//===- llvm/unittest/Support/AllocatorTest.cpp - BumpPtrAllocator tests ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Support/Allocator.h" #include "gtest/gtest.h" #include using namespace llvm; namespace { TEST(AllocatorTest, Basics) { BumpPtrAllocator Alloc; int *a = (int*)Alloc.Allocate(sizeof(int), alignof(int)); int *b = (int*)Alloc.Allocate(sizeof(int) * 10, alignof(int)); int *c = (int*)Alloc.Allocate(sizeof(int), alignof(int)); *a = 1; b[0] = 2; b[9] = 2; *c = 3; EXPECT_EQ(1, *a); EXPECT_EQ(2, b[0]); EXPECT_EQ(2, b[9]); EXPECT_EQ(3, *c); EXPECT_EQ(1U, Alloc.GetNumSlabs()); BumpPtrAllocator Alloc2 = std::move(Alloc); EXPECT_EQ(0U, Alloc.GetNumSlabs()); EXPECT_EQ(1U, Alloc2.GetNumSlabs()); // Make sure the old pointers still work. These are especially interesting // under ASan or Valgrind. EXPECT_EQ(1, *a); EXPECT_EQ(2, b[0]); EXPECT_EQ(2, b[9]); EXPECT_EQ(3, *c); Alloc = std::move(Alloc2); EXPECT_EQ(0U, Alloc2.GetNumSlabs()); EXPECT_EQ(1U, Alloc.GetNumSlabs()); } // Allocate enough bytes to create three slabs. TEST(AllocatorTest, ThreeSlabs) { BumpPtrAllocator Alloc; Alloc.Allocate(3000, 1); EXPECT_EQ(1U, Alloc.GetNumSlabs()); Alloc.Allocate(3000, 1); EXPECT_EQ(2U, Alloc.GetNumSlabs()); Alloc.Allocate(3000, 1); EXPECT_EQ(3U, Alloc.GetNumSlabs()); } // Allocate enough bytes to create two slabs, reset the allocator, and do it // again. TEST(AllocatorTest, TestReset) { BumpPtrAllocator Alloc; // Allocate something larger than the SizeThreshold=4096. (void)Alloc.Allocate(5000, 1); Alloc.Reset(); // Calling Reset should free all CustomSizedSlabs. EXPECT_EQ(0u, Alloc.GetNumSlabs()); Alloc.Allocate(3000, 1); EXPECT_EQ(1U, Alloc.GetNumSlabs()); Alloc.Allocate(3000, 1); EXPECT_EQ(2U, Alloc.GetNumSlabs()); Alloc.Reset(); EXPECT_EQ(1U, Alloc.GetNumSlabs()); Alloc.Allocate(3000, 1); EXPECT_EQ(1U, Alloc.GetNumSlabs()); Alloc.Allocate(3000, 1); EXPECT_EQ(2U, Alloc.GetNumSlabs()); } // Test some allocations at varying alignments. TEST(AllocatorTest, TestAlignment) { BumpPtrAllocator Alloc; uintptr_t a; a = (uintptr_t)Alloc.Allocate(1, 2); EXPECT_EQ(0U, a & 1); a = (uintptr_t)Alloc.Allocate(1, 4); EXPECT_EQ(0U, a & 3); a = (uintptr_t)Alloc.Allocate(1, 8); EXPECT_EQ(0U, a & 7); a = (uintptr_t)Alloc.Allocate(1, 16); EXPECT_EQ(0U, a & 15); a = (uintptr_t)Alloc.Allocate(1, 32); EXPECT_EQ(0U, a & 31); a = (uintptr_t)Alloc.Allocate(1, 64); EXPECT_EQ(0U, a & 63); a = (uintptr_t)Alloc.Allocate(1, 128); EXPECT_EQ(0U, a & 127); } // Test allocating just over the slab size. This tests a bug where before the // allocator incorrectly calculated the buffer end pointer. TEST(AllocatorTest, TestOverflow) { BumpPtrAllocator Alloc; // Fill the slab right up until the end pointer. Alloc.Allocate(4096, 1); EXPECT_EQ(1U, Alloc.GetNumSlabs()); // If we don't allocate a new slab, then we will have overflowed. Alloc.Allocate(1, 1); EXPECT_EQ(2U, Alloc.GetNumSlabs()); } // Test allocating with a size larger than the initial slab size. TEST(AllocatorTest, TestSmallSlabSize) { BumpPtrAllocator Alloc; Alloc.Allocate(8000, 1); EXPECT_EQ(1U, Alloc.GetNumSlabs()); } // Test requesting alignment that goes past the end of the current slab. TEST(AllocatorTest, TestAlignmentPastSlab) { BumpPtrAllocator Alloc; Alloc.Allocate(4095, 1); // Aligning the current slab pointer is likely to move it past the end of the // slab, which would confuse any unsigned comparisons with the difference of // the end pointer and the aligned pointer. Alloc.Allocate(1024, 8192); EXPECT_EQ(2U, Alloc.GetNumSlabs()); } // Test allocating with a decreased growth delay. TEST(AllocatorTest, TestFasterSlabGrowthDelay) { const size_t SlabSize = 4096; // Decrease the growth delay to double the slab size every slab. const size_t GrowthDelay = 1; BumpPtrAllocatorImpl Alloc; // Disable the red zone for this test. The additional bytes allocated for the // red zone would change the allocation numbers we check below. Alloc.setRedZoneSize(0); Alloc.Allocate(SlabSize, 1); EXPECT_EQ(SlabSize, Alloc.getTotalMemory()); // We hit our growth delay with the previous allocation so the next // allocation should get a twice as large slab. Alloc.Allocate(SlabSize, 1); EXPECT_EQ(SlabSize * 3, Alloc.getTotalMemory()); Alloc.Allocate(SlabSize, 1); EXPECT_EQ(SlabSize * 3, Alloc.getTotalMemory()); // Both slabs are full again and hit the growth delay again, so the // next allocation should again get a slab with four times the size of the // original slab size. In total we now should have a memory size of: // 1 + 2 + 4 * SlabSize. Alloc.Allocate(SlabSize, 1); EXPECT_EQ(SlabSize * 7, Alloc.getTotalMemory()); } // Test allocating with a increased growth delay. TEST(AllocatorTest, TestSlowerSlabGrowthDelay) { const size_t SlabSize = 16; // Increase the growth delay to only double the slab size every 256 slabs. const size_t GrowthDelay = 256; BumpPtrAllocatorImpl Alloc; // Disable the red zone for this test. The additional bytes allocated for the // red zone would change the allocation numbers we check below. Alloc.setRedZoneSize(0); // Allocate 256 slabs. We should keep getting slabs with the original size // as we haven't hit our growth delay on the last allocation. for (std::size_t i = 0; i < GrowthDelay; ++i) Alloc.Allocate(SlabSize, 1); EXPECT_EQ(SlabSize * GrowthDelay, Alloc.getTotalMemory()); // Allocate another slab. This time we should get another slab allocated // that is twice as large as the normal slab size. Alloc.Allocate(SlabSize, 1); EXPECT_EQ(SlabSize * GrowthDelay + SlabSize * 2, Alloc.getTotalMemory()); } // Mock slab allocator that returns slabs aligned on 4096 bytes. There is no // easy portable way to do this, so this is kind of a hack. class MockSlabAllocator { static size_t LastSlabSize; public: ~MockSlabAllocator() { } void *Allocate(size_t Size, size_t /*Alignment*/) { // Allocate space for the alignment, the slab, and a void* that goes right // before the slab. Align Alignment(4096); void *MemBase = safe_malloc(Size + Alignment.value() - 1 + sizeof(void *)); // Find the slab start. void *Slab = (void *)alignAddr((char*)MemBase + sizeof(void *), Alignment); // Hold a pointer to the base so we can free the whole malloced block. ((void**)Slab)[-1] = MemBase; LastSlabSize = Size; return Slab; } void Deallocate(void *Slab, size_t /*Size*/, size_t /*Alignment*/) { free(((void**)Slab)[-1]); } static size_t GetLastSlabSize() { return LastSlabSize; } }; size_t MockSlabAllocator::LastSlabSize = 0; // Allocate a large-ish block with a really large alignment so that the // allocator will think that it has space, but after it does the alignment it // will not. TEST(AllocatorTest, TestBigAlignment) { BumpPtrAllocatorImpl Alloc; // First allocate a tiny bit to ensure we have to re-align things. (void)Alloc.Allocate(1, 1); // Now the big chunk with a big alignment. (void)Alloc.Allocate(3000, 2048); // We test that the last slab size is not the default 4096 byte slab, but // rather a custom sized slab that is larger. EXPECT_GT(MockSlabAllocator::GetLastSlabSize(), 4096u); } } // anonymous namespace