptor = createFunctionToLoopPassAdaptor(std::move(LPM)); ASSERT_FALSE(Adaptor.isLoopNestMode()); FPM.addPass(std::move(Adaptor)); } { auto Adaptor = createFunctionToLoopPassAdaptor(MLNPHandle.getPass()); ASSERT_TRUE(Adaptor.isLoopNestMode()); FPM.addPass(std::move(Adaptor)); } { LoopPassManager LPM(true); LPM.addPass(MLNPHandle.getPass()); auto Adaptor = createFunctionToLoopPassAdaptor(MLNPHandle.getPass()); ASSERT_TRUE(Adaptor.isLoopNestMode()); FPM.addPass(std::move(Adaptor)); } MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); MPM.run(*M, MAM); } } // namespace