; RUN: llc -aarch64-sve-vector-bits-min=128 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=16 -check-prefix=NO_SVE ; RUN: llc -aarch64-sve-vector-bits-min=256 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=32 -check-prefixes=CHECK,VBITS_EQ_256 ; RUN: llc -aarch64-sve-vector-bits-min=384 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=32 -check-prefixes=CHECK ; RUN: llc -aarch64-sve-vector-bits-min=512 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=64 -check-prefixes=CHECK,VBITS_GE_512 ; RUN: llc -aarch64-sve-vector-bits-min=640 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=64 -check-prefixes=CHECK,VBITS_GE_512 ; RUN: llc -aarch64-sve-vector-bits-min=768 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=64 -check-prefixes=CHECK,VBITS_GE_512 ; RUN: llc -aarch64-sve-vector-bits-min=896 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=64 -check-prefixes=CHECK,VBITS_GE_512 ; RUN: llc -aarch64-sve-vector-bits-min=1024 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=128 -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1152 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=128 -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1280 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=128 -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1408 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=128 -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1536 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=128 -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1664 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=128 -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1792 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=128 -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=1920 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=128 -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024 ; RUN: llc -aarch64-sve-vector-bits-min=2048 -asm-verbose=0 < %s | FileCheck %s -D#VBYTES=256 -check-prefixes=CHECK,VBITS_GE_512,VBITS_GE_1024,VBITS_GE_2048 target triple = "aarch64-unknown-linux-gnu" ; Don't use SVE when its registers are no bigger than NEON. ; NO_SVE-NOT: ptrue ; ; FADDA ; ; No single instruction NEON support. Use SVE. define half @fadda_v4f16(half %start, <4 x half> %a) #0 { ; CHECK-LABEL: fadda_v4f16: ; CHECK: ptrue [[PG:p[0-9]+]].h, vl4 ; CHECK-NEXT: fadda h0, [[PG]], h0, z1.h ; CHECK-NEXT: ret %res = call half @llvm.vector.reduce.fadd.v4f16(half %start, <4 x half> %a) ret half %res } ; No single instruction NEON support. Use SVE. define half @fadda_v8f16(half %start, <8 x half> %a) #0 { ; CHECK-LABEL: fadda_v8f16: ; CHECK: ptrue [[PG:p[0-9]+]].h, vl8 ; CHECK-NEXT: fadda h0, [[PG]], h0, z1.h ; CHECK-NEXT: ret %res = call half @llvm.vector.reduce.fadd.v8f16(half %start, <8 x half> %a) ret half %res } define half @fadda_v16f16(half %start, <16 x half>* %a) #0 { ; CHECK-LABEL: fadda_v16f16: ; CHECK: ptrue [[PG:p[0-9]+]].h, vl16 ; CHECK-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; CHECK-NEXT: fadda h0, [[PG]], h0, [[OP]].h ; CHECK-NEXT: ret %op = load <16 x half>, <16 x half>* %a %res = call half @llvm.vector.reduce.fadd.v16f16(half %start, <16 x half> %op) ret half %res } define half @fadda_v32f16(half %start, <32 x half>* %a) #0 { ; CHECK-LABEL: fadda_v32f16: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].h, vl32 ; VBITS_GE_512-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: fadda h0, [[PG]], h0, [[OP]].h ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256: add x8, x0, #32 ; VBITS_EQ_256-NEXT: ptrue [[PG:p[0-9]+]].h, vl16 ; VBITS_EQ_256-DAG: ld1h { [[LO:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1h { [[HI:z[0-9]+]].h }, [[PG]]/z, [x8] ; VBITS_EQ_256-NEXT: fadda h0, [[PG]], h0, [[LO]].h ; VBITS_EQ_256-NEXT: fadda h0, [[PG]], h0, [[HI]].h ; VBITS_EQ_256-NEXT: ret %op = load <32 x half>, <32 x half>* %a %res = call half @llvm.vector.reduce.fadd.v32f16(half %start, <32 x half> %op) ret half %res } define half @fadda_v64f16(half %start, <64 x half>* %a) #0 { ; CHECK-LABEL: fadda_v64f16: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].h, vl64 ; VBITS_GE_1024-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: fadda h0, [[PG]], h0, [[OP]].h ; VBITS_GE_1024-NEXT: ret %op = load <64 x half>, <64 x half>* %a %res = call half @llvm.vector.reduce.fadd.v64f16(half %start, <64 x half> %op) ret half %res } define half @fadda_v128f16(half %start, <128 x half>* %a) #0 { ; CHECK-LABEL: fadda_v128f16: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].h, vl128 ; VBITS_GE_2048-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: fadda h0, [[PG]], h0, [[OP]].h ; VBITS_GE_2048-NEXT: ret %op = load <128 x half>, <128 x half>* %a %res = call half @llvm.vector.reduce.fadd.v128f16(half %start, <128 x half> %op) ret half %res } ; No single instruction NEON support. Use SVE. define float @fadda_v2f32(float %start, <2 x float> %a) #0 { ; CHECK-LABEL: fadda_v2f32: ; CHECK: ptrue [[PG:p[0-9]+]].s, vl2 ; CHECK-NEXT: fadda s0, [[PG]], s0, z1.s ; CHECK-NEXT: ret %res = call float @llvm.vector.reduce.fadd.v2f32(float %start, <2 x float> %a) ret float %res } ; No single instruction NEON support. Use SVE. define float @fadda_v4f32(float %start, <4 x float> %a) #0 { ; CHECK-LABEL: fadda_v4f32: ; CHECK: ptrue [[PG:p[0-9]+]].s, vl4 ; CHECK-NEXT: fadda s0, [[PG]], s0, z1.s ; CHECK-NEXT: ret %res = call float @llvm.vector.reduce.fadd.v4f32(float %start, <4 x float> %a) ret float %res } define float @fadda_v8f32(float %start, <8 x float>* %a) #0 { ; CHECK-LABEL: fadda_v8f32: ; CHECK: ptrue [[PG:p[0-9]+]].s, vl8 ; CHECK-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; CHECK-NEXT: fadda s0, [[PG]], s0, [[OP]].s ; CHECK-NEXT: ret %op = load <8 x float>, <8 x float>* %a %res = call float @llvm.vector.reduce.fadd.v8f32(float %start, <8 x float> %op) ret float %res } define float @fadda_v16f32(float %start, <16 x float>* %a) #0 { ; CHECK-LABEL: fadda_v16f32: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].s, vl16 ; VBITS_GE_512-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: fadda s0, [[PG]], s0, [[OP]].s ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256: add x8, x0, #32 ; VBITS_EQ_256-NEXT: ptrue [[PG:p[0-9]+]].s, vl8 ; VBITS_EQ_256-DAG: ld1w { [[LO:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1w { [[HI:z[0-9]+]].s }, [[PG]]/z, [x8] ; VBITS_EQ_256-NEXT: fadda s0, [[PG]], s0, [[LO]].s ; VBITS_EQ_256-NEXT: fadda s0, [[PG]], s0, [[HI]].s ; VBITS_EQ_256-NEXT: ret %op = load <16 x float>, <16 x float>* %a %res = call float @llvm.vector.reduce.fadd.v16f32(float %start, <16 x float> %op) ret float %res } define float @fadda_v32f32(float %start, <32 x float>* %a) #0 { ; CHECK-LABEL: fadda_v32f32: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].s, vl32 ; VBITS_GE_1024-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: fadda s0, [[PG]], s0, [[OP]].s ; VBITS_GE_1024-NEXT: ret %op = load <32 x float>, <32 x float>* %a %res = call float @llvm.vector.reduce.fadd.v32f32(float %start, <32 x float> %op) ret float %res } define float @fadda_v64f32(float %start, <64 x float>* %a) #0 { ; CHECK-LABEL: fadda_v64f32: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].s, vl64 ; VBITS_GE_2048-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: fadda s0, [[PG]], s0, [[OP]].s ; VBITS_GE_2048-NEXT: ret %op = load <64 x float>, <64 x float>* %a %res = call float @llvm.vector.reduce.fadd.v64f32(float %start, <64 x float> %op) ret float %res } ; No single instruction NEON support. Use SVE. define double @fadda_v1f64(double %start, <1 x double> %a) #0 { ; CHECK-LABEL: fadda_v1f64: ; CHECK: ptrue [[PG:p[0-9]+]].d, vl1 ; CHECK-NEXT: fadda d0, [[PG]], d0, z1.d ; CHECK-NEXT: ret %res = call double @llvm.vector.reduce.fadd.v1f64(double %start, <1 x double> %a) ret double %res } ; No single instruction NEON support. Use SVE. define double @fadda_v2f64(double %start, <2 x double> %a) #0 { ; CHECK-LABEL: fadda_v2f64: ; CHECK: ptrue [[PG:p[0-9]+]].d, vl2 ; CHECK-NEXT: fadda d0, [[PG]], d0, z1.d ; CHECK-NEXT: ret %res = call double @llvm.vector.reduce.fadd.v2f64(double %start, <2 x double> %a) ret double %res } define double @fadda_v4f64(double %start, <4 x double>* %a) #0 { ; CHECK-LABEL: fadda_v4f64: ; CHECK: ptrue [[PG:p[0-9]+]].d, vl4 ; CHECK-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; CHECK-NEXT: fadda d0, [[PG]], d0, [[OP]].d ; CHECK-NEXT: ret %op = load <4 x double>, <4 x double>* %a %res = call double @llvm.vector.reduce.fadd.v4f64(double %start, <4 x double> %op) ret double %res } define double @fadda_v8f64(double %start, <8 x double>* %a) #0 { ; CHECK-LABEL: fadda_v8f64: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].d, vl8 ; VBITS_GE_512-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: fadda d0, [[PG]], d0, [[OP]].d ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256: add x8, x0, #32 ; VBITS_EQ_256-NEXT: ptrue [[PG:p[0-9]+]].d, vl4 ; VBITS_EQ_256-DAG: ld1d { [[LO:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1d { [[HI:z[0-9]+]].d }, [[PG]]/z, [x8] ; VBITS_EQ_256-NEXT: fadda d0, [[PG]], d0, [[LO]].d ; VBITS_EQ_256-NEXT: fadda d0, [[PG]], d0, [[HI]].d ; VBITS_EQ_256-NEXT: ret %op = load <8 x double>, <8 x double>* %a %res = call double @llvm.vector.reduce.fadd.v8f64(double %start, <8 x double> %op) ret double %res } define double @fadda_v16f64(double %start, <16 x double>* %a) #0 { ; CHECK-LABEL: fadda_v16f64: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].d, vl16 ; VBITS_GE_1024-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: fadda d0, [[PG]], d0, [[OP]].d ; VBITS_GE_1024-NEXT: ret %op = load <16 x double>, <16 x double>* %a %res = call double @llvm.vector.reduce.fadd.v16f64(double %start, <16 x double> %op) ret double %res } define double @fadda_v32f64(double %start, <32 x double>* %a) #0 { ; CHECK-LABEL: fadda_v32f64: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].d, vl32 ; VBITS_GE_2048-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: fadda d0, [[PG]], d0, [[OP]].d ; VBITS_GE_2048-NEXT: ret %op = load <32 x double>, <32 x double>* %a %res = call double @llvm.vector.reduce.fadd.v32f64(double %start, <32 x double> %op) ret double %res } ; ; FADDV ; ; No single instruction NEON support for 4 element vectors. define half @faddv_v4f16(half %start, <4 x half> %a) #0 { ; CHECK-LABEL: faddv_v4f16: ; CHECK: ptrue [[PG:p[0-9]+]].h, vl4 ; CHECK-NEXT: faddv [[RDX:h[0-9]+]], [[PG]], z1.h ; CHECK-NEXT: fadd h0, h0, [[RDX]] ; CHECK-NEXT: ret %res = call fast half @llvm.vector.reduce.fadd.v4f16(half %start, <4 x half> %a) ret half %res } ; No single instruction NEON support for 8 element vectors. define half @faddv_v8f16(half %start, <8 x half> %a) #0 { ; CHECK-LABEL: faddv_v8f16: ; CHECK: ptrue [[PG:p[0-9]+]].h, vl8 ; CHECK-NEXT: faddv [[RDX:h[0-9]+]], [[PG]], z1.h ; CHECK-NEXT: fadd h0, h0, [[RDX]] ; CHECK-NEXT: ret %res = call fast half @llvm.vector.reduce.fadd.v8f16(half %start, <8 x half> %a) ret half %res } define half @faddv_v16f16(half %start, <16 x half>* %a) #0 { ; CHECK-LABEL: faddv_v16f16: ; CHECK: ptrue [[PG:p[0-9]+]].h, vl16 ; CHECK-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; CHECK-NEXT: faddv [[RDX:h[0-9]+]], [[PG]], [[OP]].h ; CHECK-NEXT: fadd h0, h0, [[RDX]] ; CHECK-NEXT: ret %op = load <16 x half>, <16 x half>* %a %res = call fast half @llvm.vector.reduce.fadd.v16f16(half %start, <16 x half> %op) ret half %res } define half @faddv_v32f16(half %start, <32 x half>* %a) #0 { ; CHECK-LABEL: faddv_v32f16: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].h, vl32 ; VBITS_GE_512-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: faddv [[RDX:h[0-9]+]], [[PG]], [[OP]].h ; VBITS_GE_512-NEXT: fadd h0, h0, [[RDX]] ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].h, vl16 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: ld1h { [[LO:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1h { [[HI:z[0-9]+]].h }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: fadd [[ADD:z[0-9]+]].h, [[PG]]/m, [[LO]].h, [[HI]].h ; VBITS_EQ_256-DAG: faddv h1, [[PG]], [[ADD]].h ; VBITS_EQ_256-DAG: fadd h0, h0, [[RDX]] ; VBITS_EQ_256-NEXT: ret %op = load <32 x half>, <32 x half>* %a %res = call fast half @llvm.vector.reduce.fadd.v32f16(half %start, <32 x half> %op) ret half %res } define half @faddv_v64f16(half %start, <64 x half>* %a) #0 { ; CHECK-LABEL: faddv_v64f16: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].h, vl64 ; VBITS_GE_1024-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: faddv [[RDX:h[0-9]+]], [[PG]], [[OP]].h ; VBITS_GE_1024-NEXT: fadd h0, h0, [[RDX]] ; VBITS_GE_1024-NEXT: ret %op = load <64 x half>, <64 x half>* %a %res = call fast half @llvm.vector.reduce.fadd.v64f16(half %start, <64 x half> %op) ret half %res } define half @faddv_v128f16(half %start, <128 x half>* %a) #0 { ; CHECK-LABEL: faddv_v128f16: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].h, vl128 ; VBITS_GE_2048-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: faddv [[RDX:h[0-9]+]], [[PG]], [[OP]].h ; VBITS_GE_2048-NEXT: fadd h0, h0, [[RDX]] ; VBITS_GE_2048-NEXT: ret %op = load <128 x half>, <128 x half>* %a %res = call fast half @llvm.vector.reduce.fadd.v128f16(half %start, <128 x half> %op) ret half %res } ; Don't use SVE for 2 element vectors. define float @faddv_v2f32(float %start, <2 x float> %a) #0 { ; CHECK-LABEL: faddv_v2f32: ; CHECK: faddp s1, v1.2s ; CHECK-NEXT: fadd s0, s0, s1 ; CHECK-NEXT: ret %res = call fast float @llvm.vector.reduce.fadd.v2f32(float %start, <2 x float> %a) ret float %res } ; No single instruction NEON support for 4 element vectors. define float @faddv_v4f32(float %start, <4 x float> %a) #0 { ; CHECK-LABEL: faddv_v4f32: ; CHECK: ptrue [[PG:p[0-9]+]].s, vl4 ; CHECK-NEXT: faddv [[RDX:s[0-9]+]], [[PG]], z1.s ; CHECK-NEXT: fadd s0, s0, [[RDX]] ; CHECK-NEXT: ret %res = call fast float @llvm.vector.reduce.fadd.v4f32(float %start, <4 x float> %a) ret float %res } define float @faddv_v8f32(float %start, <8 x float>* %a) #0 { ; CHECK-LABEL: faddv_v8f32: ; CHECK: ptrue [[PG:p[0-9]+]].s, vl8 ; CHECK-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; CHECK-NEXT: faddv [[RDX:s[0-9]+]], [[PG]], [[OP]].s ; CHECK-NEXT: fadd s0, s0, [[RDX]] ; CHECK-NEXT: ret %op = load <8 x float>, <8 x float>* %a %res = call fast float @llvm.vector.reduce.fadd.v8f32(float %start, <8 x float> %op) ret float %res } define float @faddv_v16f32(float %start, <16 x float>* %a) #0 { ; CHECK-LABEL: faddv_v16f32: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].s, vl16 ; VBITS_GE_512-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: faddv [[RDX:s[0-9]+]], [[PG]], [[OP]].s ; VBITS_GE_512-NEXT: fadd s0, s0, [[RDX]] ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].s, vl8 ; VBITS_EQ_256-DAG: add x[[A_LO:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: ld1w { [[LO:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1w { [[HI:z[0-9]+]].s }, [[PG]]/z, [x[[A_LO]]] ; VBITS_EQ_256-DAG: fadd [[ADD:z[0-9]+]].s, [[PG]]/m, [[LO]].s, [[HI]].s ; VBITS_EQ_256-DAG: faddv [[RDX:s[0-9]+]], [[PG]], [[ADD]].s ; VBITS_EQ_256-DAG: fadd s0, s0, [[RDX]] ; VBITS_EQ_256-NEXT: ret %op = load <16 x float>, <16 x float>* %a %res = call fast float @llvm.vector.reduce.fadd.v16f32(float %start, <16 x float> %op) ret float %res } define float @faddv_v32f32(float %start, <32 x float>* %a) #0 { ; CHECK-LABEL: faddv_v32f32: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].s, vl32 ; VBITS_GE_1024-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: faddv [[RDX:s[0-9]+]], [[PG]], [[OP]].s ; VBITS_GE_1024-NEXT: fadd s0, s0, [[RDX]] ; VBITS_GE_1024-NEXT: ret %op = load <32 x float>, <32 x float>* %a %res = call fast float @llvm.vector.reduce.fadd.v32f32(float %start, <32 x float> %op) ret float %res } define float @faddv_v64f32(float %start, <64 x float>* %a) #0 { ; CHECK-LABEL: faddv_v64f32: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].s, vl64 ; VBITS_GE_2048-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: faddv [[RDX:s[0-9]+]], [[PG]], [[OP]].s ; VBITS_GE_2048-NEXT: fadd s0, s0, [[RDX]] ; VBITS_GE_2048-NEXT: ret %op = load <64 x float>, <64 x float>* %a %res = call fast float @llvm.vector.reduce.fadd.v64f32(float %start, <64 x float> %op) ret float %res } ; Don't use SVE for 1 element vectors. define double @faddv_v1f64(double %start, <1 x double> %a) #0 { ; CHECK-LABEL: faddv_v1f64: ; CHECK: fadd d0, d0, d1 ; CHECK-NEXT: ret %res = call fast double @llvm.vector.reduce.fadd.v1f64(double %start, <1 x double> %a) ret double %res } ; Don't use SVE for 2 element vectors. define double @faddv_v2f64(double %start, <2 x double> %a) #0 { ; CHECK-LABEL: faddv_v2f64: ; CHECK: faddp d1, v1.2d ; CHECK-NEXT: fadd d0, d0, d1 ; CHECK-NEXT: ret %res = call fast double @llvm.vector.reduce.fadd.v2f64(double %start, <2 x double> %a) ret double %res } define double @faddv_v4f64(double %start, <4 x double>* %a) #0 { ; CHECK-LABEL: faddv_v4f64: ; CHECK: ptrue [[PG:p[0-9]+]].d, vl4 ; CHECK-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; CHECK-NEXT: faddv [[RDX:d[0-9]+]], [[PG]], [[OP]].d ; CHECK-NEXT: fadd d0, d0, [[RDX]] ; CHECK-NEXT: ret %op = load <4 x double>, <4 x double>* %a %res = call fast double @llvm.vector.reduce.fadd.v4f64(double %start, <4 x double> %op) ret double %res } define double @faddv_v8f64(double %start, <8 x double>* %a) #0 { ; CHECK-LABEL: faddv_v8f64: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].d, vl8 ; VBITS_GE_512-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: faddv [[RDX:d[0-9]+]], [[PG]], [[OP]].d ; VBITS_GE_512-NEXT: fadd d0, d0, [[RDX]] ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].d, vl4 ; VBITS_EQ_256-DAG: add x[[A_LO:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: ld1d { [[LO:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1d { [[HI:z[0-9]+]].d }, [[PG]]/z, [x[[A_LO]]] ; VBITS_EQ_256-DAG: fadd [[ADD:z[0-9]+]].d, [[PG]]/m, [[LO]].d, [[HI]].d ; VBITS_EQ_256-DAG: faddv [[RDX:d[0-9]+]], [[PG]], [[ADD]].d ; VBITS_EQ_256-DAG: fadd d0, d0, [[RDX]] ; VBITS_EQ_256-NEXT: ret %op = load <8 x double>, <8 x double>* %a %res = call fast double @llvm.vector.reduce.fadd.v8f64(double %start, <8 x double> %op) ret double %res } define double @faddv_v16f64(double %start, <16 x double>* %a) #0 { ; CHECK-LABEL: faddv_v16f64: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].d, vl16 ; VBITS_GE_1024-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: faddv [[RDX:d[0-9]+]], [[PG]], [[OP]].d ; VBITS_GE_1024-NEXT: fadd d0, d0, [[RDX]] ; VBITS_GE_1024-NEXT: ret %op = load <16 x double>, <16 x double>* %a %res = call fast double @llvm.vector.reduce.fadd.v16f64(double %start, <16 x double> %op) ret double %res } define double @faddv_v32f64(double %start, <32 x double>* %a) #0 { ; CHECK-LABEL: faddv_v32f64: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].d, vl32 ; VBITS_GE_2048-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: faddv [[RDX:d[0-9]+]], [[PG]], [[OP]].d ; VBITS_GE_2048-NEXT: fadd d0, d0, [[RDX]] ; VBITS_GE_2048-NEXT: ret %op = load <32 x double>, <32 x double>* %a %res = call fast double @llvm.vector.reduce.fadd.v32f64(double %start, <32 x double> %op) ret double %res } ; ; FMAXV ; ; No NEON 16-bit vector FMAXNMV support. Use SVE. define half @fmaxv_v4f16(<4 x half> %a) #0 { ; CHECK-LABEL: fmaxv_v4f16: ; CHECK: fmaxnmv h0, v0.4h ; CHECK-NEXT: ret %res = call half @llvm.vector.reduce.fmax.v4f16(<4 x half> %a) ret half %res } ; No NEON 16-bit vector FMAXNMV support. Use SVE. define half @fmaxv_v8f16(<8 x half> %a) #0 { ; CHECK-LABEL: fmaxv_v8f16: ; CHECK: fmaxnmv h0, v0.8h ; CHECK-NEXT: ret %res = call half @llvm.vector.reduce.fmax.v8f16(<8 x half> %a) ret half %res } define half @fmaxv_v16f16(<16 x half>* %a) #0 { ; CHECK-LABEL: fmaxv_v16f16: ; CHECK: ptrue [[PG:p[0-9]+]].h, vl16 ; CHECK-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; CHECK-NEXT: fmaxnmv h0, [[PG]], [[OP]].h ; CHECK-NEXT: ret %op = load <16 x half>, <16 x half>* %a %res = call half @llvm.vector.reduce.fmax.v16f16(<16 x half> %op) ret half %res } define half @fmaxv_v32f16(<32 x half>* %a) #0 { ; CHECK-LABEL: fmaxv_v32f16: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].h, vl32 ; VBITS_GE_512-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: fmaxnmv h0, [[PG]], [[OP]].h ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].h, vl16 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: ld1h { [[LO:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1h { [[HI:z[0-9]+]].h }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: fmaxnm [[MAX:z[0-9]+]].h, [[PG]]/m, [[LO]].h, [[HI]].h ; VBITS_EQ_256-DAG: fmaxnmv h0, [[PG]], [[MAX]].h ; VBITS_EQ_256-NEXT: ret %op = load <32 x half>, <32 x half>* %a %res = call half @llvm.vector.reduce.fmax.v32f16(<32 x half> %op) ret half %res } define half @fmaxv_v64f16(<64 x half>* %a) #0 { ; CHECK-LABEL: fmaxv_v64f16: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].h, vl64 ; VBITS_GE_1024-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: fmaxnmv h0, [[PG]], [[OP]].h ; VBITS_GE_1024-NEXT: ret %op = load <64 x half>, <64 x half>* %a %res = call half @llvm.vector.reduce.fmax.v64f16(<64 x half> %op) ret half %res } define half @fmaxv_v128f16(<128 x half>* %a) #0 { ; CHECK-LABEL: fmaxv_v128f16: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].h, vl128 ; VBITS_GE_2048-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: fmaxnmv h0, [[PG]], [[OP]].h ; VBITS_GE_2048-NEXT: ret %op = load <128 x half>, <128 x half>* %a %res = call half @llvm.vector.reduce.fmax.v128f16(<128 x half> %op) ret half %res } ; Don't use SVE for 64-bit f32 vectors. define float @fmaxv_v2f32(<2 x float> %a) #0 { ; CHECK-LABEL: fmaxv_v2f32: ; CHECK: fmaxnmp s0, v0.2s ; CHECK: ret %res = call float @llvm.vector.reduce.fmax.v2f32(<2 x float> %a) ret float %res } ; Don't use SVE for 128-bit f32 vectors. define float @fmaxv_v4f32(<4 x float> %a) #0 { ; CHECK-LABEL: fmaxv_v4f32: ; CHECK: fmaxnmv s0, v0.4s ; CHECK: ret %res = call float @llvm.vector.reduce.fmax.v4f32(<4 x float> %a) ret float %res } define float @fmaxv_v8f32(<8 x float>* %a) #0 { ; CHECK-LABEL: fmaxv_v8f32: ; CHECK: ptrue [[PG:p[0-9]+]].s, vl8 ; CHECK-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; CHECK-NEXT: fmaxnmv s0, [[PG]], [[OP]].s ; CHECK-NEXT: ret %op = load <8 x float>, <8 x float>* %a %res = call float @llvm.vector.reduce.fmax.v8f32(<8 x float> %op) ret float %res } define float @fmaxv_v16f32(<16 x float>* %a) #0 { ; CHECK-LABEL: fmaxv_v16f32: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].s, vl16 ; VBITS_GE_512-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: fmaxnmv s0, [[PG]], [[OP]].s ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].s, vl8 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: ld1w { [[LO:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1w { [[HI:z[0-9]+]].s }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: fmaxnm [[MAX:z[0-9]+]].s, [[PG]]/m, [[LO]].s, [[HI]].s ; VBITS_EQ_256-DAG: fmaxnmv s0, [[PG]], [[MAX]].s ; VBITS_EQ_256-NEXT: ret %op = load <16 x float>, <16 x float>* %a %res = call float @llvm.vector.reduce.fmax.v16f32(<16 x float> %op) ret float %res } define float @fmaxv_v32f32(<32 x float>* %a) #0 { ; CHECK-LABEL: fmaxv_v32f32: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].s, vl32 ; VBITS_GE_1024-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: fmaxnmv s0, [[PG]], [[OP]].s ; VBITS_GE_1024-NEXT: ret %op = load <32 x float>, <32 x float>* %a %res = call float @llvm.vector.reduce.fmax.v32f32(<32 x float> %op) ret float %res } define float @fmaxv_v64f32(<64 x float>* %a) #0 { ; CHECK-LABEL: fmaxv_v64f32: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].s, vl64 ; VBITS_GE_2048-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: fmaxnmv s0, [[PG]], [[OP]].s ; VBITS_GE_2048-NEXT: ret %op = load <64 x float>, <64 x float>* %a %res = call float @llvm.vector.reduce.fmax.v64f32(<64 x float> %op) ret float %res } ; Nothing to do for single element vectors. define double @fmaxv_v1f64(<1 x double> %a) #0 { ; CHECK-LABEL: fmaxv_v1f64: ; CHECK-NOT: fmax ; CHECK: ret %res = call double @llvm.vector.reduce.fmax.v1f64(<1 x double> %a) ret double %res } ; Don't use SVE for 128-bit f64 vectors. define double @fmaxv_v2f64(<2 x double> %a) #0 { ; CHECK-LABEL: fmaxv_v2f64: ; CHECK: fmaxnmp d0, v0.2d ; CHECK-NEXT: ret %res = call double @llvm.vector.reduce.fmax.v2f64(<2 x double> %a) ret double %res } define double @fmaxv_v4f64(<4 x double>* %a) #0 { ; CHECK-LABEL: fmaxv_v4f64: ; CHECK: ptrue [[PG:p[0-9]+]].d, vl4 ; CHECK-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; CHECK-NEXT: fmaxnmv d0, [[PG]], [[OP]].d ; CHECK-NEXT: ret %op = load <4 x double>, <4 x double>* %a %res = call double @llvm.vector.reduce.fmax.v4f64(<4 x double> %op) ret double %res } define double @fmaxv_v8f64(<8 x double>* %a) #0 { ; CHECK-LABEL: fmaxv_v8f64: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].d, vl8 ; VBITS_GE_512-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: fmaxnmv d0, [[PG]], [[OP]].d ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].d, vl4 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: ld1d { [[LO:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1d { [[HI:z[0-9]+]].d }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: fmaxnm [[MAX:z[0-9]+]].d, [[PG]]/m, [[LO]].d, [[HI]].d ; VBITS_EQ_256-DAG: fmaxnmv d0, [[PG]], [[MAX]].d ; VBITS_EQ_256-NEXT: ret %op = load <8 x double>, <8 x double>* %a %res = call double @llvm.vector.reduce.fmax.v8f64(<8 x double> %op) ret double %res } define double @fmaxv_v16f64(<16 x double>* %a) #0 { ; CHECK-LABEL: fmaxv_v16f64: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].d, vl16 ; VBITS_GE_1024-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: fmaxnmv d0, [[PG]], [[OP]].d ; VBITS_GE_1024-NEXT: ret %op = load <16 x double>, <16 x double>* %a %res = call double @llvm.vector.reduce.fmax.v16f64(<16 x double> %op) ret double %res } define double @fmaxv_v32f64(<32 x double>* %a) #0 { ; CHECK-LABEL: fmaxv_v32f64: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].d, vl32 ; VBITS_GE_2048-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: fmaxnmv d0, [[PG]], [[OP]].d ; VBITS_GE_2048-NEXT: ret %op = load <32 x double>, <32 x double>* %a %res = call double @llvm.vector.reduce.fmax.v32f64(<32 x double> %op) ret double %res } ; ; FMINV ; ; No NEON 16-bit vector FMINNMV support. Use SVE. define half @fminv_v4f16(<4 x half> %a) #0 { ; CHECK-LABEL: fminv_v4f16: ; CHECK: fminnmv h0, v0.4h ; CHECK-NEXT: ret %res = call half @llvm.vector.reduce.fmin.v4f16(<4 x half> %a) ret half %res } ; No NEON 16-bit vector FMINNMV support. Use SVE. define half @fminv_v8f16(<8 x half> %a) #0 { ; CHECK-LABEL: fminv_v8f16: ; CHECK: fminnmv h0, v0.8h ; CHECK-NEXT: ret %res = call half @llvm.vector.reduce.fmin.v8f16(<8 x half> %a) ret half %res } define half @fminv_v16f16(<16 x half>* %a) #0 { ; CHECK-LABEL: fminv_v16f16: ; CHECK: ptrue [[PG:p[0-9]+]].h, vl16 ; CHECK-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; CHECK-NEXT: fminnmv h0, [[PG]], [[OP]].h ; CHECK-NEXT: ret %op = load <16 x half>, <16 x half>* %a %res = call half @llvm.vector.reduce.fmin.v16f16(<16 x half> %op) ret half %res } define half @fminv_v32f16(<32 x half>* %a) #0 { ; CHECK-LABEL: fminv_v32f16: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].h, vl32 ; VBITS_GE_512-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: fminnmv h0, [[PG]], [[OP]].h ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].h, vl16 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: ld1h { [[LO:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1h { [[HI:z[0-9]+]].h }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: fminnm [[MIN:z[0-9]+]].h, [[PG]]/m, [[LO]].h, [[HI]].h ; VBITS_EQ_256-DAG: fminnmv h0, [[PG]], [[MIN]].h ; VBITS_EQ_256-NEXT: ret %op = load <32 x half>, <32 x half>* %a %res = call half @llvm.vector.reduce.fmin.v32f16(<32 x half> %op) ret half %res } define half @fminv_v64f16(<64 x half>* %a) #0 { ; CHECK-LABEL: fminv_v64f16: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].h, vl64 ; VBITS_GE_1024-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: fminnmv h0, [[PG]], [[OP]].h ; VBITS_GE_1024-NEXT: ret %op = load <64 x half>, <64 x half>* %a %res = call half @llvm.vector.reduce.fmin.v64f16(<64 x half> %op) ret half %res } define half @fminv_v128f16(<128 x half>* %a) #0 { ; CHECK-LABEL: fminv_v128f16: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].h, vl128 ; VBITS_GE_2048-NEXT: ld1h { [[OP:z[0-9]+]].h }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: fminnmv h0, [[PG]], [[OP]].h ; VBITS_GE_2048-NEXT: ret %op = load <128 x half>, <128 x half>* %a %res = call half @llvm.vector.reduce.fmin.v128f16(<128 x half> %op) ret half %res } ; Don't use SVE for 64-bit f32 vectors. define float @fminv_v2f32(<2 x float> %a) #0 { ; CHECK-LABEL: fminv_v2f32: ; CHECK: fminnmp s0, v0.2s ; CHECK: ret %res = call float @llvm.vector.reduce.fmin.v2f32(<2 x float> %a) ret float %res } ; Don't use SVE for 128-bit f32 vectors. define float @fminv_v4f32(<4 x float> %a) #0 { ; CHECK-LABEL: fminv_v4f32: ; CHECK: fminnmv s0, v0.4s ; CHECK: ret %res = call float @llvm.vector.reduce.fmin.v4f32(<4 x float> %a) ret float %res } define float @fminv_v8f32(<8 x float>* %a) #0 { ; CHECK-LABEL: fminv_v8f32: ; CHECK: ptrue [[PG:p[0-9]+]].s, vl8 ; CHECK-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; CHECK-NEXT: fminnmv s0, [[PG]], [[OP]].s ; CHECK-NEXT: ret %op = load <8 x float>, <8 x float>* %a %res = call float @llvm.vector.reduce.fmin.v8f32(<8 x float> %op) ret float %res } define float @fminv_v16f32(<16 x float>* %a) #0 { ; CHECK-LABEL: fminv_v16f32: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].s, vl16 ; VBITS_GE_512-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: fminnmv s0, [[PG]], [[OP]].s ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].s, vl8 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: ld1w { [[LO:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1w { [[HI:z[0-9]+]].s }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: fminnm [[MIN:z[0-9]+]].s, [[PG]]/m, [[LO]].s, [[HI]].s ; VBITS_EQ_256-DAG: fminnmv s0, [[PG]], [[MIN]].s ; VBITS_EQ_256-NEXT: ret %op = load <16 x float>, <16 x float>* %a %res = call float @llvm.vector.reduce.fmin.v16f32(<16 x float> %op) ret float %res } define float @fminv_v32f32(<32 x float>* %a) #0 { ; CHECK-LABEL: fminv_v32f32: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].s, vl32 ; VBITS_GE_1024-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: fminnmv s0, [[PG]], [[OP]].s ; VBITS_GE_1024-NEXT: ret %op = load <32 x float>, <32 x float>* %a %res = call float @llvm.vector.reduce.fmin.v32f32(<32 x float> %op) ret float %res } define float @fminv_v64f32(<64 x float>* %a) #0 { ; CHECK-LABEL: fminv_v64f32: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].s, vl64 ; VBITS_GE_2048-NEXT: ld1w { [[OP:z[0-9]+]].s }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: fminnmv s0, [[PG]], [[OP]].s ; VBITS_GE_2048-NEXT: ret %op = load <64 x float>, <64 x float>* %a %res = call float @llvm.vector.reduce.fmin.v64f32(<64 x float> %op) ret float %res } ; Nothing to do for single element vectors. define double @fminv_v1f64(<1 x double> %a) #0 { ; CHECK-LABEL: fminv_v1f64: ; CHECK-NOT: fmin ; CHECK: ret %res = call double @llvm.vector.reduce.fmin.v1f64(<1 x double> %a) ret double %res } ; Don't use SVE for 128-bit f64 vectors. define double @fminv_v2f64(<2 x double> %a) #0 { ; CHECK-LABEL: fminv_v2f64: ; CHECK: fminnmp d0, v0.2d ; CHECK-NEXT: ret %res = call double @llvm.vector.reduce.fmin.v2f64(<2 x double> %a) ret double %res } define double @fminv_v4f64(<4 x double>* %a) #0 { ; CHECK-LABEL: fminv_v4f64: ; CHECK: ptrue [[PG:p[0-9]+]].d, vl4 ; CHECK-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; CHECK-NEXT: fminnmv d0, [[PG]], [[OP]].d ; CHECK-NEXT: ret %op = load <4 x double>, <4 x double>* %a %res = call double @llvm.vector.reduce.fmin.v4f64(<4 x double> %op) ret double %res } define double @fminv_v8f64(<8 x double>* %a) #0 { ; CHECK-LABEL: fminv_v8f64: ; VBITS_GE_512: ptrue [[PG:p[0-9]+]].d, vl8 ; VBITS_GE_512-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_512-NEXT: fminnmv d0, [[PG]], [[OP]].d ; VBITS_GE_512-NEXT: ret ; Ensure sensible type legalisation. ; VBITS_EQ_256-DAG: ptrue [[PG:p[0-9]+]].d, vl4 ; VBITS_EQ_256-DAG: add x[[A_HI:[0-9]+]], x0, #32 ; VBITS_EQ_256-DAG: ld1d { [[LO:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_EQ_256-DAG: ld1d { [[HI:z[0-9]+]].d }, [[PG]]/z, [x[[A_HI]]] ; VBITS_EQ_256-DAG: fminnm [[MIN:z[0-9]+]].d, [[PG]]/m, [[LO]].d, [[HI]].d ; VBITS_EQ_256-DAG: fminnmv d0, [[PG]], [[MIN]].d ; VBITS_EQ_256-NEXT: ret %op = load <8 x double>, <8 x double>* %a %res = call double @llvm.vector.reduce.fmin.v8f64(<8 x double> %op) ret double %res } define double @fminv_v16f64(<16 x double>* %a) #0 { ; CHECK-LABEL: fminv_v16f64: ; VBITS_GE_1024: ptrue [[PG:p[0-9]+]].d, vl16 ; VBITS_GE_1024-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_1024-NEXT: fminnmv d0, [[PG]], [[OP]].d ; VBITS_GE_1024-NEXT: ret %op = load <16 x double>, <16 x double>* %a %res = call double @llvm.vector.reduce.fmin.v16f64(<16 x double> %op) ret double %res } define double @fminv_v32f64(<32 x double>* %a) #0 { ; CHECK-LABEL: fminv_v32f64: ; VBITS_GE_2048: ptrue [[PG:p[0-9]+]].d, vl32 ; VBITS_GE_2048-NEXT: ld1d { [[OP:z[0-9]+]].d }, [[PG]]/z, [x0] ; VBITS_GE_2048-NEXT: fminnmv d0, [[PG]], [[OP]].d ; VBITS_GE_2048-NEXT: ret %op = load <32 x double>, <32 x double>* %a %res = call double @llvm.vector.reduce.fmin.v32f64(<32 x double> %op) ret double %res } attributes #0 = { "target-features"="+sve" } declare half @llvm.vector.reduce.fadd.v4f16(half, <4 x half>) declare half @llvm.vector.reduce.fadd.v8f16(half, <8 x half>) declare half @llvm.vector.reduce.fadd.v16f16(half, <16 x half>) declare half @llvm.vector.reduce.fadd.v32f16(half, <32 x half>) declare half @llvm.vector.reduce.fadd.v64f16(half, <64 x half>) declare half @llvm.vector.reduce.fadd.v128f16(half, <128 x half>) declare float @llvm.vector.reduce.fadd.v2f32(float, <2 x float>) declare float @llvm.vector.reduce.fadd.v4f32(float, <4 x float>) declare float @llvm.vector.reduce.fadd.v8f32(float, <8 x float>) declare float @llvm.vector.reduce.fadd.v16f32(float, <16 x float>) declare float @llvm.vector.reduce.fadd.v32f32(float, <32 x float>) declare float @llvm.vector.reduce.fadd.v64f32(float, <64 x float>) declare double @llvm.vector.reduce.fadd.v1f64(double, <1 x double>) declare double @llvm.vector.reduce.fadd.v2f64(double, <2 x double>) declare double @llvm.vector.reduce.fadd.v4f64(double, <4 x double>) declare double @llvm.vector.reduce.fadd.v8f64(double, <8 x double>) declare double @llvm.vector.reduce.fadd.v16f64(double, <16 x double>) declare double @llvm.vector.reduce.fadd.v32f64(double, <32 x double>) declare half @llvm.vector.reduce.fmax.v4f16(<4 x half>) declare half @llvm.vector.reduce.fmax.v8f16(<8 x half>) declare half @llvm.vector.reduce.fmax.v16f16(<16 x half>) declare half @llvm.vector.reduce.fmax.v32f16(<32 x half>) declare half @llvm.vector.reduce.fmax.v64f16(<64 x half>) declare half @llvm.vector.reduce.fmax.v128f16(<128 x half>) declare float @llvm.vector.reduce.fmax.v2f32(<2 x float>) declare float @llvm.vector.reduce.fmax.v4f32(<4 x float>) declare float @llvm.vector.reduce.fmax.v8f32(<8 x float>) declare float @llvm.vector.reduce.fmax.v16f32(<16 x float>) declare float @llvm.vector.reduce.fmax.v32f32(<32 x float>) declare float @llvm.vector.reduce.fmax.v64f32(<64 x float>) declare double @llvm.vector.reduce.fmax.v1f64(<1 x double>) declare double @llvm.vector.reduce.fmax.v2f64(<2 x double>) declare double @llvm.vector.reduce.fmax.v4f64(<4 x double>) declare double @llvm.vector.reduce.fmax.v8f64(<8 x double>) declare double @llvm.vector.reduce.fmax.v16f64(<16 x double>) declare double @llvm.vector.reduce.fmax.v32f64(<32 x double>) declare half @llvm.vector.reduce.fmin.v4f16(<4 x half>) declare half @llvm.vector.reduce.fmin.v8f16(<8 x half>) declare half @llvm.vector.reduce.fmin.v16f16(<16 x half>) declare half @llvm.vector.reduce.fmin.v32f16(<32 x half>) declare half @llvm.vector.reduce.fmin.v64f16(<64 x half>) declare half @llvm.vector.reduce.fmin.v128f16(<128 x half>) declare float @llvm.vector.reduce.fmin.v2f32(<2 x float>) declare float @llvm.vector.reduce.fmin.v4f32(<4 x float>) declare float @llvm.vector.reduce.fmin.v8f32(<8 x float>) declare float @llvm.vector.reduce.fmin.v16f32(<16 x float>) declare float @llvm.vector.reduce.fmin.v32f32(<32 x float>) declare float @llvm.vector.reduce.fmin.v64f32(<64 x float>) declare double @llvm.vector.reduce.fmin.v1f64(<1 x double>) declare double @llvm.vector.reduce.fmin.v2f64(<2 x double>) declare double @llvm.vector.reduce.fmin.v4f64(<4 x double>) declare double @llvm.vector.reduce.fmin.v8f64(<8 x double>) declare double @llvm.vector.reduce.fmin.v16f64(<16 x double>) declare double @llvm.vector.reduce.fmin.v32f64(<32 x double>)