//===--- CGBlocks.cpp - Emit LLVM Code for declarations ---------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This contains code to emit blocks. // //===----------------------------------------------------------------------===// #include "CGBlocks.h" #include "CGCXXABI.h" #include "CGDebugInfo.h" #include "CGObjCRuntime.h" #include "CGOpenCLRuntime.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "ConstantEmitter.h" #include "TargetInfo.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclObjC.h" #include "clang/CodeGen/ConstantInitBuilder.h" #include "llvm/ADT/SmallSet.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Module.h" #include "llvm/Support/ScopedPrinter.h" #include #include using namespace clang; using namespace CodeGen; CGBlockInfo::CGBlockInfo(const BlockDecl *block, StringRef name) : Name(name), CXXThisIndex(0), CanBeGlobal(false), NeedsCopyDispose(false), HasCXXObject(false), UsesStret(false), HasCapturedVariableLayout(false), CapturesNonExternalType(false), LocalAddress(Address::invalid()), StructureType(nullptr), Block(block) { // Skip asm prefix, if any. 'name' is usually taken directly from // the mangled name of the enclosing function. if (!name.empty() && name[0] == '\01') name = name.substr(1); } // Anchor the vtable to this translation unit. BlockByrefHelpers::~BlockByrefHelpers() {} /// Build the given block as a global block. static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, const CGBlockInfo &blockInfo, llvm::Constant *blockFn); /// Build the helper function to copy a block. static llvm::Constant *buildCopyHelper(CodeGenModule &CGM, const CGBlockInfo &blockInfo) { return CodeGenFunction(CGM).GenerateCopyHelperFunction(blockInfo); } /// Build the helper function to dispose of a block. static llvm::Constant *buildDisposeHelper(CodeGenModule &CGM, const CGBlockInfo &blockInfo) { return CodeGenFunction(CGM).GenerateDestroyHelperFunction(blockInfo); } namespace { /// Represents a type of copy/destroy operation that should be performed for an /// entity that's captured by a block. enum class BlockCaptureEntityKind { CXXRecord, // Copy or destroy ARCWeak, ARCStrong, NonTrivialCStruct, BlockObject, // Assign or release None }; /// Represents a captured entity that requires extra operations in order for /// this entity to be copied or destroyed correctly. struct BlockCaptureManagedEntity { BlockCaptureEntityKind CopyKind, DisposeKind; BlockFieldFlags CopyFlags, DisposeFlags; const BlockDecl::Capture *CI; const CGBlockInfo::Capture *Capture; BlockCaptureManagedEntity(BlockCaptureEntityKind CopyType, BlockCaptureEntityKind DisposeType, BlockFieldFlags CopyFlags, BlockFieldFlags DisposeFlags, const BlockDecl::Capture &CI, const CGBlockInfo::Capture &Capture) : CopyKind(CopyType), DisposeKind(DisposeType), CopyFlags(CopyFlags), DisposeFlags(DisposeFlags), CI(&CI), Capture(&Capture) {} bool operator<(const BlockCaptureManagedEntity &Other) const { return Capture->getOffset() < Other.Capture->getOffset(); } }; enum class CaptureStrKind { // String for the copy helper. CopyHelper, // String for the dispose helper. DisposeHelper, // Merge the strings for the copy helper and dispose helper. Merged }; } // end anonymous namespace static void findBlockCapturedManagedEntities( const CGBlockInfo &BlockInfo, const LangOptions &LangOpts, SmallVectorImpl &ManagedCaptures); static std::string getBlockCaptureStr(const BlockCaptureManagedEntity &E, CaptureStrKind StrKind, CharUnits BlockAlignment, CodeGenModule &CGM); static std::string getBlockDescriptorName(const CGBlockInfo &BlockInfo, CodeGenModule &CGM) { std::string Name = "__block_descriptor_"; Name += llvm::to_string(BlockInfo.BlockSize.getQuantity()) + "_"; if (BlockInfo.needsCopyDisposeHelpers()) { if (CGM.getLangOpts().Exceptions) Name += "e"; if (CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) Name += "a"; Name += llvm::to_string(BlockInfo.BlockAlign.getQuantity()) + "_"; SmallVector ManagedCaptures; findBlockCapturedManagedEntities(BlockInfo, CGM.getContext().getLangOpts(), ManagedCaptures); for (const BlockCaptureManagedEntity &E : ManagedCaptures) { Name += llvm::to_string(E.Capture->getOffset().getQuantity()); if (E.CopyKind == E.DisposeKind) { // If CopyKind and DisposeKind are the same, merge the capture // information. assert(E.CopyKind != BlockCaptureEntityKind::None && "shouldn't see BlockCaptureManagedEntity that is None"); Name += getBlockCaptureStr(E, CaptureStrKind::Merged, BlockInfo.BlockAlign, CGM); } else { // If CopyKind and DisposeKind are not the same, which can happen when // either Kind is None or the captured object is a __strong block, // concatenate the copy and dispose strings. Name += getBlockCaptureStr(E, CaptureStrKind::CopyHelper, BlockInfo.BlockAlign, CGM); Name += getBlockCaptureStr(E, CaptureStrKind::DisposeHelper, BlockInfo.BlockAlign, CGM); } } Name += "_"; } std::string TypeAtEncoding = CGM.getContext().getObjCEncodingForBlock(BlockInfo.getBlockExpr()); /// Replace occurrences of '@' with '\1'. '@' is reserved on ELF platforms as /// a separator between symbol name and symbol version. std::replace(TypeAtEncoding.begin(), TypeAtEncoding.end(), '@', '\1'); Name += "e" + llvm::to_string(TypeAtEncoding.size()) + "_" + TypeAtEncoding; Name += "l" + CGM.getObjCRuntime().getRCBlockLayoutStr(CGM, BlockInfo); return Name; } /// buildBlockDescriptor - Build the block descriptor meta-data for a block. /// buildBlockDescriptor is accessed from 5th field of the Block_literal /// meta-data and contains stationary information about the block literal. /// Its definition will have 4 (or optionally 6) words. /// \code /// struct Block_descriptor { /// unsigned long reserved; /// unsigned long size; // size of Block_literal metadata in bytes. /// void *copy_func_helper_decl; // optional copy helper. /// void *destroy_func_decl; // optional destructor helper. /// void *block_method_encoding_address; // @encode for block literal signature. /// void *block_layout_info; // encoding of captured block variables. /// }; /// \endcode static llvm::Constant *buildBlockDescriptor(CodeGenModule &CGM, const CGBlockInfo &blockInfo) { ASTContext &C = CGM.getContext(); llvm::IntegerType *ulong = cast(CGM.getTypes().ConvertType(C.UnsignedLongTy)); llvm::PointerType *i8p = nullptr; if (CGM.getLangOpts().OpenCL) i8p = llvm::Type::getInt8PtrTy( CGM.getLLVMContext(), C.getTargetAddressSpace(LangAS::opencl_constant)); else i8p = CGM.VoidPtrTy; std::string descName; // If an equivalent block descriptor global variable exists, return it. if (C.getLangOpts().ObjC && CGM.getLangOpts().getGC() == LangOptions::NonGC) { descName = getBlockDescriptorName(blockInfo, CGM); if (llvm::GlobalValue *desc = CGM.getModule().getNamedValue(descName)) return llvm::ConstantExpr::getBitCast(desc, CGM.getBlockDescriptorType()); } // If there isn't an equivalent block descriptor global variable, create a new // one. ConstantInitBuilder builder(CGM); auto elements = builder.beginStruct(); // reserved elements.addInt(ulong, 0); // Size // FIXME: What is the right way to say this doesn't fit? We should give // a user diagnostic in that case. Better fix would be to change the // API to size_t. elements.addInt(ulong, blockInfo.BlockSize.getQuantity()); // Optional copy/dispose helpers. bool hasInternalHelper = false; if (blockInfo.needsCopyDisposeHelpers()) { // copy_func_helper_decl llvm::Constant *copyHelper = buildCopyHelper(CGM, blockInfo); elements.add(copyHelper); // destroy_func_decl llvm::Constant *disposeHelper = buildDisposeHelper(CGM, blockInfo); elements.add(disposeHelper); if (cast(copyHelper->getOperand(0))->hasInternalLinkage() || cast(disposeHelper->getOperand(0)) ->hasInternalLinkage()) hasInternalHelper = true; } // Signature. Mandatory ObjC-style method descriptor @encode sequence. std::string typeAtEncoding = CGM.getContext().getObjCEncodingForBlock(blockInfo.getBlockExpr()); elements.add(llvm::ConstantExpr::getBitCast( CGM.GetAddrOfConstantCString(typeAtEncoding).getPointer(), i8p)); // GC layout. if (C.getLangOpts().ObjC) { if (CGM.getLangOpts().getGC() != LangOptions::NonGC) elements.add(CGM.getObjCRuntime().BuildGCBlockLayout(CGM, blockInfo)); else elements.add(CGM.getObjCRuntime().BuildRCBlockLayout(CGM, blockInfo)); } else elements.addNullPointer(i8p); unsigned AddrSpace = 0; if (C.getLangOpts().OpenCL) AddrSpace = C.getTargetAddressSpace(LangAS::opencl_constant); llvm::GlobalValue::LinkageTypes linkage; if (descName.empty()) { linkage = llvm::GlobalValue::InternalLinkage; descName = "__block_descriptor_tmp"; } else if (hasInternalHelper) { // If either the copy helper or the dispose helper has internal linkage, // the block descriptor must have internal linkage too. linkage = llvm::GlobalValue::InternalLinkage; } else { linkage = llvm::GlobalValue::LinkOnceODRLinkage; } llvm::GlobalVariable *global = elements.finishAndCreateGlobal(descName, CGM.getPointerAlign(), /*constant*/ true, linkage, AddrSpace); if (linkage == llvm::GlobalValue::LinkOnceODRLinkage) { if (CGM.supportsCOMDAT()) global->setComdat(CGM.getModule().getOrInsertComdat(descName)); global->setVisibility(llvm::GlobalValue::HiddenVisibility); global->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); } return llvm::ConstantExpr::getBitCast(global, CGM.getBlockDescriptorType()); } /* Purely notional variadic template describing the layout of a block. template struct Block_literal { /// Initialized to one of: /// extern void *_NSConcreteStackBlock[]; /// extern void *_NSConcreteGlobalBlock[]; /// /// In theory, we could start one off malloc'ed by setting /// BLOCK_NEEDS_FREE, giving it a refcount of 1, and using /// this isa: /// extern void *_NSConcreteMallocBlock[]; struct objc_class *isa; /// These are the flags (with corresponding bit number) that the /// compiler is actually supposed to know about. /// 23. BLOCK_IS_NOESCAPE - indicates that the block is non-escaping /// 25. BLOCK_HAS_COPY_DISPOSE - indicates that the block /// descriptor provides copy and dispose helper functions /// 26. BLOCK_HAS_CXX_OBJ - indicates that there's a captured /// object with a nontrivial destructor or copy constructor /// 28. BLOCK_IS_GLOBAL - indicates that the block is allocated /// as global memory /// 29. BLOCK_USE_STRET - indicates that the block function /// uses stret, which objc_msgSend needs to know about /// 30. BLOCK_HAS_SIGNATURE - indicates that the block has an /// @encoded signature string /// And we're not supposed to manipulate these: /// 24. BLOCK_NEEDS_FREE - indicates that the block has been moved /// to malloc'ed memory /// 27. BLOCK_IS_GC - indicates that the block has been moved to /// to GC-allocated memory /// Additionally, the bottom 16 bits are a reference count which /// should be zero on the stack. int flags; /// Reserved; should be zero-initialized. int reserved; /// Function pointer generated from block literal. _ResultType (*invoke)(Block_literal *, _ParamTypes...); /// Block description metadata generated from block literal. struct Block_descriptor *block_descriptor; /// Captured values follow. _CapturesTypes captures...; }; */ namespace { /// A chunk of data that we actually have to capture in the block. struct BlockLayoutChunk { CharUnits Alignment; CharUnits Size; Qualifiers::ObjCLifetime Lifetime; const BlockDecl::Capture *Capture; // null for 'this' llvm::Type *Type; QualType FieldType; BlockLayoutChunk(CharUnits align, CharUnits size, Qualifiers::ObjCLifetime lifetime, const BlockDecl::Capture *capture, llvm::Type *type, QualType fieldType) : Alignment(align), Size(size), Lifetime(lifetime), Capture(capture), Type(type), FieldType(fieldType) {} /// Tell the block info that this chunk has the given field index. void setIndex(CGBlockInfo &info, unsigned index, CharUnits offset) { if (!Capture) { info.CXXThisIndex = index; info.CXXThisOffset = offset; } else { auto C = CGBlockInfo::Capture::makeIndex(index, offset, FieldType); info.Captures.insert({Capture->getVariable(), C}); } } }; /// Order by 1) all __strong together 2) next, all byfref together 3) next, /// all __weak together. Preserve descending alignment in all situations. bool operator<(const BlockLayoutChunk &left, const BlockLayoutChunk &right) { if (left.Alignment != right.Alignment) return left.Alignment > right.Alignment; auto getPrefOrder = [](const BlockLayoutChunk &chunk) { if (chunk.Capture && chunk.Capture->isByRef()) return 1; if (chunk.Lifetime == Qualifiers::OCL_Strong) return 0; if (chunk.Lifetime == Qualifiers::OCL_Weak) return 2; return 3; }; return getPrefOrder(left) < getPrefOrder(right); } } // end anonymous namespace /// Determines if the given type is safe for constant capture in C++. static bool isSafeForCXXConstantCapture(QualType type) { const RecordType *recordType = type->getBaseElementTypeUnsafe()->getAs(); // Only records can be unsafe. if (!recordType) return true; const auto *record = cast(recordType->getDecl()); // Maintain semantics for classes with non-trivial dtors or copy ctors. if (!record->hasTrivialDestructor()) return false; if (record->hasNonTrivialCopyConstructor()) return false; // Otherwise, we just have to make sure there aren't any mutable // fields that might have changed since initialization. return !record->hasMutableFields(); } /// It is illegal to modify a const object after initialization. /// Therefore, if a const object has a constant initializer, we don't /// actually need to keep storage for it in the block; we'll just /// rematerialize it at the start of the block function. This is /// acceptable because we make no promises about address stability of /// captured variables. static llvm::Constant *tryCaptureAsConstant(CodeGenModule &CGM, CodeGenFunction *CGF, const VarDecl *var) { // Return if this is a function parameter. We shouldn't try to // rematerialize default arguments of function parameters. if (isa(var)) return nullptr; QualType type = var->getType(); // We can only do this if the variable is const. if (!type.isConstQualified()) return nullptr; // Furthermore, in C++ we have to worry about mutable fields: // C++ [dcl.type.cv]p4: // Except that any class member declared mutable can be // modified, any attempt to modify a const object during its // lifetime results in undefined behavior. if (CGM.getLangOpts().CPlusPlus && !isSafeForCXXConstantCapture(type)) return nullptr; // If the variable doesn't have any initializer (shouldn't this be // invalid?), it's not clear what we should do. Maybe capture as // zero? const Expr *init = var->getInit(); if (!init) return nullptr; return ConstantEmitter(CGM, CGF).tryEmitAbstractForInitializer(*var); } /// Get the low bit of a nonzero character count. This is the /// alignment of the nth byte if the 0th byte is universally aligned. static CharUnits getLowBit(CharUnits v) { return CharUnits::fromQuantity(v.getQuantity() & (~v.getQuantity() + 1)); } static void initializeForBlockHeader(CodeGenModule &CGM, CGBlockInfo &info, SmallVectorImpl &elementTypes) { assert(elementTypes.empty()); if (CGM.getLangOpts().OpenCL) { // The header is basically 'struct { int; int; generic void *; // custom_fields; }'. Assert that struct is packed. auto GenericAS = CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic); auto GenPtrAlign = CharUnits::fromQuantity(CGM.getTarget().getPointerAlign(GenericAS) / 8); auto GenPtrSize = CharUnits::fromQuantity(CGM.getTarget().getPointerWidth(GenericAS) / 8); assert(CGM.getIntSize() <= GenPtrSize); assert(CGM.getIntAlign() <= GenPtrAlign); assert((2 * CGM.getIntSize()).isMultipleOf(GenPtrAlign)); elementTypes.push_back(CGM.IntTy); /* total size */ elementTypes.push_back(CGM.IntTy); /* align */ elementTypes.push_back( CGM.getOpenCLRuntime() .getGenericVoidPointerType()); /* invoke function */ unsigned Offset = 2 * CGM.getIntSize().getQuantity() + GenPtrSize.getQuantity(); unsigned BlockAlign = GenPtrAlign.getQuantity(); if (auto *Helper = CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) { for (auto I : Helper->getCustomFieldTypes()) /* custom fields */ { // TargetOpenCLBlockHelp needs to make sure the struct is packed. // If necessary, add padding fields to the custom fields. unsigned Align = CGM.getDataLayout().getABITypeAlignment(I); if (BlockAlign < Align) BlockAlign = Align; assert(Offset % Align == 0); Offset += CGM.getDataLayout().getTypeAllocSize(I); elementTypes.push_back(I); } } info.BlockAlign = CharUnits::fromQuantity(BlockAlign); info.BlockSize = CharUnits::fromQuantity(Offset); } else { // The header is basically 'struct { void *; int; int; void *; void *; }'. // Assert that the struct is packed. assert(CGM.getIntSize() <= CGM.getPointerSize()); assert(CGM.getIntAlign() <= CGM.getPointerAlign()); assert((2 * CGM.getIntSize()).isMultipleOf(CGM.getPointerAlign())); info.BlockAlign = CGM.getPointerAlign(); info.BlockSize = 3 * CGM.getPointerSize() + 2 * CGM.getIntSize(); elementTypes.push_back(CGM.VoidPtrTy); elementTypes.push_back(CGM.IntTy); elementTypes.push_back(CGM.IntTy); elementTypes.push_back(CGM.VoidPtrTy); elementTypes.push_back(CGM.getBlockDescriptorType()); } } static QualType getCaptureFieldType(const CodeGenFunction &CGF, const BlockDecl::Capture &CI) { const VarDecl *VD = CI.getVariable(); // If the variable is captured by an enclosing block or lambda expression, // use the type of the capture field. if (CGF.BlockInfo && CI.isNested()) return CGF.BlockInfo->getCapture(VD).fieldType(); if (auto *FD = CGF.LambdaCaptureFields.lookup(VD)) return FD->getType(); // If the captured variable is a non-escaping __block variable, the field // type is the reference type. If the variable is a __block variable that // already has a reference type, the field type is the variable's type. return VD->isNonEscapingByref() ? CGF.getContext().getLValueReferenceType(VD->getType()) : VD->getType(); } /// Compute the layout of the given block. Attempts to lay the block /// out with minimal space requirements. static void computeBlockInfo(CodeGenModule &CGM, CodeGenFunction *CGF, CGBlockInfo &info) { ASTContext &C = CGM.getContext(); const BlockDecl *block = info.getBlockDecl(); SmallVector elementTypes; initializeForBlockHeader(CGM, info, elementTypes); bool hasNonConstantCustomFields = false; if (auto *OpenCLHelper = CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) hasNonConstantCustomFields = !OpenCLHelper->areAllCustomFieldValuesConstant(info); if (!block->hasCaptures() && !hasNonConstantCustomFields) { info.StructureType = llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); info.CanBeGlobal = true; return; } else if (C.getLangOpts().ObjC && CGM.getLangOpts().getGC() == LangOptions::NonGC) info.HasCapturedVariableLayout = true; // Collect the layout chunks. SmallVector layout; layout.reserve(block->capturesCXXThis() + (block->capture_end() - block->capture_begin())); CharUnits maxFieldAlign; // First, 'this'. if (block->capturesCXXThis()) { assert(CGF && CGF->CurFuncDecl && isa(CGF->CurFuncDecl) && "Can't capture 'this' outside a method"); QualType thisType = cast(CGF->CurFuncDecl)->getThisType(); // Theoretically, this could be in a different address space, so // don't assume standard pointer size/align. llvm::Type *llvmType = CGM.getTypes().ConvertType(thisType); auto TInfo = CGM.getContext().getTypeInfoInChars(thisType); maxFieldAlign = std::max(maxFieldAlign, TInfo.Align); layout.push_back(BlockLayoutChunk(TInfo.Align, TInfo.Width, Qualifiers::OCL_None, nullptr, llvmType, thisType)); } // Next, all the block captures. for (const auto &CI : block->captures()) { const VarDecl *variable = CI.getVariable(); if (CI.isEscapingByref()) { // We have to copy/dispose of the __block reference. info.NeedsCopyDispose = true; // Just use void* instead of a pointer to the byref type. CharUnits align = CGM.getPointerAlign(); maxFieldAlign = std::max(maxFieldAlign, align); // Since a __block variable cannot be captured by lambdas, its type and // the capture field type should always match. assert(CGF && getCaptureFieldType(*CGF, CI) == variable->getType() && "capture type differs from the variable type"); layout.push_back(BlockLayoutChunk(align, CGM.getPointerSize(), Qualifiers::OCL_None, &CI, CGM.VoidPtrTy, variable->getType())); continue; } // Otherwise, build a layout chunk with the size and alignment of // the declaration. if (llvm::Constant *constant = tryCaptureAsConstant(CGM, CGF, variable)) { info.Captures[variable] = CGBlockInfo::Capture::makeConstant(constant); continue; } QualType VT = getCaptureFieldType(*CGF, CI); // If we have a lifetime qualifier, honor it for capture purposes. // That includes *not* copying it if it's __unsafe_unretained. Qualifiers::ObjCLifetime lifetime = VT.getObjCLifetime(); if (lifetime) { switch (lifetime) { case Qualifiers::OCL_None: llvm_unreachable("impossible"); case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: break; case Qualifiers::OCL_Strong: case Qualifiers::OCL_Weak: info.NeedsCopyDispose = true; } // Block pointers require copy/dispose. So do Objective-C pointers. } else if (VT->isObjCRetainableType()) { // But honor the inert __unsafe_unretained qualifier, which doesn't // actually make it into the type system. if (VT->isObjCInertUnsafeUnretainedType()) { lifetime = Qualifiers::OCL_ExplicitNone; } else { info.NeedsCopyDispose = true; // used for mrr below. lifetime = Qualifiers::OCL_Strong; } // So do types that require non-trivial copy construction. } else if (CI.hasCopyExpr()) { info.NeedsCopyDispose = true; info.HasCXXObject = true; if (!VT->getAsCXXRecordDecl()->isExternallyVisible()) info.CapturesNonExternalType = true; // So do C structs that require non-trivial copy construction or // destruction. } else if (VT.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct || VT.isDestructedType() == QualType::DK_nontrivial_c_struct) { info.NeedsCopyDispose = true; // And so do types with destructors. } else if (CGM.getLangOpts().CPlusPlus) { if (const CXXRecordDecl *record = VT->getAsCXXRecordDecl()) { if (!record->hasTrivialDestructor()) { info.HasCXXObject = true; info.NeedsCopyDispose = true; if (!record->isExternallyVisible()) info.CapturesNonExternalType = true; } } } CharUnits size = C.getTypeSizeInChars(VT); CharUnits align = C.getDeclAlign(variable); maxFieldAlign = std::max(maxFieldAlign, align); llvm::Type *llvmType = CGM.getTypes().ConvertTypeForMem(VT); layout.push_back( BlockLayoutChunk(align, size, lifetime, &CI, llvmType, VT)); } // If that was everything, we're done here. if (layout.empty()) { info.StructureType = llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); info.CanBeGlobal = true; return; } // Sort the layout by alignment. We have to use a stable sort here // to get reproducible results. There should probably be an // llvm::array_pod_stable_sort. llvm::stable_sort(layout); // Needed for blocks layout info. info.BlockHeaderForcedGapOffset = info.BlockSize; info.BlockHeaderForcedGapSize = CharUnits::Zero(); CharUnits &blockSize = info.BlockSize; info.BlockAlign = std::max(maxFieldAlign, info.BlockAlign); // Assuming that the first byte in the header is maximally aligned, // get the alignment of the first byte following the header. CharUnits endAlign = getLowBit(blockSize); // If the end of the header isn't satisfactorily aligned for the // maximum thing, look for things that are okay with the header-end // alignment, and keep appending them until we get something that's // aligned right. This algorithm is only guaranteed optimal if // that condition is satisfied at some point; otherwise we can get // things like: // header // next byte has alignment 4 // something_with_size_5; // next byte has alignment 1 // something_with_alignment_8; // which has 7 bytes of padding, as opposed to the naive solution // which might have less (?). if (endAlign < maxFieldAlign) { SmallVectorImpl::iterator li = layout.begin() + 1, le = layout.end(); // Look for something that the header end is already // satisfactorily aligned for. for (; li != le && endAlign < li->Alignment; ++li) ; // If we found something that's naturally aligned for the end of // the header, keep adding things... if (li != le) { SmallVectorImpl::iterator first = li; for (; li != le; ++li) { assert(endAlign >= li->Alignment); li->setIndex(info, elementTypes.size(), blockSize); elementTypes.push_back(li->Type); blockSize += li->Size; endAlign = getLowBit(blockSize); // ...until we get to the alignment of the maximum field. if (endAlign >= maxFieldAlign) { break; } } // Don't re-append everything we just appended. layout.erase(first, li); } } assert(endAlign == getLowBit(blockSize)); // At this point, we just have to add padding if the end align still // isn't aligned right. if (endAlign < maxFieldAlign) { CharUnits newBlockSize = blockSize.alignTo(maxFieldAlign); CharUnits padding = newBlockSize - blockSize; // If we haven't yet added any fields, remember that there was an // initial gap; this need to go into the block layout bit map. if (blockSize == info.BlockHeaderForcedGapOffset) { info.BlockHeaderForcedGapSize = padding; } elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty, padding.getQuantity())); blockSize = newBlockSize; endAlign = getLowBit(blockSize); // might be > maxFieldAlign } assert(endAlign >= maxFieldAlign); assert(endAlign == getLowBit(blockSize)); // Slam everything else on now. This works because they have // strictly decreasing alignment and we expect that size is always a // multiple of alignment. for (SmallVectorImpl::iterator li = layout.begin(), le = layout.end(); li != le; ++li) { if (endAlign < li->Alignment) { // size may not be multiple of alignment. This can only happen with // an over-aligned variable. We will be adding a padding field to // make the size be multiple of alignment. CharUnits padding = li->Alignment - endAlign; elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty, padding.getQuantity())); blockSize += padding; endAlign = getLowBit(blockSize); } assert(endAlign >= li->Alignment); li->setIndex(info, elementTypes.size(), blockSize); elementTypes.push_back(li->Type); blockSize += li->Size; endAlign = getLowBit(blockSize); } info.StructureType = llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true); } /// Emit a block literal expression in the current function. llvm::Value *CodeGenFunction::EmitBlockLiteral(const BlockExpr *blockExpr) { // If the block has no captures, we won't have a pre-computed // layout for it. if (!blockExpr->getBlockDecl()->hasCaptures()) // The block literal is emitted as a global variable, and the block invoke // function has to be extracted from its initializer. if (llvm::Constant *Block = CGM.getAddrOfGlobalBlockIfEmitted(blockExpr)) return Block; CGBlockInfo blockInfo(blockExpr->getBlockDecl(), CurFn->getName()); computeBlockInfo(CGM, this, blockInfo); blockInfo.BlockExpression = blockExpr; if (!blockInfo.CanBeGlobal) blockInfo.LocalAddress = CreateTempAlloca(blockInfo.StructureType, blockInfo.BlockAlign, "block"); return EmitBlockLiteral(blockInfo); } llvm::Value *CodeGenFunction::EmitBlockLiteral(const CGBlockInfo &blockInfo) { bool IsOpenCL = CGM.getContext().getLangOpts().OpenCL; auto GenVoidPtrTy = IsOpenCL ? CGM.getOpenCLRuntime().getGenericVoidPointerType() : VoidPtrTy; LangAS GenVoidPtrAddr = IsOpenCL ? LangAS::opencl_generic : LangAS::Default; auto GenVoidPtrSize = CharUnits::fromQuantity( CGM.getTarget().getPointerWidth( CGM.getContext().getTargetAddressSpace(GenVoidPtrAddr)) / 8); // Using the computed layout, generate the actual block function. bool isLambdaConv = blockInfo.getBlockDecl()->isConversionFromLambda(); CodeGenFunction BlockCGF{CGM, true}; BlockCGF.SanOpts = SanOpts; auto *InvokeFn = BlockCGF.GenerateBlockFunction( CurGD, blockInfo, LocalDeclMap, isLambdaConv, blockInfo.CanBeGlobal); auto *blockFn = llvm::ConstantExpr::getPointerCast(InvokeFn, GenVoidPtrTy); // If there is nothing to capture, we can emit this as a global block. if (blockInfo.CanBeGlobal) return CGM.getAddrOfGlobalBlockIfEmitted(blockInfo.BlockExpression); // Otherwise, we have to emit this as a local block. Address blockAddr = blockInfo.LocalAddress; assert(blockAddr.isValid() && "block has no address!"); llvm::Constant *isa; llvm::Constant *descriptor; BlockFlags flags; if (!IsOpenCL) { // If the block is non-escaping, set field 'isa 'to NSConcreteGlobalBlock // and set the BLOCK_IS_GLOBAL bit of field 'flags'. Copying a non-escaping // block just returns the original block and releasing it is a no-op. llvm::Constant *blockISA = blockInfo.getBlockDecl()->doesNotEscape() ? CGM.getNSConcreteGlobalBlock() : CGM.getNSConcreteStackBlock(); isa = llvm::ConstantExpr::getBitCast(blockISA, VoidPtrTy); // Build the block descriptor. descriptor = buildBlockDescriptor(CGM, blockInfo); // Compute the initial on-stack block flags. flags = BLOCK_HAS_SIGNATURE; if (blockInfo.HasCapturedVariableLayout) flags |= BLOCK_HAS_EXTENDED_LAYOUT; if (blockInfo.needsCopyDisposeHelpers()) flags |= BLOCK_HAS_COPY_DISPOSE; if (blockInfo.HasCXXObject) flags |= BLOCK_HAS_CXX_OBJ; if (blockInfo.UsesStret) flags |= BLOCK_USE_STRET; if (blockInfo.getBlockDecl()->doesNotEscape()) flags |= BLOCK_IS_NOESCAPE | BLOCK_IS_GLOBAL; } auto projectField = [&](unsigned index, const Twine &name) -> Address { return Builder.CreateStructGEP(blockAddr, index, name); }; auto storeField = [&](llvm::Value *value, unsigned index, const Twine &name) { Builder.CreateStore(value, projectField(index, name)); }; // Initialize the block header. { // We assume all the header fields are densely packed. unsigned index = 0; CharUnits offset; auto addHeaderField = [&](llvm::Value *value, CharUnits size, const Twine &name) { storeField(value, index, name); offset += size; index++; }; if (!IsOpenCL) { addHeaderField(isa, getPointerSize(), "block.isa"); addHeaderField(llvm::ConstantInt::get(IntTy, flags.getBitMask()), getIntSize(), "block.flags"); addHeaderField(llvm::ConstantInt::get(IntTy, 0), getIntSize(), "block.reserved"); } else { addHeaderField( llvm::ConstantInt::get(IntTy, blockInfo.BlockSize.getQuantity()), getIntSize(), "block.size"); addHeaderField( llvm::ConstantInt::get(IntTy, blockInfo.BlockAlign.getQuantity()), getIntSize(), "block.align"); } addHeaderField(blockFn, GenVoidPtrSize, "block.invoke"); if (!IsOpenCL) addHeaderField(descriptor, getPointerSize(), "block.descriptor"); else if (auto *Helper = CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) { for (auto I : Helper->getCustomFieldValues(*this, blockInfo)) { addHeaderField( I.first, CharUnits::fromQuantity( CGM.getDataLayout().getTypeAllocSize(I.first->getType())), I.second); } } } // Finally, capture all the values into the block. const BlockDecl *blockDecl = blockInfo.getBlockDecl(); // First, 'this'. if (blockDecl->capturesCXXThis()) { Address addr = projectField(blockInfo.CXXThisIndex, "block.captured-this.addr"); Builder.CreateStore(LoadCXXThis(), addr); } // Next, captured variables. for (const auto &CI : blockDecl->captures()) { const VarDecl *variable = CI.getVariable(); const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); // Ignore constant captures. if (capture.isConstant()) continue; QualType type = capture.fieldType(); // This will be a [[type]]*, except that a byref entry will just be // an i8**. Address blockField = projectField(capture.getIndex(), "block.captured"); // Compute the address of the thing we're going to move into the // block literal. Address src = Address::invalid(); if (blockDecl->isConversionFromLambda()) { // The lambda capture in a lambda's conversion-to-block-pointer is // special; we'll simply emit it directly. src = Address::invalid(); } else if (CI.isEscapingByref()) { if (BlockInfo && CI.isNested()) { // We need to use the capture from the enclosing block. const CGBlockInfo::Capture &enclosingCapture = BlockInfo->getCapture(variable); // This is a [[type]]*, except that a byref entry will just be an i8**. src = Builder.CreateStructGEP(LoadBlockStruct(), enclosingCapture.getIndex(), "block.capture.addr"); } else { auto I = LocalDeclMap.find(variable); assert(I != LocalDeclMap.end()); src = I->second; } } else { DeclRefExpr declRef(getContext(), const_cast(variable), /*RefersToEnclosingVariableOrCapture*/ CI.isNested(), type.getNonReferenceType(), VK_LValue, SourceLocation()); src = EmitDeclRefLValue(&declRef).getAddress(*this); }; // For byrefs, we just write the pointer to the byref struct into // the block field. There's no need to chase the forwarding // pointer at this point, since we're building something that will // live a shorter life than the stack byref anyway. if (CI.isEscapingByref()) { // Get a void* that points to the byref struct. llvm::Value *byrefPointer; if (CI.isNested()) byrefPointer = Builder.CreateLoad(src, "byref.capture"); else byrefPointer = Builder.CreateBitCast(src.getPointer(), VoidPtrTy); // Write that void* into the capture field. Builder.CreateStore(byrefPointer, blockField); // If we have a copy constructor, evaluate that into the block field. } else if (const Expr *copyExpr = CI.getCopyExpr()) { if (blockDecl->isConversionFromLambda()) { // If we have a lambda conversion, emit the expression // directly into the block instead. AggValueSlot Slot = AggValueSlot::forAddr(blockField, Qualifiers(), AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap); EmitAggExpr(copyExpr, Slot); } else { EmitSynthesizedCXXCopyCtor(blockField, src, copyExpr); } // If it's a reference variable, copy the reference into the block field. } else if (type->isReferenceType()) { Builder.CreateStore(src.getPointer(), blockField); // If type is const-qualified, copy the value into the block field. } else if (type.isConstQualified() && type.getObjCLifetime() == Qualifiers::OCL_Strong && CGM.getCodeGenOpts().OptimizationLevel != 0) { llvm::Value *value = Builder.CreateLoad(src, "captured"); Builder.CreateStore(value, blockField); // If this is an ARC __strong block-pointer variable, don't do a // block copy. // // TODO: this can be generalized into the normal initialization logic: // we should never need to do a block-copy when initializing a local // variable, because the local variable's lifetime should be strictly // contained within the stack block's. } else if (type.getObjCLifetime() == Qualifiers::OCL_Strong && type->isBlockPointerType()) { // Load the block and do a simple retain. llvm::Value *value = Builder.CreateLoad(src, "block.captured_block"); value = EmitARCRetainNonBlock(value); // Do a primitive store to the block field. Builder.CreateStore(value, blockField); // Otherwise, fake up a POD copy into the block field. } else { // Fake up a new variable so that EmitScalarInit doesn't think // we're referring to the variable in its own initializer. ImplicitParamDecl BlockFieldPseudoVar(getContext(), type, ImplicitParamDecl::Other); // We use one of these or the other depending on whether the // reference is nested. DeclRefExpr declRef(getContext(), const_cast(variable), /*RefersToEnclosingVariableOrCapture*/ CI.isNested(), type, VK_LValue, SourceLocation()); ImplicitCastExpr l2r(ImplicitCastExpr::OnStack, type, CK_LValueToRValue, &declRef, VK_RValue, FPOptionsOverride()); // FIXME: Pass a specific location for the expr init so that the store is // attributed to a reasonable location - otherwise it may be attributed to // locations of subexpressions in the initialization. EmitExprAsInit(&l2r, &BlockFieldPseudoVar, MakeAddrLValue(blockField, type, AlignmentSource::Decl), /*captured by init*/ false); } // Push a cleanup for the capture if necessary. if (!blockInfo.NeedsCopyDispose) continue; // Ignore __block captures; there's nothing special in the on-stack block // that we need to do for them. if (CI.isByRef()) continue; // Ignore objects that aren't destructed. QualType::DestructionKind dtorKind = type.isDestructedType(); if (dtorKind == QualType::DK_none) continue; CodeGenFunction::Destroyer *destroyer; // Block captures count as local values and have imprecise semantics. // They also can't be arrays, so need to worry about that. // // For const-qualified captures, emit clang.arc.use to ensure the captured // object doesn't get released while we are still depending on its validity // within the block. if (type.isConstQualified() && type.getObjCLifetime() == Qualifiers::OCL_Strong && CGM.getCodeGenOpts().OptimizationLevel != 0) { assert(CGM.getLangOpts().ObjCAutoRefCount && "expected ObjC ARC to be enabled"); destroyer = emitARCIntrinsicUse; } else if (dtorKind == QualType::DK_objc_strong_lifetime) { destroyer = destroyARCStrongImprecise; } else { destroyer = getDestroyer(dtorKind); } CleanupKind cleanupKind = NormalCleanup; bool useArrayEHCleanup = needsEHCleanup(dtorKind); if (useArrayEHCleanup) cleanupKind = NormalAndEHCleanup; // Extend the lifetime of the capture to the end of the scope enclosing the // block expression except when the block decl is in the list of RetExpr's // cleanup objects, in which case its lifetime ends after the full // expression. auto IsBlockDeclInRetExpr = [&]() { auto *EWC = llvm::dyn_cast_or_null(RetExpr); if (EWC) for (auto &C : EWC->getObjects()) if (auto *BD = C.dyn_cast()) if (BD == blockDecl) return true; return false; }; if (IsBlockDeclInRetExpr()) pushDestroy(cleanupKind, blockField, type, destroyer, useArrayEHCleanup); else pushLifetimeExtendedDestroy(cleanupKind, blockField, type, destroyer, useArrayEHCleanup); } // Cast to the converted block-pointer type, which happens (somewhat // unfortunately) to be a pointer to function type. llvm::Value *result = Builder.CreatePointerCast( blockAddr.getPointer(), ConvertType(blockInfo.getBlockExpr()->getType())); if (IsOpenCL) { CGM.getOpenCLRuntime().recordBlockInfo(blockInfo.BlockExpression, InvokeFn, result); } return result; } llvm::Type *CodeGenModule::getBlockDescriptorType() { if (BlockDescriptorType) return BlockDescriptorType; llvm::Type *UnsignedLongTy = getTypes().ConvertType(getContext().UnsignedLongTy); // struct __block_descriptor { // unsigned long reserved; // unsigned long block_size; // // // later, the following will be added // // struct { // void (*copyHelper)(); // void (*copyHelper)(); // } helpers; // !!! optional // // const char *signature; // the block signature // const char *layout; // reserved // }; BlockDescriptorType = llvm::StructType::create( "struct.__block_descriptor", UnsignedLongTy, UnsignedLongTy); // Now form a pointer to that. unsigned AddrSpace = 0; if (getLangOpts().OpenCL) AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant); BlockDescriptorType = llvm::PointerType::get(BlockDescriptorType, AddrSpace); return BlockDescriptorType; } llvm::Type *CodeGenModule::getGenericBlockLiteralType() { if (GenericBlockLiteralType) return GenericBlockLiteralType; llvm::Type *BlockDescPtrTy = getBlockDescriptorType(); if (getLangOpts().OpenCL) { // struct __opencl_block_literal_generic { // int __size; // int __align; // __generic void *__invoke; // /* custom fields */ // }; SmallVector StructFields( {IntTy, IntTy, getOpenCLRuntime().getGenericVoidPointerType()}); if (auto *Helper = getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) { for (auto I : Helper->getCustomFieldTypes()) StructFields.push_back(I); } GenericBlockLiteralType = llvm::StructType::create( StructFields, "struct.__opencl_block_literal_generic"); } else { // struct __block_literal_generic { // void *__isa; // int __flags; // int __reserved; // void (*__invoke)(void *); // struct __block_descriptor *__descriptor; // }; GenericBlockLiteralType = llvm::StructType::create("struct.__block_literal_generic", VoidPtrTy, IntTy, IntTy, VoidPtrTy, BlockDescPtrTy); } return GenericBlockLiteralType; } RValue CodeGenFunction::EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue) { const auto *BPT = E->getCallee()->getType()->castAs(); llvm::Value *BlockPtr = EmitScalarExpr(E->getCallee()); llvm::Type *GenBlockTy = CGM.getGenericBlockLiteralType(); llvm::Value *Func = nullptr; QualType FnType = BPT->getPointeeType(); ASTContext &Ctx = getContext(); CallArgList Args; if (getLangOpts().OpenCL) { // For OpenCL, BlockPtr is already casted to generic block literal. // First argument of a block call is a generic block literal casted to // generic void pointer, i.e. i8 addrspace(4)* llvm::Value *BlockDescriptor = Builder.CreatePointerCast( BlockPtr, CGM.getOpenCLRuntime().getGenericVoidPointerType()); QualType VoidPtrQualTy = Ctx.getPointerType( Ctx.getAddrSpaceQualType(Ctx.VoidTy, LangAS::opencl_generic)); Args.add(RValue::get(BlockDescriptor), VoidPtrQualTy); // And the rest of the arguments. EmitCallArgs(Args, FnType->getAs(), E->arguments()); // We *can* call the block directly unless it is a function argument. if (!isa(E->getCalleeDecl())) Func = CGM.getOpenCLRuntime().getInvokeFunction(E->getCallee()); else { llvm::Value *FuncPtr = Builder.CreateStructGEP(GenBlockTy, BlockPtr, 2); Func = Builder.CreateAlignedLoad(FuncPtr, getPointerAlign()); } } else { // Bitcast the block literal to a generic block literal. BlockPtr = Builder.CreatePointerCast( BlockPtr, llvm::PointerType::get(GenBlockTy, 0), "block.literal"); // Get pointer to the block invoke function llvm::Value *FuncPtr = Builder.CreateStructGEP(GenBlockTy, BlockPtr, 3); // First argument is a block literal casted to a void pointer BlockPtr = Builder.CreatePointerCast(BlockPtr, VoidPtrTy); Args.add(RValue::get(BlockPtr), Ctx.VoidPtrTy); // And the rest of the arguments. EmitCallArgs(Args, FnType->getAs(), E->arguments()); // Load the function. Func = Builder.CreateAlignedLoad(FuncPtr, getPointerAlign()); } const FunctionType *FuncTy = FnType->castAs(); const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeBlockFunctionCall(Args, FuncTy); // Cast the function pointer to the right type. llvm::Type *BlockFTy = CGM.getTypes().GetFunctionType(FnInfo); llvm::Type *BlockFTyPtr = llvm::PointerType::getUnqual(BlockFTy); Func = Builder.CreatePointerCast(Func, BlockFTyPtr); // Prepare the callee. CGCallee Callee(CGCalleeInfo(), Func); // And call the block. return EmitCall(FnInfo, Callee, ReturnValue, Args); } Address CodeGenFunction::GetAddrOfBlockDecl(const VarDecl *variable) { assert(BlockInfo && "evaluating block ref without block information?"); const CGBlockInfo::Capture &capture = BlockInfo->getCapture(variable); // Handle constant captures. if (capture.isConstant()) return LocalDeclMap.find(variable)->second; Address addr = Builder.CreateStructGEP(LoadBlockStruct(), capture.getIndex(), "block.capture.addr"); if (variable->isEscapingByref()) { // addr should be a void** right now. Load, then cast the result // to byref*. auto &byrefInfo = getBlockByrefInfo(variable); addr = Address(Builder.CreateLoad(addr), byrefInfo.ByrefAlignment); auto byrefPointerType = llvm::PointerType::get(byrefInfo.Type, 0); addr = Builder.CreateBitCast(addr, byrefPointerType, "byref.addr"); addr = emitBlockByrefAddress(addr, byrefInfo, /*follow*/ true, variable->getName()); } assert((!variable->isNonEscapingByref() || capture.fieldType()->isReferenceType()) && "the capture field of a non-escaping variable should have a " "reference type"); if (capture.fieldType()->isReferenceType()) addr = EmitLoadOfReference(MakeAddrLValue(addr, capture.fieldType())); return addr; } void CodeGenModule::setAddrOfGlobalBlock(const BlockExpr *BE, llvm::Constant *Addr) { bool Ok = EmittedGlobalBlocks.insert(std::make_pair(BE, Addr)).second; (void)Ok; assert(Ok && "Trying to replace an already-existing global block!"); } llvm::Constant * CodeGenModule::GetAddrOfGlobalBlock(const BlockExpr *BE, StringRef Name) { if (llvm::Constant *Block = getAddrOfGlobalBlockIfEmitted(BE)) return Block; CGBlockInfo blockInfo(BE->getBlockDecl(), Name); blockInfo.BlockExpression = BE; // Compute information about the layout, etc., of this block. computeBlockInfo(*this, nullptr, blockInfo); // Using that metadata, generate the actual block function. { CodeGenFunction::DeclMapTy LocalDeclMap; CodeGenFunction(*this).GenerateBlockFunction( GlobalDecl(), blockInfo, LocalDeclMap, /*IsLambdaConversionToBlock*/ false, /*BuildGlobalBlock*/ true); } return getAddrOfGlobalBlockIfEmitted(BE); } static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM, const CGBlockInfo &blockInfo, llvm::Constant *blockFn) { assert(blockInfo.CanBeGlobal); // Callers should detect this case on their own: calling this function // generally requires computing layout information, which is a waste of time // if we've already emitted this block. assert(!CGM.getAddrOfGlobalBlockIfEmitted(blockInfo.BlockExpression) && "Refusing to re-emit a global block."); // Generate the constants for the block literal initializer. ConstantInitBuilder builder(CGM); auto fields = builder.beginStruct(); bool IsOpenCL = CGM.getLangOpts().OpenCL; bool IsWindows = CGM.getTarget().getTriple().isOSWindows(); if (!IsOpenCL) { // isa if (IsWindows) fields.addNullPointer(CGM.Int8PtrPtrTy); else fields.add(CGM.getNSConcreteGlobalBlock()); // __flags BlockFlags flags = BLOCK_IS_GLOBAL | BLOCK_HAS_SIGNATURE; if (blockInfo.UsesStret) flags |= BLOCK_USE_STRET; fields.addInt(CGM.IntTy, flags.getBitMask()); // Reserved fields.addInt(CGM.IntTy, 0); } else { fields.addInt(CGM.IntTy, blockInfo.BlockSize.getQuantity()); fields.addInt(CGM.IntTy, blockInfo.BlockAlign.getQuantity()); } // Function fields.add(blockFn); if (!IsOpenCL) { // Descriptor fields.add(buildBlockDescriptor(CGM, blockInfo)); } else if (auto *Helper = CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) { for (auto I : Helper->getCustomFieldValues(CGM, blockInfo)) { fields.add(I); } } unsigned AddrSpace = 0; if (CGM.getContext().getLangOpts().OpenCL) AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); llvm::GlobalVariable *literal = fields.finishAndCreateGlobal( "__block_literal_global", blockInfo.BlockAlign, /*constant*/ !IsWindows, llvm::GlobalVariable::InternalLinkage, AddrSpace); literal->addAttribute("objc_arc_inert"); // Windows does not allow globals to be initialised to point to globals in // different DLLs. Any such variables must run code to initialise them. if (IsWindows) { auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy, {}), llvm::GlobalValue::InternalLinkage, ".block_isa_init", &CGM.getModule()); llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry", Init)); b.CreateAlignedStore(CGM.getNSConcreteGlobalBlock(), b.CreateStructGEP(literal, 0), CGM.getPointerAlign().getAsAlign()); b.CreateRetVoid(); // We can't use the normal LLVM global initialisation array, because we // need to specify that this runs early in library initialisation. auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), /*isConstant*/true, llvm::GlobalValue::InternalLinkage, Init, ".block_isa_init_ptr"); InitVar->setSection(".CRT$XCLa"); CGM.addUsedGlobal(InitVar); } // Return a constant of the appropriately-casted type. llvm::Type *RequiredType = CGM.getTypes().ConvertType(blockInfo.getBlockExpr()->getType()); llvm::Constant *Result = llvm::ConstantExpr::getPointerCast(literal, RequiredType); CGM.setAddrOfGlobalBlock(blockInfo.BlockExpression, Result); if (CGM.getContext().getLangOpts().OpenCL) CGM.getOpenCLRuntime().recordBlockInfo( blockInfo.BlockExpression, cast(blockFn->stripPointerCasts()), Result); return Result; } void CodeGenFunction::setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, llvm::Value *arg) { assert(BlockInfo && "not emitting prologue of block invocation function?!"); // Allocate a stack slot like for any local variable to guarantee optimal // debug info at -O0. The mem2reg pass will eliminate it when optimizing. Address alloc = CreateMemTemp(D->getType(), D->getName() + ".addr"); Builder.CreateStore(arg, alloc); if (CGDebugInfo *DI = getDebugInfo()) { if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { DI->setLocation(D->getLocation()); DI->EmitDeclareOfBlockLiteralArgVariable( *BlockInfo, D->getName(), argNum, cast(alloc.getPointer()), Builder); } } SourceLocation StartLoc = BlockInfo->getBlockExpr()->getBody()->getBeginLoc(); ApplyDebugLocation Scope(*this, StartLoc); // Instead of messing around with LocalDeclMap, just set the value // directly as BlockPointer. BlockPointer = Builder.CreatePointerCast( arg, BlockInfo->StructureType->getPointerTo( getContext().getLangOpts().OpenCL ? getContext().getTargetAddressSpace(LangAS::opencl_generic) : 0), "block"); } Address CodeGenFunction::LoadBlockStruct() { assert(BlockInfo && "not in a block invocation function!"); assert(BlockPointer && "no block pointer set!"); return Address(BlockPointer, BlockInfo->BlockAlign); } llvm::Function * CodeGenFunction::GenerateBlockFunction(GlobalDecl GD, const CGBlockInfo &blockInfo, const DeclMapTy &ldm, bool IsLambdaConversionToBlock, bool BuildGlobalBlock) { const BlockDecl *blockDecl = blockInfo.getBlockDecl(); CurGD = GD; CurEHLocation = blockInfo.getBlockExpr()->getEndLoc(); BlockInfo = &blockInfo; // Arrange for local static and local extern declarations to appear // to be local to this function as well, in case they're directly // referenced in a block. for (DeclMapTy::const_iterator i = ldm.begin(), e = ldm.end(); i != e; ++i) { const auto *var = dyn_cast(i->first); if (var && !var->hasLocalStorage()) setAddrOfLocalVar(var, i->second); } // Begin building the function declaration. // Build the argument list. FunctionArgList args; // The first argument is the block pointer. Just take it as a void* // and cast it later. QualType selfTy = getContext().VoidPtrTy; // For OpenCL passed block pointer can be private AS local variable or // global AS program scope variable (for the case with and without captures). // Generic AS is used therefore to be able to accommodate both private and // generic AS in one implementation. if (getLangOpts().OpenCL) selfTy = getContext().getPointerType(getContext().getAddrSpaceQualType( getContext().VoidTy, LangAS::opencl_generic)); IdentifierInfo *II = &CGM.getContext().Idents.get(".block_descriptor"); ImplicitParamDecl SelfDecl(getContext(), const_cast(blockDecl), SourceLocation(), II, selfTy, ImplicitParamDecl::ObjCSelf); args.push_back(&SelfDecl); // Now add the rest of the parameters. args.append(blockDecl->param_begin(), blockDecl->param_end()); // Create the function declaration. const FunctionProtoType *fnType = blockInfo.getBlockExpr()->getFunctionType(); const CGFunctionInfo &fnInfo = CGM.getTypes().arrangeBlockFunctionDeclaration(fnType, args); if (CGM.ReturnSlotInterferesWithArgs(fnInfo)) blockInfo.UsesStret = true; llvm::FunctionType *fnLLVMType = CGM.getTypes().GetFunctionType(fnInfo); StringRef name = CGM.getBlockMangledName(GD, blockDecl); llvm::Function *fn = llvm::Function::Create( fnLLVMType, llvm::GlobalValue::InternalLinkage, name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(blockDecl, fn, fnInfo); if (BuildGlobalBlock) { auto GenVoidPtrTy = getContext().getLangOpts().OpenCL ? CGM.getOpenCLRuntime().getGenericVoidPointerType() : VoidPtrTy; buildGlobalBlock(CGM, blockInfo, llvm::ConstantExpr::getPointerCast(fn, GenVoidPtrTy)); } // Begin generating the function. StartFunction(blockDecl, fnType->getReturnType(), fn, fnInfo, args, blockDecl->getLocation(), blockInfo.getBlockExpr()->getBody()->getBeginLoc()); // Okay. Undo some of what StartFunction did. // At -O0 we generate an explicit alloca for the BlockPointer, so the RA // won't delete the dbg.declare intrinsics for captured variables. llvm::Value *BlockPointerDbgLoc = BlockPointer; if (CGM.getCodeGenOpts().OptimizationLevel == 0) { // Allocate a stack slot for it, so we can point the debugger to it Address Alloca = CreateTempAlloca(BlockPointer->getType(), getPointerAlign(), "block.addr"); // Set the DebugLocation to empty, so the store is recognized as a // frame setup instruction by llvm::DwarfDebug::beginFunction(). auto NL = ApplyDebugLocation::CreateEmpty(*this); Builder.CreateStore(BlockPointer, Alloca); BlockPointerDbgLoc = Alloca.getPointer(); } // If we have a C++ 'this' reference, go ahead and force it into // existence now. if (blockDecl->capturesCXXThis()) { Address addr = Builder.CreateStructGEP( LoadBlockStruct(), blockInfo.CXXThisIndex, "block.captured-this"); CXXThisValue = Builder.CreateLoad(addr, "this"); } // Also force all the constant captures. for (const auto &CI : blockDecl->captures()) { const VarDecl *variable = CI.getVariable(); const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); if (!capture.isConstant()) continue; CharUnits align = getContext().getDeclAlign(variable); Address alloca = CreateMemTemp(variable->getType(), align, "block.captured-const"); Builder.CreateStore(capture.getConstant(), alloca); setAddrOfLocalVar(variable, alloca); } // Save a spot to insert the debug information for all the DeclRefExprs. llvm::BasicBlock *entry = Builder.GetInsertBlock(); llvm::BasicBlock::iterator entry_ptr = Builder.GetInsertPoint(); --entry_ptr; if (IsLambdaConversionToBlock) EmitLambdaBlockInvokeBody(); else { PGO.assignRegionCounters(GlobalDecl(blockDecl), fn); incrementProfileCounter(blockDecl->getBody()); EmitStmt(blockDecl->getBody()); } // Remember where we were... llvm::BasicBlock *resume = Builder.GetInsertBlock(); // Go back to the entry. ++entry_ptr; Builder.SetInsertPoint(entry, entry_ptr); // Emit debug information for all the DeclRefExprs. // FIXME: also for 'this' if (CGDebugInfo *DI = getDebugInfo()) { for (const auto &CI : blockDecl->captures()) { const VarDecl *variable = CI.getVariable(); DI->EmitLocation(Builder, variable->getLocation()); if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); if (capture.isConstant()) { auto addr = LocalDeclMap.find(variable)->second; (void)DI->EmitDeclareOfAutoVariable(variable, addr.getPointer(), Builder); continue; } DI->EmitDeclareOfBlockDeclRefVariable( variable, BlockPointerDbgLoc, Builder, blockInfo, entry_ptr == entry->end() ? nullptr : &*entry_ptr); } } // Recover location if it was changed in the above loop. DI->EmitLocation(Builder, cast(blockDecl->getBody())->getRBracLoc()); } // And resume where we left off. if (resume == nullptr) Builder.ClearInsertionPoint(); else Builder.SetInsertPoint(resume); FinishFunction(cast(blockDecl->getBody())->getRBracLoc()); return fn; } static std::pair computeCopyInfoForBlockCapture(const BlockDecl::Capture &CI, QualType T, const LangOptions &LangOpts) { if (CI.getCopyExpr()) { assert(!CI.isByRef()); // don't bother computing flags return std::make_pair(BlockCaptureEntityKind::CXXRecord, BlockFieldFlags()); } BlockFieldFlags Flags; if (CI.isEscapingByref()) { Flags = BLOCK_FIELD_IS_BYREF; if (T.isObjCGCWeak()) Flags |= BLOCK_FIELD_IS_WEAK; return std::make_pair(BlockCaptureEntityKind::BlockObject, Flags); } Flags = BLOCK_FIELD_IS_OBJECT; bool isBlockPointer = T->isBlockPointerType(); if (isBlockPointer) Flags = BLOCK_FIELD_IS_BLOCK; switch (T.isNonTrivialToPrimitiveCopy()) { case QualType::PCK_Struct: return std::make_pair(BlockCaptureEntityKind::NonTrivialCStruct, BlockFieldFlags()); case QualType::PCK_ARCWeak: // We need to register __weak direct captures with the runtime. return std::make_pair(BlockCaptureEntityKind::ARCWeak, Flags); case QualType::PCK_ARCStrong: // We need to retain the copied value for __strong direct captures. // If it's a block pointer, we have to copy the block and assign that to // the destination pointer, so we might as well use _Block_object_assign. // Otherwise we can avoid that. return std::make_pair(!isBlockPointer ? BlockCaptureEntityKind::ARCStrong : BlockCaptureEntityKind::BlockObject, Flags); case QualType::PCK_Trivial: case QualType::PCK_VolatileTrivial: { if (!T->isObjCRetainableType()) // For all other types, the memcpy is fine. return std::make_pair(BlockCaptureEntityKind::None, BlockFieldFlags()); // Special rules for ARC captures: Qualifiers QS = T.getQualifiers(); // Non-ARC captures of retainable pointers are strong and // therefore require a call to _Block_object_assign. if (!QS.getObjCLifetime() && !LangOpts.ObjCAutoRefCount) return std::make_pair(BlockCaptureEntityKind::BlockObject, Flags); // Otherwise the memcpy is fine. return std::make_pair(BlockCaptureEntityKind::None, BlockFieldFlags()); } } llvm_unreachable("after exhaustive PrimitiveCopyKind switch"); } static std::pair computeDestroyInfoForBlockCapture(const BlockDecl::Capture &CI, QualType T, const LangOptions &LangOpts); /// Find the set of block captures that need to be explicitly copied or destroy. static void findBlockCapturedManagedEntities( const CGBlockInfo &BlockInfo, const LangOptions &LangOpts, SmallVectorImpl &ManagedCaptures) { for (const auto &CI : BlockInfo.getBlockDecl()->captures()) { const VarDecl *Variable = CI.getVariable(); const CGBlockInfo::Capture &Capture = BlockInfo.getCapture(Variable); if (Capture.isConstant()) continue; QualType VT = Capture.fieldType(); auto CopyInfo = computeCopyInfoForBlockCapture(CI, VT, LangOpts); auto DisposeInfo = computeDestroyInfoForBlockCapture(CI, VT, LangOpts); if (CopyInfo.first != BlockCaptureEntityKind::None || DisposeInfo.first != BlockCaptureEntityKind::None) ManagedCaptures.emplace_back(CopyInfo.first, DisposeInfo.first, CopyInfo.second, DisposeInfo.second, CI, Capture); } // Sort the captures by offset. llvm::sort(ManagedCaptures); } namespace { /// Release a __block variable. struct CallBlockRelease final : EHScopeStack::Cleanup { Address Addr; BlockFieldFlags FieldFlags; bool LoadBlockVarAddr, CanThrow; CallBlockRelease(Address Addr, BlockFieldFlags Flags, bool LoadValue, bool CT) : Addr(Addr), FieldFlags(Flags), LoadBlockVarAddr(LoadValue), CanThrow(CT) {} void Emit(CodeGenFunction &CGF, Flags flags) override { llvm::Value *BlockVarAddr; if (LoadBlockVarAddr) { BlockVarAddr = CGF.Builder.CreateLoad(Addr); BlockVarAddr = CGF.Builder.CreateBitCast(BlockVarAddr, CGF.VoidPtrTy); } else { BlockVarAddr = Addr.getPointer(); } CGF.BuildBlockRelease(BlockVarAddr, FieldFlags, CanThrow); } }; } // end anonymous namespace /// Check if \p T is a C++ class that has a destructor that can throw. bool CodeGenFunction::cxxDestructorCanThrow(QualType T) { if (const auto *RD = T->getAsCXXRecordDecl()) if (const CXXDestructorDecl *DD = RD->getDestructor()) return DD->getType()->castAs()->canThrow(); return false; } // Return a string that has the information about a capture. static std::string getBlockCaptureStr(const BlockCaptureManagedEntity &E, CaptureStrKind StrKind, CharUnits BlockAlignment, CodeGenModule &CGM) { std::string Str; ASTContext &Ctx = CGM.getContext(); const BlockDecl::Capture &CI = *E.CI; QualType CaptureTy = CI.getVariable()->getType(); BlockCaptureEntityKind Kind; BlockFieldFlags Flags; // CaptureStrKind::Merged should be passed only when the operations and the // flags are the same for copy and dispose. assert((StrKind != CaptureStrKind::Merged || (E.CopyKind == E.DisposeKind && E.CopyFlags == E.DisposeFlags)) && "different operations and flags"); if (StrKind == CaptureStrKind::DisposeHelper) { Kind = E.DisposeKind; Flags = E.DisposeFlags; } else { Kind = E.CopyKind; Flags = E.CopyFlags; } switch (Kind) { case BlockCaptureEntityKind::CXXRecord: { Str += "c"; SmallString<256> TyStr; llvm::raw_svector_ostream Out(TyStr); CGM.getCXXABI().getMangleContext().mangleTypeName(CaptureTy, Out); Str += llvm::to_string(TyStr.size()) + TyStr.c_str(); break; } case BlockCaptureEntityKind::ARCWeak: Str += "w"; break; case BlockCaptureEntityKind::ARCStrong: Str += "s"; break; case BlockCaptureEntityKind::BlockObject: { const VarDecl *Var = CI.getVariable(); unsigned F = Flags.getBitMask(); if (F & BLOCK_FIELD_IS_BYREF) { Str += "r"; if (F & BLOCK_FIELD_IS_WEAK) Str += "w"; else { // If CaptureStrKind::Merged is passed, check both the copy expression // and the destructor. if (StrKind != CaptureStrKind::DisposeHelper) { if (Ctx.getBlockVarCopyInit(Var).canThrow()) Str += "c"; } if (StrKind != CaptureStrKind::CopyHelper) { if (CodeGenFunction::cxxDestructorCanThrow(CaptureTy)) Str += "d"; } } } else { assert((F & BLOCK_FIELD_IS_OBJECT) && "unexpected flag value"); if (F == BLOCK_FIELD_IS_BLOCK) Str += "b"; else Str += "o"; } break; } case BlockCaptureEntityKind::NonTrivialCStruct: { bool IsVolatile = CaptureTy.isVolatileQualified(); CharUnits Alignment = BlockAlignment.alignmentAtOffset(E.Capture->getOffset()); Str += "n"; std::string FuncStr; if (StrKind == CaptureStrKind::DisposeHelper) FuncStr = CodeGenFunction::getNonTrivialDestructorStr( CaptureTy, Alignment, IsVolatile, Ctx); else // If CaptureStrKind::Merged is passed, use the copy constructor string. // It has all the information that the destructor string has. FuncStr = CodeGenFunction::getNonTrivialCopyConstructorStr( CaptureTy, Alignment, IsVolatile, Ctx); // The underscore is necessary here because non-trivial copy constructor // and destructor strings can start with a number. Str += llvm::to_string(FuncStr.size()) + "_" + FuncStr; break; } case BlockCaptureEntityKind::None: break; } return Str; } static std::string getCopyDestroyHelperFuncName( const SmallVectorImpl &Captures, CharUnits BlockAlignment, CaptureStrKind StrKind, CodeGenModule &CGM) { assert((StrKind == CaptureStrKind::CopyHelper || StrKind == CaptureStrKind::DisposeHelper) && "unexpected CaptureStrKind"); std::string Name = StrKind == CaptureStrKind::CopyHelper ? "__copy_helper_block_" : "__destroy_helper_block_"; if (CGM.getLangOpts().Exceptions) Name += "e"; if (CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) Name += "a"; Name += llvm::to_string(BlockAlignment.getQuantity()) + "_"; for (const BlockCaptureManagedEntity &E : Captures) { Name += llvm::to_string(E.Capture->getOffset().getQuantity()); Name += getBlockCaptureStr(E, StrKind, BlockAlignment, CGM); } return Name; } static void pushCaptureCleanup(BlockCaptureEntityKind CaptureKind, Address Field, QualType CaptureType, BlockFieldFlags Flags, bool ForCopyHelper, VarDecl *Var, CodeGenFunction &CGF) { bool EHOnly = ForCopyHelper; switch (CaptureKind) { case BlockCaptureEntityKind::CXXRecord: case BlockCaptureEntityKind::ARCWeak: case BlockCaptureEntityKind::NonTrivialCStruct: case BlockCaptureEntityKind::ARCStrong: { if (CaptureType.isDestructedType() && (!EHOnly || CGF.needsEHCleanup(CaptureType.isDestructedType()))) { CodeGenFunction::Destroyer *Destroyer = CaptureKind == BlockCaptureEntityKind::ARCStrong ? CodeGenFunction::destroyARCStrongImprecise : CGF.getDestroyer(CaptureType.isDestructedType()); CleanupKind Kind = EHOnly ? EHCleanup : CGF.getCleanupKind(CaptureType.isDestructedType()); CGF.pushDestroy(Kind, Field, CaptureType, Destroyer, Kind & EHCleanup); } break; } case BlockCaptureEntityKind::BlockObject: { if (!EHOnly || CGF.getLangOpts().Exceptions) { CleanupKind Kind = EHOnly ? EHCleanup : NormalAndEHCleanup; // Calls to _Block_object_dispose along the EH path in the copy helper // function don't throw as newly-copied __block variables always have a // reference count of 2. bool CanThrow = !ForCopyHelper && CGF.cxxDestructorCanThrow(CaptureType); CGF.enterByrefCleanup(Kind, Field, Flags, /*LoadBlockVarAddr*/ true, CanThrow); } break; } case BlockCaptureEntityKind::None: break; } } static void setBlockHelperAttributesVisibility(bool CapturesNonExternalType, llvm::Function *Fn, const CGFunctionInfo &FI, CodeGenModule &CGM) { if (CapturesNonExternalType) { CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); } else { Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); Fn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn); CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); } } /// Generate the copy-helper function for a block closure object: /// static void block_copy_helper(block_t *dst, block_t *src); /// The runtime will have previously initialized 'dst' by doing a /// bit-copy of 'src'. /// /// Note that this copies an entire block closure object to the heap; /// it should not be confused with a 'byref copy helper', which moves /// the contents of an individual __block variable to the heap. llvm::Constant * CodeGenFunction::GenerateCopyHelperFunction(const CGBlockInfo &blockInfo) { SmallVector CopiedCaptures; findBlockCapturedManagedEntities(blockInfo, getLangOpts(), CopiedCaptures); std::string FuncName = getCopyDestroyHelperFuncName(CopiedCaptures, blockInfo.BlockAlign, CaptureStrKind::CopyHelper, CGM); if (llvm::GlobalValue *Func = CGM.getModule().getNamedValue(FuncName)) return llvm::ConstantExpr::getBitCast(Func, VoidPtrTy); ASTContext &C = getContext(); QualType ReturnTy = C.VoidTy; FunctionArgList args; ImplicitParamDecl DstDecl(C, C.VoidPtrTy, ImplicitParamDecl::Other); args.push_back(&DstDecl); ImplicitParamDecl SrcDecl(C, C.VoidPtrTy, ImplicitParamDecl::Other); args.push_back(&SrcDecl); const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); // FIXME: it would be nice if these were mergeable with things with // identical semantics. llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::LinkOnceODRLinkage, FuncName, &CGM.getModule()); if (CGM.supportsCOMDAT()) Fn->setComdat(CGM.getModule().getOrInsertComdat(FuncName)); IdentifierInfo *II = &C.Idents.get(FuncName); SmallVector ArgTys; ArgTys.push_back(C.VoidPtrTy); ArgTys.push_back(C.VoidPtrTy); QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); FunctionDecl *FD = FunctionDecl::Create( C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, FunctionTy, nullptr, SC_Static, false, false); setBlockHelperAttributesVisibility(blockInfo.CapturesNonExternalType, Fn, FI, CGM); // This is necessary to avoid inheriting the previous line number. FD->setImplicit(); StartFunction(FD, ReturnTy, Fn, FI, args); auto AL = ApplyDebugLocation::CreateArtificial(*this); llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); Address src = GetAddrOfLocalVar(&SrcDecl); src = Address(Builder.CreateLoad(src), blockInfo.BlockAlign); src = Builder.CreateBitCast(src, structPtrTy, "block.source"); Address dst = GetAddrOfLocalVar(&DstDecl); dst = Address(Builder.CreateLoad(dst), blockInfo.BlockAlign); dst = Builder.CreateBitCast(dst, structPtrTy, "block.dest"); for (const auto &CopiedCapture : CopiedCaptures) { const BlockDecl::Capture &CI = *CopiedCapture.CI; const CGBlockInfo::Capture &capture = *CopiedCapture.Capture; QualType captureType = CI.getVariable()->getType(); BlockFieldFlags flags = CopiedCapture.CopyFlags; unsigned index = capture.getIndex(); Address srcField = Builder.CreateStructGEP(src, index); Address dstField = Builder.CreateStructGEP(dst, index); switch (CopiedCapture.CopyKind) { case BlockCaptureEntityKind::CXXRecord: // If there's an explicit copy expression, we do that. assert(CI.getCopyExpr() && "copy expression for variable is missing"); EmitSynthesizedCXXCopyCtor(dstField, srcField, CI.getCopyExpr()); break; case BlockCaptureEntityKind::ARCWeak: EmitARCCopyWeak(dstField, srcField); break; case BlockCaptureEntityKind::NonTrivialCStruct: { // If this is a C struct that requires non-trivial copy construction, // emit a call to its copy constructor. QualType varType = CI.getVariable()->getType(); callCStructCopyConstructor(MakeAddrLValue(dstField, varType), MakeAddrLValue(srcField, varType)); break; } case BlockCaptureEntityKind::ARCStrong: { llvm::Value *srcValue = Builder.CreateLoad(srcField, "blockcopy.src"); // At -O0, store null into the destination field (so that the // storeStrong doesn't over-release) and then call storeStrong. // This is a workaround to not having an initStrong call. if (CGM.getCodeGenOpts().OptimizationLevel == 0) { auto *ty = cast(srcValue->getType()); llvm::Value *null = llvm::ConstantPointerNull::get(ty); Builder.CreateStore(null, dstField); EmitARCStoreStrongCall(dstField, srcValue, true); // With optimization enabled, take advantage of the fact that // the blocks runtime guarantees a memcpy of the block data, and // just emit a retain of the src field. } else { EmitARCRetainNonBlock(srcValue); // Unless EH cleanup is required, we don't need this anymore, so kill // it. It's not quite worth the annoyance to avoid creating it in the // first place. if (!needsEHCleanup(captureType.isDestructedType())) cast(dstField.getPointer())->eraseFromParent(); } break; } case BlockCaptureEntityKind::BlockObject: { llvm::Value *srcValue = Builder.CreateLoad(srcField, "blockcopy.src"); srcValue = Builder.CreateBitCast(srcValue, VoidPtrTy); llvm::Value *dstAddr = Builder.CreateBitCast(dstField.getPointer(), VoidPtrTy); llvm::Value *args[] = { dstAddr, srcValue, llvm::ConstantInt::get(Int32Ty, flags.getBitMask()) }; if (CI.isByRef() && C.getBlockVarCopyInit(CI.getVariable()).canThrow()) EmitRuntimeCallOrInvoke(CGM.getBlockObjectAssign(), args); else EmitNounwindRuntimeCall(CGM.getBlockObjectAssign(), args); break; } case BlockCaptureEntityKind::None: continue; } // Ensure that we destroy the copied object if an exception is thrown later // in the helper function. pushCaptureCleanup(CopiedCapture.CopyKind, dstField, captureType, flags, /*ForCopyHelper*/ true, CI.getVariable(), *this); } FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); } static BlockFieldFlags getBlockFieldFlagsForObjCObjectPointer(const BlockDecl::Capture &CI, QualType T) { BlockFieldFlags Flags = BLOCK_FIELD_IS_OBJECT; if (T->isBlockPointerType()) Flags = BLOCK_FIELD_IS_BLOCK; return Flags; } static std::pair computeDestroyInfoForBlockCapture(const BlockDecl::Capture &CI, QualType T, const LangOptions &LangOpts) { if (CI.isEscapingByref()) { BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; if (T.isObjCGCWeak()) Flags |= BLOCK_FIELD_IS_WEAK; return std::make_pair(BlockCaptureEntityKind::BlockObject, Flags); } switch (T.isDestructedType()) { case QualType::DK_cxx_destructor: return std::make_pair(BlockCaptureEntityKind::CXXRecord, BlockFieldFlags()); case QualType::DK_objc_strong_lifetime: // Use objc_storeStrong for __strong direct captures; the // dynamic tools really like it when we do this. return std::make_pair(BlockCaptureEntityKind::ARCStrong, getBlockFieldFlagsForObjCObjectPointer(CI, T)); case QualType::DK_objc_weak_lifetime: // Support __weak direct captures. return std::make_pair(BlockCaptureEntityKind::ARCWeak, getBlockFieldFlagsForObjCObjectPointer(CI, T)); case QualType::DK_nontrivial_c_struct: return std::make_pair(BlockCaptureEntityKind::NonTrivialCStruct, BlockFieldFlags()); case QualType::DK_none: { // Non-ARC captures are strong, and we need to use _Block_object_dispose. if (T->isObjCRetainableType() && !T.getQualifiers().hasObjCLifetime() && !LangOpts.ObjCAutoRefCount) return std::make_pair(BlockCaptureEntityKind::BlockObject, getBlockFieldFlagsForObjCObjectPointer(CI, T)); // Otherwise, we have nothing to do. return std::make_pair(BlockCaptureEntityKind::None, BlockFieldFlags()); } } llvm_unreachable("after exhaustive DestructionKind switch"); } /// Generate the destroy-helper function for a block closure object: /// static void block_destroy_helper(block_t *theBlock); /// /// Note that this destroys a heap-allocated block closure object; /// it should not be confused with a 'byref destroy helper', which /// destroys the heap-allocated contents of an individual __block /// variable. llvm::Constant * CodeGenFunction::GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo) { SmallVector DestroyedCaptures; findBlockCapturedManagedEntities(blockInfo, getLangOpts(), DestroyedCaptures); std::string FuncName = getCopyDestroyHelperFuncName(DestroyedCaptures, blockInfo.BlockAlign, CaptureStrKind::DisposeHelper, CGM); if (llvm::GlobalValue *Func = CGM.getModule().getNamedValue(FuncName)) return llvm::ConstantExpr::getBitCast(Func, VoidPtrTy); ASTContext &C = getContext(); QualType ReturnTy = C.VoidTy; FunctionArgList args; ImplicitParamDecl SrcDecl(C, C.VoidPtrTy, ImplicitParamDecl::Other); args.push_back(&SrcDecl); const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); // FIXME: We'd like to put these into a mergable by content, with // internal linkage. llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::LinkOnceODRLinkage, FuncName, &CGM.getModule()); if (CGM.supportsCOMDAT()) Fn->setComdat(CGM.getModule().getOrInsertComdat(FuncName)); IdentifierInfo *II = &C.Idents.get(FuncName); SmallVector ArgTys; ArgTys.push_back(C.VoidPtrTy); QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); FunctionDecl *FD = FunctionDecl::Create( C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, FunctionTy, nullptr, SC_Static, false, false); setBlockHelperAttributesVisibility(blockInfo.CapturesNonExternalType, Fn, FI, CGM); // This is necessary to avoid inheriting the previous line number. FD->setImplicit(); StartFunction(FD, ReturnTy, Fn, FI, args); markAsIgnoreThreadCheckingAtRuntime(Fn); auto AL = ApplyDebugLocation::CreateArtificial(*this); llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo(); Address src = GetAddrOfLocalVar(&SrcDecl); src = Address(Builder.CreateLoad(src), blockInfo.BlockAlign); src = Builder.CreateBitCast(src, structPtrTy, "block"); CodeGenFunction::RunCleanupsScope cleanups(*this); for (const auto &DestroyedCapture : DestroyedCaptures) { const BlockDecl::Capture &CI = *DestroyedCapture.CI; const CGBlockInfo::Capture &capture = *DestroyedCapture.Capture; BlockFieldFlags flags = DestroyedCapture.DisposeFlags; Address srcField = Builder.CreateStructGEP(src, capture.getIndex()); pushCaptureCleanup(DestroyedCapture.DisposeKind, srcField, CI.getVariable()->getType(), flags, /*ForCopyHelper*/ false, CI.getVariable(), *this); } cleanups.ForceCleanup(); FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); } namespace { /// Emits the copy/dispose helper functions for a __block object of id type. class ObjectByrefHelpers final : public BlockByrefHelpers { BlockFieldFlags Flags; public: ObjectByrefHelpers(CharUnits alignment, BlockFieldFlags flags) : BlockByrefHelpers(alignment), Flags(flags) {} void emitCopy(CodeGenFunction &CGF, Address destField, Address srcField) override { destField = CGF.Builder.CreateBitCast(destField, CGF.VoidPtrTy); srcField = CGF.Builder.CreateBitCast(srcField, CGF.VoidPtrPtrTy); llvm::Value *srcValue = CGF.Builder.CreateLoad(srcField); unsigned flags = (Flags | BLOCK_BYREF_CALLER).getBitMask(); llvm::Value *flagsVal = llvm::ConstantInt::get(CGF.Int32Ty, flags); llvm::FunctionCallee fn = CGF.CGM.getBlockObjectAssign(); llvm::Value *args[] = { destField.getPointer(), srcValue, flagsVal }; CGF.EmitNounwindRuntimeCall(fn, args); } void emitDispose(CodeGenFunction &CGF, Address field) override { field = CGF.Builder.CreateBitCast(field, CGF.Int8PtrTy->getPointerTo(0)); llvm::Value *value = CGF.Builder.CreateLoad(field); CGF.BuildBlockRelease(value, Flags | BLOCK_BYREF_CALLER, false); } void profileImpl(llvm::FoldingSetNodeID &id) const override { id.AddInteger(Flags.getBitMask()); } }; /// Emits the copy/dispose helpers for an ARC __block __weak variable. class ARCWeakByrefHelpers final : public BlockByrefHelpers { public: ARCWeakByrefHelpers(CharUnits alignment) : BlockByrefHelpers(alignment) {} void emitCopy(CodeGenFunction &CGF, Address destField, Address srcField) override { CGF.EmitARCMoveWeak(destField, srcField); } void emitDispose(CodeGenFunction &CGF, Address field) override { CGF.EmitARCDestroyWeak(field); } void profileImpl(llvm::FoldingSetNodeID &id) const override { // 0 is distinguishable from all pointers and byref flags id.AddInteger(0); } }; /// Emits the copy/dispose helpers for an ARC __block __strong variable /// that's not of block-pointer type. class ARCStrongByrefHelpers final : public BlockByrefHelpers { public: ARCStrongByrefHelpers(CharUnits alignment) : BlockByrefHelpers(alignment) {} void emitCopy(CodeGenFunction &CGF, Address destField, Address srcField) override { // Do a "move" by copying the value and then zeroing out the old // variable. llvm::Value *value = CGF.Builder.CreateLoad(srcField); llvm::Value *null = llvm::ConstantPointerNull::get(cast(value->getType())); if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { CGF.Builder.CreateStore(null, destField); CGF.EmitARCStoreStrongCall(destField, value, /*ignored*/ true); CGF.EmitARCStoreStrongCall(srcField, null, /*ignored*/ true); return; } CGF.Builder.CreateStore(value, destField); CGF.Builder.CreateStore(null, srcField); } void emitDispose(CodeGenFunction &CGF, Address field) override { CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime); } void profileImpl(llvm::FoldingSetNodeID &id) const override { // 1 is distinguishable from all pointers and byref flags id.AddInteger(1); } }; /// Emits the copy/dispose helpers for an ARC __block __strong /// variable that's of block-pointer type. class ARCStrongBlockByrefHelpers final : public BlockByrefHelpers { public: ARCStrongBlockByrefHelpers(CharUnits alignment) : BlockByrefHelpers(alignment) {} void emitCopy(CodeGenFunction &CGF, Address destField, Address srcField) override { // Do the copy with objc_retainBlock; that's all that // _Block_object_assign would do anyway, and we'd have to pass the // right arguments to make sure it doesn't get no-op'ed. llvm::Value *oldValue = CGF.Builder.CreateLoad(srcField); llvm::Value *copy = CGF.EmitARCRetainBlock(oldValue, /*mandatory*/ true); CGF.Builder.CreateStore(copy, destField); } void emitDispose(CodeGenFunction &CGF, Address field) override { CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime); } void profileImpl(llvm::FoldingSetNodeID &id) const override { // 2 is distinguishable from all pointers and byref flags id.AddInteger(2); } }; /// Emits the copy/dispose helpers for a __block variable with a /// nontrivial copy constructor or destructor. class CXXByrefHelpers final : public BlockByrefHelpers { QualType VarType; const Expr *CopyExpr; public: CXXByrefHelpers(CharUnits alignment, QualType type, const Expr *copyExpr) : BlockByrefHelpers(alignment), VarType(type), CopyExpr(copyExpr) {} bool needsCopy() const override { return CopyExpr != nullptr; } void emitCopy(CodeGenFunction &CGF, Address destField, Address srcField) override { if (!CopyExpr) return; CGF.EmitSynthesizedCXXCopyCtor(destField, srcField, CopyExpr); } void emitDispose(CodeGenFunction &CGF, Address field) override { EHScopeStack::stable_iterator cleanupDepth = CGF.EHStack.stable_begin(); CGF.PushDestructorCleanup(VarType, field); CGF.PopCleanupBlocks(cleanupDepth); } void profileImpl(llvm::FoldingSetNodeID &id) const override { id.AddPointer(VarType.getCanonicalType().getAsOpaquePtr()); } }; /// Emits the copy/dispose helpers for a __block variable that is a non-trivial /// C struct. class NonTrivialCStructByrefHelpers final : public BlockByrefHelpers { QualType VarType; public: NonTrivialCStructByrefHelpers(CharUnits alignment, QualType type) : BlockByrefHelpers(alignment), VarType(type) {} void emitCopy(CodeGenFunction &CGF, Address destField, Address srcField) override { CGF.callCStructMoveConstructor(CGF.MakeAddrLValue(destField, VarType), CGF.MakeAddrLValue(srcField, VarType)); } bool needsDispose() const override { return VarType.isDestructedType(); } void emitDispose(CodeGenFunction &CGF, Address field) override { EHScopeStack::stable_iterator cleanupDepth = CGF.EHStack.stable_begin(); CGF.pushDestroy(VarType.isDestructedType(), field, VarType); CGF.PopCleanupBlocks(cleanupDepth); } void profileImpl(llvm::FoldingSetNodeID &id) const override { id.AddPointer(VarType.getCanonicalType().getAsOpaquePtr()); } }; } // end anonymous namespace static llvm::Constant * generateByrefCopyHelper(CodeGenFunction &CGF, const BlockByrefInfo &byrefInfo, BlockByrefHelpers &generator) { ASTContext &Context = CGF.getContext(); QualType ReturnTy = Context.VoidTy; FunctionArgList args; ImplicitParamDecl Dst(Context, Context.VoidPtrTy, ImplicitParamDecl::Other); args.push_back(&Dst); ImplicitParamDecl Src(Context, Context.VoidPtrTy, ImplicitParamDecl::Other); args.push_back(&Src); const CGFunctionInfo &FI = CGF.CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); llvm::FunctionType *LTy = CGF.CGM.getTypes().GetFunctionType(FI); // FIXME: We'd like to put these into a mergable by content, with // internal linkage. llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, "__Block_byref_object_copy_", &CGF.CGM.getModule()); IdentifierInfo *II = &Context.Idents.get("__Block_byref_object_copy_"); SmallVector ArgTys; ArgTys.push_back(Context.VoidPtrTy); ArgTys.push_back(Context.VoidPtrTy); QualType FunctionTy = Context.getFunctionType(ReturnTy, ArgTys, {}); FunctionDecl *FD = FunctionDecl::Create( Context, Context.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, FunctionTy, nullptr, SC_Static, false, false); CGF.CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); CGF.StartFunction(FD, ReturnTy, Fn, FI, args); if (generator.needsCopy()) { llvm::Type *byrefPtrType = byrefInfo.Type->getPointerTo(0); // dst->x Address destField = CGF.GetAddrOfLocalVar(&Dst); destField = Address(CGF.Builder.CreateLoad(destField), byrefInfo.ByrefAlignment); destField = CGF.Builder.CreateBitCast(destField, byrefPtrType); destField = CGF.emitBlockByrefAddress(destField, byrefInfo, false, "dest-object"); // src->x Address srcField = CGF.GetAddrOfLocalVar(&Src); srcField = Address(CGF.Builder.CreateLoad(srcField), byrefInfo.ByrefAlignment); srcField = CGF.Builder.CreateBitCast(srcField, byrefPtrType); srcField = CGF.emitBlockByrefAddress(srcField, byrefInfo, false, "src-object"); generator.emitCopy(CGF, destField, srcField); } CGF.FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy); } /// Build the copy helper for a __block variable. static llvm::Constant *buildByrefCopyHelper(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, BlockByrefHelpers &generator) { CodeGenFunction CGF(CGM); return generateByrefCopyHelper(CGF, byrefInfo, generator); } /// Generate code for a __block variable's dispose helper. static llvm::Constant * generateByrefDisposeHelper(CodeGenFunction &CGF, const BlockByrefInfo &byrefInfo, BlockByrefHelpers &generator) { ASTContext &Context = CGF.getContext(); QualType R = Context.VoidTy; FunctionArgList args; ImplicitParamDecl Src(CGF.getContext(), Context.VoidPtrTy, ImplicitParamDecl::Other); args.push_back(&Src); const CGFunctionInfo &FI = CGF.CGM.getTypes().arrangeBuiltinFunctionDeclaration(R, args); llvm::FunctionType *LTy = CGF.CGM.getTypes().GetFunctionType(FI); // FIXME: We'd like to put these into a mergable by content, with // internal linkage. llvm::Function *Fn = llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, "__Block_byref_object_dispose_", &CGF.CGM.getModule()); IdentifierInfo *II = &Context.Idents.get("__Block_byref_object_dispose_"); SmallVector ArgTys; ArgTys.push_back(Context.VoidPtrTy); QualType FunctionTy = Context.getFunctionType(R, ArgTys, {}); FunctionDecl *FD = FunctionDecl::Create( Context, Context.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, FunctionTy, nullptr, SC_Static, false, false); CGF.CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); CGF.StartFunction(FD, R, Fn, FI, args); if (generator.needsDispose()) { Address addr = CGF.GetAddrOfLocalVar(&Src); addr = Address(CGF.Builder.CreateLoad(addr), byrefInfo.ByrefAlignment); auto byrefPtrType = byrefInfo.Type->getPointerTo(0); addr = CGF.Builder.CreateBitCast(addr, byrefPtrType); addr = CGF.emitBlockByrefAddress(addr, byrefInfo, false, "object"); generator.emitDispose(CGF, addr); } CGF.FinishFunction(); return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy); } /// Build the dispose helper for a __block variable. static llvm::Constant *buildByrefDisposeHelper(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, BlockByrefHelpers &generator) { CodeGenFunction CGF(CGM); return generateByrefDisposeHelper(CGF, byrefInfo, generator); } /// Lazily build the copy and dispose helpers for a __block variable /// with the given information. template static T *buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, T &&generator) { llvm::FoldingSetNodeID id; generator.Profile(id); void *insertPos; BlockByrefHelpers *node = CGM.ByrefHelpersCache.FindNodeOrInsertPos(id, insertPos); if (node) return static_cast(node); generator.CopyHelper = buildByrefCopyHelper(CGM, byrefInfo, generator); generator.DisposeHelper = buildByrefDisposeHelper(CGM, byrefInfo, generator); T *copy = new (CGM.getContext()) T(std::forward(generator)); CGM.ByrefHelpersCache.InsertNode(copy, insertPos); return copy; } /// Build the copy and dispose helpers for the given __block variable /// emission. Places the helpers in the global cache. Returns null /// if no helpers are required. BlockByrefHelpers * CodeGenFunction::buildByrefHelpers(llvm::StructType &byrefType, const AutoVarEmission &emission) { const VarDecl &var = *emission.Variable; assert(var.isEscapingByref() && "only escaping __block variables need byref helpers"); QualType type = var.getType(); auto &byrefInfo = getBlockByrefInfo(&var); // The alignment we care about for the purposes of uniquing byref // helpers is the alignment of the actual byref value field. CharUnits valueAlignment = byrefInfo.ByrefAlignment.alignmentAtOffset(byrefInfo.FieldOffset); if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) { const Expr *copyExpr = CGM.getContext().getBlockVarCopyInit(&var).getCopyExpr(); if (!copyExpr && record->hasTrivialDestructor()) return nullptr; return ::buildByrefHelpers( CGM, byrefInfo, CXXByrefHelpers(valueAlignment, type, copyExpr)); } // If type is a non-trivial C struct type that is non-trivial to // destructly move or destroy, build the copy and dispose helpers. if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct || type.isDestructedType() == QualType::DK_nontrivial_c_struct) return ::buildByrefHelpers( CGM, byrefInfo, NonTrivialCStructByrefHelpers(valueAlignment, type)); // Otherwise, if we don't have a retainable type, there's nothing to do. // that the runtime does extra copies. if (!type->isObjCRetainableType()) return nullptr; Qualifiers qs = type.getQualifiers(); // If we have lifetime, that dominates. if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { switch (lifetime) { case Qualifiers::OCL_None: llvm_unreachable("impossible"); // These are just bits as far as the runtime is concerned. case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: return nullptr; // Tell the runtime that this is ARC __weak, called by the // byref routines. case Qualifiers::OCL_Weak: return ::buildByrefHelpers(CGM, byrefInfo, ARCWeakByrefHelpers(valueAlignment)); // ARC __strong __block variables need to be retained. case Qualifiers::OCL_Strong: // Block pointers need to be copied, and there's no direct // transfer possible. if (type->isBlockPointerType()) { return ::buildByrefHelpers(CGM, byrefInfo, ARCStrongBlockByrefHelpers(valueAlignment)); // Otherwise, we transfer ownership of the retain from the stack // to the heap. } else { return ::buildByrefHelpers(CGM, byrefInfo, ARCStrongByrefHelpers(valueAlignment)); } } llvm_unreachable("fell out of lifetime switch!"); } BlockFieldFlags flags; if (type->isBlockPointerType()) { flags |= BLOCK_FIELD_IS_BLOCK; } else if (CGM.getContext().isObjCNSObjectType(type) || type->isObjCObjectPointerType()) { flags |= BLOCK_FIELD_IS_OBJECT; } else { return nullptr; } if (type.isObjCGCWeak()) flags |= BLOCK_FIELD_IS_WEAK; return ::buildByrefHelpers(CGM, byrefInfo, ObjectByrefHelpers(valueAlignment, flags)); } Address CodeGenFunction::emitBlockByrefAddress(Address baseAddr, const VarDecl *var, bool followForward) { auto &info = getBlockByrefInfo(var); return emitBlockByrefAddress(baseAddr, info, followForward, var->getName()); } Address CodeGenFunction::emitBlockByrefAddress(Address baseAddr, const BlockByrefInfo &info, bool followForward, const llvm::Twine &name) { // Chase the forwarding address if requested. if (followForward) { Address forwardingAddr = Builder.CreateStructGEP(baseAddr, 1, "forwarding"); baseAddr = Address(Builder.CreateLoad(forwardingAddr), info.ByrefAlignment); } return Builder.CreateStructGEP(baseAddr, info.FieldIndex, name); } /// BuildByrefInfo - This routine changes a __block variable declared as T x /// into: /// /// struct { /// void *__isa; /// void *__forwarding; /// int32_t __flags; /// int32_t __size; /// void *__copy_helper; // only if needed /// void *__destroy_helper; // only if needed /// void *__byref_variable_layout;// only if needed /// char padding[X]; // only if needed /// T x; /// } x /// const BlockByrefInfo &CodeGenFunction::getBlockByrefInfo(const VarDecl *D) { auto it = BlockByrefInfos.find(D); if (it != BlockByrefInfos.end()) return it->second; llvm::StructType *byrefType = llvm::StructType::create(getLLVMContext(), "struct.__block_byref_" + D->getNameAsString()); QualType Ty = D->getType(); CharUnits size; SmallVector types; // void *__isa; types.push_back(Int8PtrTy); size += getPointerSize(); // void *__forwarding; types.push_back(llvm::PointerType::getUnqual(byrefType)); size += getPointerSize(); // int32_t __flags; types.push_back(Int32Ty); size += CharUnits::fromQuantity(4); // int32_t __size; types.push_back(Int32Ty); size += CharUnits::fromQuantity(4); // Note that this must match *exactly* the logic in buildByrefHelpers. bool hasCopyAndDispose = getContext().BlockRequiresCopying(Ty, D); if (hasCopyAndDispose) { /// void *__copy_helper; types.push_back(Int8PtrTy); size += getPointerSize(); /// void *__destroy_helper; types.push_back(Int8PtrTy); size += getPointerSize(); } bool HasByrefExtendedLayout = false; Qualifiers::ObjCLifetime Lifetime = Qualifiers::OCL_None; if (getContext().getByrefLifetime(Ty, Lifetime, HasByrefExtendedLayout) && HasByrefExtendedLayout) { /// void *__byref_variable_layout; types.push_back(Int8PtrTy); size += CharUnits::fromQuantity(PointerSizeInBytes); } // T x; llvm::Type *varTy = ConvertTypeForMem(Ty); bool packed = false; CharUnits varAlign = getContext().getDeclAlign(D); CharUnits varOffset = size.alignTo(varAlign); // We may have to insert padding. if (varOffset != size) { llvm::Type *paddingTy = llvm::ArrayType::get(Int8Ty, (varOffset - size).getQuantity()); types.push_back(paddingTy); size = varOffset; // Conversely, we might have to prevent LLVM from inserting padding. } else if (CGM.getDataLayout().getABITypeAlignment(varTy) > varAlign.getQuantity()) { packed = true; } types.push_back(varTy); byrefType->setBody(types, packed); BlockByrefInfo info; info.Type = byrefType; info.FieldIndex = types.size() - 1; info.FieldOffset = varOffset; info.ByrefAlignment = std::max(varAlign, getPointerAlign()); auto pair = BlockByrefInfos.insert({D, info}); assert(pair.second && "info was inserted recursively?"); return pair.first->second; } /// Initialize the structural components of a __block variable, i.e. /// everything but the actual object. void CodeGenFunction::emitByrefStructureInit(const AutoVarEmission &emission) { // Find the address of the local. Address addr = emission.Addr; // That's an alloca of the byref structure type. llvm::StructType *byrefType = cast( cast(addr.getPointer()->getType())->getElementType()); unsigned nextHeaderIndex = 0; CharUnits nextHeaderOffset; auto storeHeaderField = [&](llvm::Value *value, CharUnits fieldSize, const Twine &name) { auto fieldAddr = Builder.CreateStructGEP(addr, nextHeaderIndex, name); Builder.CreateStore(value, fieldAddr); nextHeaderIndex++; nextHeaderOffset += fieldSize; }; // Build the byref helpers if necessary. This is null if we don't need any. BlockByrefHelpers *helpers = buildByrefHelpers(*byrefType, emission); const VarDecl &D = *emission.Variable; QualType type = D.getType(); bool HasByrefExtendedLayout = false; Qualifiers::ObjCLifetime ByrefLifetime = Qualifiers::OCL_None; bool ByRefHasLifetime = getContext().getByrefLifetime(type, ByrefLifetime, HasByrefExtendedLayout); llvm::Value *V; // Initialize the 'isa', which is just 0 or 1. int isa = 0; if (type.isObjCGCWeak()) isa = 1; V = Builder.CreateIntToPtr(Builder.getInt32(isa), Int8PtrTy, "isa"); storeHeaderField(V, getPointerSize(), "byref.isa"); // Store the address of the variable into its own forwarding pointer. storeHeaderField(addr.getPointer(), getPointerSize(), "byref.forwarding"); // Blocks ABI: // c) the flags field is set to either 0 if no helper functions are // needed or BLOCK_BYREF_HAS_COPY_DISPOSE if they are, BlockFlags flags; if (helpers) flags |= BLOCK_BYREF_HAS_COPY_DISPOSE; if (ByRefHasLifetime) { if (HasByrefExtendedLayout) flags |= BLOCK_BYREF_LAYOUT_EXTENDED; else switch (ByrefLifetime) { case Qualifiers::OCL_Strong: flags |= BLOCK_BYREF_LAYOUT_STRONG; break; case Qualifiers::OCL_Weak: flags |= BLOCK_BYREF_LAYOUT_WEAK; break; case Qualifiers::OCL_ExplicitNone: flags |= BLOCK_BYREF_LAYOUT_UNRETAINED; break; case Qualifiers::OCL_None: if (!type->isObjCObjectPointerType() && !type->isBlockPointerType()) flags |= BLOCK_BYREF_LAYOUT_NON_OBJECT; break; default: break; } if (CGM.getLangOpts().ObjCGCBitmapPrint) { printf("\n Inline flag for BYREF variable layout (%d):", flags.getBitMask()); if (flags & BLOCK_BYREF_HAS_COPY_DISPOSE) printf(" BLOCK_BYREF_HAS_COPY_DISPOSE"); if (flags & BLOCK_BYREF_LAYOUT_MASK) { BlockFlags ThisFlag(flags.getBitMask() & BLOCK_BYREF_LAYOUT_MASK); if (ThisFlag == BLOCK_BYREF_LAYOUT_EXTENDED) printf(" BLOCK_BYREF_LAYOUT_EXTENDED"); if (ThisFlag == BLOCK_BYREF_LAYOUT_STRONG) printf(" BLOCK_BYREF_LAYOUT_STRONG"); if (ThisFlag == BLOCK_BYREF_LAYOUT_WEAK) printf(" BLOCK_BYREF_LAYOUT_WEAK"); if (ThisFlag == BLOCK_BYREF_LAYOUT_UNRETAINED) printf(" BLOCK_BYREF_LAYOUT_UNRETAINED"); if (ThisFlag == BLOCK_BYREF_LAYOUT_NON_OBJECT) printf(" BLOCK_BYREF_LAYOUT_NON_OBJECT"); } printf("\n"); } } storeHeaderField(llvm::ConstantInt::get(IntTy, flags.getBitMask()), getIntSize(), "byref.flags"); CharUnits byrefSize = CGM.GetTargetTypeStoreSize(byrefType); V = llvm::ConstantInt::get(IntTy, byrefSize.getQuantity()); storeHeaderField(V, getIntSize(), "byref.size"); if (helpers) { storeHeaderField(helpers->CopyHelper, getPointerSize(), "byref.copyHelper"); storeHeaderField(helpers->DisposeHelper, getPointerSize(), "byref.disposeHelper"); } if (ByRefHasLifetime && HasByrefExtendedLayout) { auto layoutInfo = CGM.getObjCRuntime().BuildByrefLayout(CGM, type); storeHeaderField(layoutInfo, getPointerSize(), "byref.layout"); } } void CodeGenFunction::BuildBlockRelease(llvm::Value *V, BlockFieldFlags flags, bool CanThrow) { llvm::FunctionCallee F = CGM.getBlockObjectDispose(); llvm::Value *args[] = { Builder.CreateBitCast(V, Int8PtrTy), llvm::ConstantInt::get(Int32Ty, flags.getBitMask()) }; if (CanThrow) EmitRuntimeCallOrInvoke(F, args); else EmitNounwindRuntimeCall(F, args); } void CodeGenFunction::enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, bool LoadBlockVarAddr, bool CanThrow) { EHStack.pushCleanup(Kind, Addr, Flags, LoadBlockVarAddr, CanThrow); } /// Adjust the declaration of something from the blocks API. static void configureBlocksRuntimeObject(CodeGenModule &CGM, llvm::Constant *C) { auto *GV = cast(C->stripPointerCasts()); if (CGM.getTarget().getTriple().isOSBinFormatCOFF()) { IdentifierInfo &II = CGM.getContext().Idents.get(C->getName()); TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl(); DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); assert((isa(C->stripPointerCasts()) || isa(C->stripPointerCasts())) && "expected Function or GlobalVariable"); const NamedDecl *ND = nullptr; for (const auto &Result : DC->lookup(&II)) if ((ND = dyn_cast(Result)) || (ND = dyn_cast(Result))) break; // TODO: support static blocks runtime if (GV->isDeclaration() && (!ND || !ND->hasAttr())) { GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); GV->setLinkage(llvm::GlobalValue::ExternalLinkage); } else { GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); GV->setLinkage(llvm::GlobalValue::ExternalLinkage); } } if (CGM.getLangOpts().BlocksRuntimeOptional && GV->isDeclaration() && GV->hasExternalLinkage()) GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); CGM.setDSOLocal(GV); } llvm::FunctionCallee CodeGenModule::getBlockObjectDispose() { if (BlockObjectDispose) return BlockObjectDispose; llvm::Type *args[] = { Int8PtrTy, Int32Ty }; llvm::FunctionType *fty = llvm::FunctionType::get(VoidTy, args, false); BlockObjectDispose = CreateRuntimeFunction(fty, "_Block_object_dispose"); configureBlocksRuntimeObject( *this, cast(BlockObjectDispose.getCallee())); return BlockObjectDispose; } llvm::FunctionCallee CodeGenModule::getBlockObjectAssign() { if (BlockObjectAssign) return BlockObjectAssign; llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty }; llvm::FunctionType *fty = llvm::FunctionType::get(VoidTy, args, false); BlockObjectAssign = CreateRuntimeFunction(fty, "_Block_object_assign"); configureBlocksRuntimeObject( *this, cast(BlockObjectAssign.getCallee())); return BlockObjectAssign; } llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { if (NSConcreteGlobalBlock) return NSConcreteGlobalBlock; NSConcreteGlobalBlock = GetOrCreateLLVMGlobal("_NSConcreteGlobalBlock", Int8PtrTy->getPointerTo(), nullptr); configureBlocksRuntimeObject(*this, NSConcreteGlobalBlock); return NSConcreteGlobalBlock; } llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { if (NSConcreteStackBlock) return NSConcreteStackBlock; NSConcreteStackBlock = GetOrCreateLLVMGlobal("_NSConcreteStackBlock", Int8PtrTy->getPointerTo(), nullptr); configureBlocksRuntimeObject(*this, NSConcreteStackBlock); return NSConcreteStackBlock; }