//===-- Target.h ------------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// /// Classes that handle the creation of target-specific objects. This is /// similar to Target/TargetRegistry. /// //===----------------------------------------------------------------------===// #ifndef LLVM_TOOLS_LLVM_EXEGESIS_TARGET_H #define LLVM_TOOLS_LLVM_EXEGESIS_TARGET_H #include "BenchmarkResult.h" #include "BenchmarkRunner.h" #include "Error.h" #include "LlvmState.h" #include "PerfHelper.h" #include "SnippetGenerator.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Error.h" namespace llvm { namespace exegesis { struct PfmCountersInfo { // An optional name of a performance counter that can be used to measure // cycles. const char *CycleCounter; // An optional name of a performance counter that can be used to measure // uops. const char *UopsCounter; // An IssueCounter specifies how to measure uops issued to specific proc // resources. struct IssueCounter { const char *Counter; // The name of the ProcResource that this counter measures. const char *ProcResName; }; // An optional list of IssueCounters. const IssueCounter *IssueCounters; unsigned NumIssueCounters; static const PfmCountersInfo Default; }; struct CpuAndPfmCounters { const char *CpuName; const PfmCountersInfo *PCI; bool operator<(StringRef S) const { return StringRef(CpuName) < S; } }; class ExegesisTarget { public: explicit ExegesisTarget(ArrayRef CpuPfmCounters) : CpuPfmCounters(CpuPfmCounters) {} // Targets can use this to create target-specific perf counters. virtual Expected> createCounter(StringRef CounterName, const LLVMState &State) const; // Targets can use this to add target-specific passes in assembleToStream(); virtual void addTargetSpecificPasses(PassManagerBase &PM) const {} // Generates code to move a constant into a the given register. // Precondition: Value must fit into Reg. virtual std::vector setRegTo(const MCSubtargetInfo &STI, unsigned Reg, const APInt &Value) const = 0; // Returns the register pointing to scratch memory, or 0 if this target // does not support memory operands. The benchmark function uses the // default calling convention. virtual unsigned getScratchMemoryRegister(const Triple &) const { return 0; } // Fills memory operands with references to the address at [Reg] + Offset. virtual void fillMemoryOperands(InstructionTemplate &IT, unsigned Reg, unsigned Offset) const { llvm_unreachable( "fillMemoryOperands() requires getScratchMemoryRegister() > 0"); } // Returns a counter usable as a loop counter. virtual unsigned getLoopCounterRegister(const Triple &) const { return 0; } // Adds the code to decrement the loop counter and virtual void decrementLoopCounterAndJump(MachineBasicBlock &MBB, MachineBasicBlock &TargetMBB, const MCInstrInfo &MII) const { llvm_unreachable("decrementLoopCounterAndBranch() requires " "getLoopCounterRegister() > 0"); } // Returns a list of unavailable registers. // Targets can use this to prevent some registers to be automatically selected // for use in snippets. virtual ArrayRef getUnavailableRegisters() const { return {}; } // Returns the maximum number of bytes a load/store instruction can access at // once. This is typically the size of the largest register available on the // processor. Note that this only used as a hint to generate independant // load/stores to/from memory, so the exact returned value does not really // matter as long as it's large enough. virtual unsigned getMaxMemoryAccessSize() const { return 0; } // Assigns a random operand of the right type to variable Var. // The target is responsible for handling any operand starting from // OPERAND_FIRST_TARGET. virtual Error randomizeTargetMCOperand(const Instruction &Instr, const Variable &Var, MCOperand &AssignedValue, const BitVector &ForbiddenRegs) const { return make_error( "targets with target-specific operands should implement this"); } // Returns true if this instruction is supported as a back-to-back // instructions. // FIXME: Eventually we should discover this dynamically. virtual bool allowAsBackToBack(const Instruction &Instr) const { return true; } // For some instructions, it is interesting to measure how it's performance // characteristics differ depending on it's operands. // This allows us to produce all the interesting variants. virtual std::vector generateInstructionVariants(const Instruction &Instr, unsigned MaxConfigsPerOpcode) const { // By default, we're happy with whatever randomizer will give us. return {&Instr}; } // Checks hardware and software support for current benchmark mode. // Returns an error if the target host does not have support to run the // benchmark. virtual Error checkFeatureSupport() const { return Error::success(); } // Creates a snippet generator for the given mode. std::unique_ptr createSnippetGenerator(InstructionBenchmark::ModeE Mode, const LLVMState &State, const SnippetGenerator::Options &Opts) const; // Creates a benchmark runner for the given mode. Expected> createBenchmarkRunner( InstructionBenchmark::ModeE Mode, const LLVMState &State, InstructionBenchmark::ResultAggregationModeE ResultAggMode = InstructionBenchmark::Min) const; // Returns the ExegesisTarget for the given triple or nullptr if the target // does not exist. static const ExegesisTarget *lookup(Triple TT); // Returns the default (unspecialized) ExegesisTarget. static const ExegesisTarget &getDefault(); // Registers a target. Not thread safe. static void registerTarget(ExegesisTarget *T); virtual ~ExegesisTarget(); // Returns the Pfm counters for the given CPU (or the default if no pfm // counters are defined for this CPU). const PfmCountersInfo &getPfmCounters(StringRef CpuName) const; // Saves the CPU state that needs to be preserved when running a benchmark, // and returns and RAII object that restores the state on destruction. // By default no state is preserved. struct SavedState { virtual ~SavedState(); }; virtual std::unique_ptr withSavedState() const { return std::make_unique(); } private: virtual bool matchesArch(Triple::ArchType Arch) const = 0; // Targets can implement their own snippet generators/benchmarks runners by // implementing these. std::unique_ptr virtual createSerialSnippetGenerator( const LLVMState &State, const SnippetGenerator::Options &Opts) const; std::unique_ptr virtual createParallelSnippetGenerator( const LLVMState &State, const SnippetGenerator::Options &Opts) const; std::unique_ptr virtual createLatencyBenchmarkRunner( const LLVMState &State, InstructionBenchmark::ModeE Mode, InstructionBenchmark::ResultAggregationModeE ResultAggMode) const; std::unique_ptr virtual createUopsBenchmarkRunner( const LLVMState &State, InstructionBenchmark::ResultAggregationModeE ResultAggMode) const; const ExegesisTarget *Next = nullptr; const ArrayRef CpuPfmCounters; }; } // namespace exegesis } // namespace llvm #endif // LLVM_TOOLS_LLVM_EXEGESIS_TARGET_H