// RUN: %clang_cc1 -fsyntax-only -std=c++11 -verify %s // RUN: %clang_cc1 -fsyntax-only -std=c++14 -verify %s // RUN: %clang_cc1 -fsyntax-only -std=c++20 -verify %s // expected-no-diagnostics // Test default template arguments for function templates. template void f0(); template void f0(); void g0() { f0(); // okay! } template int &f1(T); float &f1(...); struct HasValue { static const int value = 17; }; void g1() { float &fr = f1(15); int &ir = f1(HasValue()); } namespace PR16689 { template class tuple { public: template constexpr tuple() {} }; template struct a : public X { using X::X; }; auto x = a >(); } namespace PR16975 { template struct is { constexpr operator bool() const { return false; } }; template struct bar { template ()> bar(T); }; bar<> foo{0}; struct baz : public bar<> { using bar::bar; }; baz data{0}; } // rdar://23810407 // An IRGen failure due to a symbol collision due to a default argument // being instantiated twice. Credit goes to Richard Smith for this // reduction to a -fsyntax-only failure. namespace rdar23810407 { // Instantiating the default argument multiple times will produce two // different lambda types and thus instantiate this function multiple // times, which will produce conflicting extern variable declarations. template int f(T t) { extern T rdar23810407_variable; return 0; } template int g(int a = f([] {})); void test() { g(); g(); } } // rdar://problem/24480205 namespace PR13986 { constexpr unsigned Dynamic = 0; template class A { template void m_fn1(); }; class Test { ~Test() {} A<1> m_target; }; } // rdar://problem/34167492 // Template B is instantiated during checking if defaulted A copy constructor // is constexpr. For this we check if S copy constructor is constexpr. And // for this we check S constructor template with default argument that mentions // template B. In turn, template instantiation triggers checking defaulted // members exception spec. The problem is that it checks defaulted members not // for instantiated class only, but all defaulted members so far. In this case // we try to check exception spec for A default constructor which requires // initializer for the field _a. But initializers are added after constexpr // check so we reject the code because cannot find _a initializer. namespace rdar34167492 { template struct B { using type = bool; }; template struct S { S() noexcept; template ::type = true> S(const S&) noexcept; }; class A { A() noexcept = default; A(const A&) noexcept = default; S _a{}; }; } namespace use_of_earlier_param { template void f(T a, int = decltype(a)()); void g() { f(0); } } #if __cplusplus >= 201402L namespace lambda { // Verify that a default argument in a lambda can refer to the type of a // previous `auto` argument without crashing. template void bar() { (void) [](auto c, int x = sizeof(decltype(c))) {}; } void foo() { bar(); } #if __cplusplus >= 202002L // PR46648: ensure we don't reject this by triggering default argument // instantiation spuriously. auto x = [](T x = 123) {}; void y() { x(nullptr); } template struct X { template constexpr int f() { auto l = [](int n = A + B + C) { return n; }; return l.template operator()<3>(); } }; static_assert(X<100>().f<20>() == 123); template<> template constexpr int X<200>::f() { auto l = [](int n = 300 + B + C) { return n; }; return l.template operator()<1>(); } static_assert(X<200>().f<20>() == 321); template<> template<> constexpr int X<300>::f<20>() { auto l = [](int n = 450 + C) { return n; }; return l.template operator()<6>(); } static_assert(X<300>().f<20>() == 456); #endif } // namespace lambda #endif