//===- Object.h - Mach-O object file model ----------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_OBJCOPY_MACHO_OBJECT_H #define LLVM_OBJCOPY_MACHO_OBJECT_H #include "llvm/ADT/Optional.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/ObjectYAML/DWARFYAML.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/YAMLTraits.h" #include #include #include namespace llvm { namespace objcopy { namespace macho { struct MachHeader { uint32_t Magic; uint32_t CPUType; uint32_t CPUSubType; uint32_t FileType; uint32_t NCmds; uint32_t SizeOfCmds; uint32_t Flags; uint32_t Reserved = 0; }; struct RelocationInfo; struct Section { uint32_t Index; std::string Segname; std::string Sectname; // CanonicalName is a string formatted as “,". std::string CanonicalName; uint64_t Addr = 0; uint64_t Size = 0; // Offset in the input file. Optional OriginalOffset; uint32_t Offset = 0; uint32_t Align = 0; uint32_t RelOff = 0; uint32_t NReloc = 0; uint32_t Flags = 0; uint32_t Reserved1 = 0; uint32_t Reserved2 = 0; uint32_t Reserved3 = 0; StringRef Content; std::vector Relocations; Section(StringRef SegName, StringRef SectName) : Segname(std::string(SegName)), Sectname(std::string(SectName)), CanonicalName((Twine(SegName) + Twine(',') + SectName).str()) {} Section(StringRef SegName, StringRef SectName, StringRef Content) : Segname(std::string(SegName)), Sectname(std::string(SectName)), CanonicalName((Twine(SegName) + Twine(',') + SectName).str()), Content(Content) {} MachO::SectionType getType() const { return static_cast(Flags & MachO::SECTION_TYPE); } bool isVirtualSection() const { return (getType() == MachO::S_ZEROFILL || getType() == MachO::S_GB_ZEROFILL || getType() == MachO::S_THREAD_LOCAL_ZEROFILL); } bool hasValidOffset() const { return !(isVirtualSection() || (OriginalOffset && *OriginalOffset == 0)); } }; struct LoadCommand { // The type MachO::macho_load_command is defined in llvm/BinaryFormat/MachO.h // and it is a union of all the structs corresponding to various load // commands. MachO::macho_load_command MachOLoadCommand; // The raw content of the payload of the load command (located right after the // corresponding struct). In some cases it is either empty or can be // copied-over without digging into its structure. std::vector Payload; // Some load commands can contain (inside the payload) an array of sections, // though the contents of the sections are stored separately. The struct // Section describes only sections' metadata and where to find the // corresponding content inside the binary. std::vector> Sections; // Returns the segment name if the load command is a segment command. Optional getSegmentName() const; // Returns the segment vm address if the load command is a segment command. Optional getSegmentVMAddr() const; }; // A symbol information. Fields which starts with "n_" are same as them in the // nlist. struct SymbolEntry { std::string Name; bool Referenced = false; uint32_t Index; uint8_t n_type; uint8_t n_sect; uint16_t n_desc; uint64_t n_value; bool isExternalSymbol() const { return n_type & MachO::N_EXT; } bool isLocalSymbol() const { return !isExternalSymbol(); } bool isUndefinedSymbol() const { return (n_type & MachO::N_TYPE) == MachO::N_UNDF; } bool isSwiftSymbol() const { return StringRef(Name).startswith("_$s") || StringRef(Name).startswith("_$S"); } Optional section() const { return n_sect == MachO::NO_SECT ? None : Optional(n_sect); } }; /// The location of the symbol table inside the binary is described by LC_SYMTAB /// load command. struct SymbolTable { std::vector> Symbols; using iterator = pointee_iterator< std::vector>::const_iterator>; iterator begin() const { return iterator(Symbols.begin()); } iterator end() const { return iterator(Symbols.end()); } const SymbolEntry *getSymbolByIndex(uint32_t Index) const; SymbolEntry *getSymbolByIndex(uint32_t Index); void removeSymbols( function_ref &)> ToRemove); }; struct IndirectSymbolEntry { // The original value in an indirect symbol table. Higher bits encode extra // information (INDIRECT_SYMBOL_LOCAL and INDIRECT_SYMBOL_ABS). uint32_t OriginalIndex; /// The Symbol referenced by this entry. It's None if the index is /// INDIRECT_SYMBOL_LOCAL or INDIRECT_SYMBOL_ABS. Optional Symbol; IndirectSymbolEntry(uint32_t OriginalIndex, Optional Symbol) : OriginalIndex(OriginalIndex), Symbol(Symbol) {} }; struct IndirectSymbolTable { std::vector Symbols; }; /// The location of the string table inside the binary is described by LC_SYMTAB /// load command. struct StringTable { std::vector Strings; }; struct RelocationInfo { // The referenced symbol entry. Set if !Scattered && Extern. Optional Symbol; // The referenced section. Set if !Scattered && !Extern. Optional Sec; // True if Info is a scattered_relocation_info. bool Scattered; // True if the r_symbolnum points to a section number (i.e. r_extern=0). bool Extern; MachO::any_relocation_info Info; unsigned getPlainRelocationSymbolNum(bool IsLittleEndian) { if (IsLittleEndian) return Info.r_word1 & 0xffffff; return Info.r_word1 >> 8; } void setPlainRelocationSymbolNum(unsigned SymbolNum, bool IsLittleEndian) { assert(SymbolNum < (1 << 24) && "SymbolNum out of range"); if (IsLittleEndian) Info.r_word1 = (Info.r_word1 & ~0x00ffffff) | SymbolNum; else Info.r_word1 = (Info.r_word1 & ~0xffffff00) | (SymbolNum << 8); } }; /// The location of the rebase info inside the binary is described by /// LC_DYLD_INFO load command. Dyld rebases an image whenever dyld loads it at /// an address different from its preferred address. The rebase information is /// a stream of byte sized opcodes whose symbolic names start with /// REBASE_OPCODE_. Conceptually the rebase information is a table of tuples: /// /// The opcodes are a compressed way to encode the table by only /// encoding when a column changes. In addition simple patterns /// like "every n'th offset for m times" can be encoded in a few /// bytes. struct RebaseInfo { // At the moment we do not parse this info (and it is simply copied over), // but the proper support will be added later. ArrayRef Opcodes; }; /// The location of the bind info inside the binary is described by /// LC_DYLD_INFO load command. Dyld binds an image during the loading process, /// if the image requires any pointers to be initialized to symbols in other /// images. The bind information is a stream of byte sized opcodes whose /// symbolic names start with BIND_OPCODE_. Conceptually the bind information is /// a table of tuples: The opcodes are a compressed way to encode the table by /// only encoding when a column changes. In addition simple patterns like for /// runs of pointers initialized to the same value can be encoded in a few /// bytes. struct BindInfo { // At the moment we do not parse this info (and it is simply copied over), // but the proper support will be added later. ArrayRef Opcodes; }; /// The location of the weak bind info inside the binary is described by /// LC_DYLD_INFO load command. Some C++ programs require dyld to unique symbols /// so that all images in the process use the same copy of some code/data. This /// step is done after binding. The content of the weak_bind info is an opcode /// stream like the bind_info. But it is sorted alphabetically by symbol name. /// This enable dyld to walk all images with weak binding information in order /// and look for collisions. If there are no collisions, dyld does no updating. /// That means that some fixups are also encoded in the bind_info. For /// instance, all calls to "operator new" are first bound to libstdc++.dylib /// using the information in bind_info. Then if some image overrides operator /// new that is detected when the weak_bind information is processed and the /// call to operator new is then rebound. struct WeakBindInfo { // At the moment we do not parse this info (and it is simply copied over), // but the proper support will be added later. ArrayRef Opcodes; }; /// The location of the lazy bind info inside the binary is described by /// LC_DYLD_INFO load command. Some uses of external symbols do not need to be /// bound immediately. Instead they can be lazily bound on first use. The /// lazy_bind contains a stream of BIND opcodes to bind all lazy symbols. Normal /// use is that dyld ignores the lazy_bind section when loading an image. /// Instead the static linker arranged for the lazy pointer to initially point /// to a helper function which pushes the offset into the lazy_bind area for the /// symbol needing to be bound, then jumps to dyld which simply adds the offset /// to lazy_bind_off to get the information on what to bind. struct LazyBindInfo { ArrayRef Opcodes; }; /// The location of the export info inside the binary is described by /// LC_DYLD_INFO load command. The symbols exported by a dylib are encoded in a /// trie. This is a compact representation that factors out common prefixes. It /// also reduces LINKEDIT pages in RAM because it encodes all information (name, /// address, flags) in one small, contiguous range. The export area is a stream /// of nodes. The first node sequentially is the start node for the trie. Nodes /// for a symbol start with a uleb128 that is the length of the exported symbol /// information for the string so far. If there is no exported symbol, the node /// starts with a zero byte. If there is exported info, it follows the length. /// First is a uleb128 containing flags. Normally, it is followed by /// a uleb128 encoded offset which is location of the content named /// by the symbol from the mach_header for the image. If the flags /// is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is /// a uleb128 encoded library ordinal, then a zero terminated /// UTF8 string. If the string is zero length, then the symbol /// is re-export from the specified dylib with the same name. /// If the flags is EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, then following /// the flags is two uleb128s: the stub offset and the resolver offset. /// The stub is used by non-lazy pointers. The resolver is used /// by lazy pointers and must be called to get the actual address to use. /// After the optional exported symbol information is a byte of /// how many edges (0-255) that this node has leaving it, /// followed by each edge. /// Each edge is a zero terminated UTF8 of the addition chars /// in the symbol, followed by a uleb128 offset for the node that /// edge points to. struct ExportInfo { ArrayRef Trie; }; struct LinkData { ArrayRef Data; }; struct Object { MachHeader Header; std::vector LoadCommands; SymbolTable SymTable; StringTable StrTable; RebaseInfo Rebases; BindInfo Binds; WeakBindInfo WeakBinds; LazyBindInfo LazyBinds; ExportInfo Exports; IndirectSymbolTable IndirectSymTable; LinkData DataInCode; LinkData FunctionStarts; LinkData CodeSignature; Optional SwiftVersion; /// The index of LC_CODE_SIGNATURE load command if present. Optional CodeSignatureCommandIndex; /// The index of LC_SYMTAB load command if present. Optional SymTabCommandIndex; /// The index of LC_DYLD_INFO or LC_DYLD_INFO_ONLY load command if present. Optional DyLdInfoCommandIndex; /// The index LC_DYSYMTAB load comamnd if present. Optional DySymTabCommandIndex; /// The index LC_DATA_IN_CODE load comamnd if present. Optional DataInCodeCommandIndex; /// The index LC_FUNCTION_STARTS load comamnd if present. Optional FunctionStartsCommandIndex; BumpPtrAllocator Alloc; StringSaver NewSectionsContents; Object() : NewSectionsContents(Alloc) {} Error removeSections(function_ref &)> ToRemove); Error removeLoadCommands(function_ref ToRemove); void updateLoadCommandIndexes(); /// Creates a new segment load command in the object and returns a reference /// to the newly created load command. The caller should verify that SegName /// is not too long (SegName.size() should be less than or equal to 16). LoadCommand &addSegment(StringRef SegName, uint64_t SegVMSize); bool is64Bit() const { return Header.Magic == MachO::MH_MAGIC_64 || Header.Magic == MachO::MH_CIGAM_64; } uint64_t nextAvailableSegmentAddress() const; }; } // end namespace macho } // end namespace objcopy } // end namespace llvm #endif // LLVM_OBJCOPY_MACHO_OBJECT_H