//===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // OpenMP specific optimizations: // // - Deduplication of runtime calls, e.g., omp_get_thread_num. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/OpenMPOpt.h" #include "llvm/ADT/EnumeratedArray.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/CallGraphSCCPass.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Frontend/OpenMP/OMPConstants.h" #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/Attributor.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/CallGraphUpdater.h" #include "llvm/Transforms/Utils/CodeExtractor.h" using namespace llvm; using namespace omp; #define DEBUG_TYPE "openmp-opt" static cl::opt DisableOpenMPOptimizations( "openmp-opt-disable", cl::ZeroOrMore, cl::desc("Disable OpenMP specific optimizations."), cl::Hidden, cl::init(false)); static cl::opt EnableParallelRegionMerging( "openmp-opt-enable-merging", cl::ZeroOrMore, cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden, cl::init(false)); static cl::opt PrintICVValues("openmp-print-icv-values", cl::init(false), cl::Hidden); static cl::opt PrintOpenMPKernels("openmp-print-gpu-kernels", cl::init(false), cl::Hidden); static cl::opt HideMemoryTransferLatency( "openmp-hide-memory-transfer-latency", cl::desc("[WIP] Tries to hide the latency of host to device memory" " transfers"), cl::Hidden, cl::init(false)); STATISTIC(NumOpenMPRuntimeCallsDeduplicated, "Number of OpenMP runtime calls deduplicated"); STATISTIC(NumOpenMPParallelRegionsDeleted, "Number of OpenMP parallel regions deleted"); STATISTIC(NumOpenMPRuntimeFunctionsIdentified, "Number of OpenMP runtime functions identified"); STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified, "Number of OpenMP runtime function uses identified"); STATISTIC(NumOpenMPTargetRegionKernels, "Number of OpenMP target region entry points (=kernels) identified"); STATISTIC( NumOpenMPParallelRegionsReplacedInGPUStateMachine, "Number of OpenMP parallel regions replaced with ID in GPU state machines"); STATISTIC(NumOpenMPParallelRegionsMerged, "Number of OpenMP parallel regions merged"); #if !defined(NDEBUG) static constexpr auto TAG = "[" DEBUG_TYPE "]"; #endif namespace { struct AAICVTracker; /// OpenMP specific information. For now, stores RFIs and ICVs also needed for /// Attributor runs. struct OMPInformationCache : public InformationCache { OMPInformationCache(Module &M, AnalysisGetter &AG, BumpPtrAllocator &Allocator, SetVector &CGSCC, SmallPtrSetImpl &Kernels) : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M), Kernels(Kernels) { OMPBuilder.initialize(); initializeRuntimeFunctions(); initializeInternalControlVars(); } /// Generic information that describes an internal control variable. struct InternalControlVarInfo { /// The kind, as described by InternalControlVar enum. InternalControlVar Kind; /// The name of the ICV. StringRef Name; /// Environment variable associated with this ICV. StringRef EnvVarName; /// Initial value kind. ICVInitValue InitKind; /// Initial value. ConstantInt *InitValue; /// Setter RTL function associated with this ICV. RuntimeFunction Setter; /// Getter RTL function associated with this ICV. RuntimeFunction Getter; /// RTL Function corresponding to the override clause of this ICV RuntimeFunction Clause; }; /// Generic information that describes a runtime function struct RuntimeFunctionInfo { /// The kind, as described by the RuntimeFunction enum. RuntimeFunction Kind; /// The name of the function. StringRef Name; /// Flag to indicate a variadic function. bool IsVarArg; /// The return type of the function. Type *ReturnType; /// The argument types of the function. SmallVector ArgumentTypes; /// The declaration if available. Function *Declaration = nullptr; /// Uses of this runtime function per function containing the use. using UseVector = SmallVector; /// Clear UsesMap for runtime function. void clearUsesMap() { UsesMap.clear(); } /// Boolean conversion that is true if the runtime function was found. operator bool() const { return Declaration; } /// Return the vector of uses in function \p F. UseVector &getOrCreateUseVector(Function *F) { std::shared_ptr &UV = UsesMap[F]; if (!UV) UV = std::make_shared(); return *UV; } /// Return the vector of uses in function \p F or `nullptr` if there are /// none. const UseVector *getUseVector(Function &F) const { auto I = UsesMap.find(&F); if (I != UsesMap.end()) return I->second.get(); return nullptr; } /// Return how many functions contain uses of this runtime function. size_t getNumFunctionsWithUses() const { return UsesMap.size(); } /// Return the number of arguments (or the minimal number for variadic /// functions). size_t getNumArgs() const { return ArgumentTypes.size(); } /// Run the callback \p CB on each use and forget the use if the result is /// true. The callback will be fed the function in which the use was /// encountered as second argument. void foreachUse(SmallVectorImpl &SCC, function_ref CB) { for (Function *F : SCC) foreachUse(CB, F); } /// Run the callback \p CB on each use within the function \p F and forget /// the use if the result is true. void foreachUse(function_ref CB, Function *F) { SmallVector ToBeDeleted; ToBeDeleted.clear(); unsigned Idx = 0; UseVector &UV = getOrCreateUseVector(F); for (Use *U : UV) { if (CB(*U, *F)) ToBeDeleted.push_back(Idx); ++Idx; } // Remove the to-be-deleted indices in reverse order as prior // modifications will not modify the smaller indices. while (!ToBeDeleted.empty()) { unsigned Idx = ToBeDeleted.pop_back_val(); UV[Idx] = UV.back(); UV.pop_back(); } } private: /// Map from functions to all uses of this runtime function contained in /// them. DenseMap> UsesMap; }; /// An OpenMP-IR-Builder instance OpenMPIRBuilder OMPBuilder; /// Map from runtime function kind to the runtime function description. EnumeratedArray RFIs; /// Map from ICV kind to the ICV description. EnumeratedArray ICVs; /// Helper to initialize all internal control variable information for those /// defined in OMPKinds.def. void initializeInternalControlVars() { #define ICV_RT_SET(_Name, RTL) \ { \ auto &ICV = ICVs[_Name]; \ ICV.Setter = RTL; \ } #define ICV_RT_GET(Name, RTL) \ { \ auto &ICV = ICVs[Name]; \ ICV.Getter = RTL; \ } #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \ { \ auto &ICV = ICVs[Enum]; \ ICV.Name = _Name; \ ICV.Kind = Enum; \ ICV.InitKind = Init; \ ICV.EnvVarName = _EnvVarName; \ switch (ICV.InitKind) { \ case ICV_IMPLEMENTATION_DEFINED: \ ICV.InitValue = nullptr; \ break; \ case ICV_ZERO: \ ICV.InitValue = ConstantInt::get( \ Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \ break; \ case ICV_FALSE: \ ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \ break; \ case ICV_LAST: \ break; \ } \ } #include "llvm/Frontend/OpenMP/OMPKinds.def" } /// Returns true if the function declaration \p F matches the runtime /// function types, that is, return type \p RTFRetType, and argument types /// \p RTFArgTypes. static bool declMatchesRTFTypes(Function *F, Type *RTFRetType, SmallVector &RTFArgTypes) { // TODO: We should output information to the user (under debug output // and via remarks). if (!F) return false; if (F->getReturnType() != RTFRetType) return false; if (F->arg_size() != RTFArgTypes.size()) return false; auto RTFTyIt = RTFArgTypes.begin(); for (Argument &Arg : F->args()) { if (Arg.getType() != *RTFTyIt) return false; ++RTFTyIt; } return true; } // Helper to collect all uses of the declaration in the UsesMap. unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) { unsigned NumUses = 0; if (!RFI.Declaration) return NumUses; OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration); if (CollectStats) { NumOpenMPRuntimeFunctionsIdentified += 1; NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses(); } // TODO: We directly convert uses into proper calls and unknown uses. for (Use &U : RFI.Declaration->uses()) { if (Instruction *UserI = dyn_cast(U.getUser())) { if (ModuleSlice.count(UserI->getFunction())) { RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U); ++NumUses; } } else { RFI.getOrCreateUseVector(nullptr).push_back(&U); ++NumUses; } } return NumUses; } // Helper function to recollect uses of a runtime function. void recollectUsesForFunction(RuntimeFunction RTF) { auto &RFI = RFIs[RTF]; RFI.clearUsesMap(); collectUses(RFI, /*CollectStats*/ false); } // Helper function to recollect uses of all runtime functions. void recollectUses() { for (int Idx = 0; Idx < RFIs.size(); ++Idx) recollectUsesForFunction(static_cast(Idx)); } /// Helper to initialize all runtime function information for those defined /// in OpenMPKinds.def. void initializeRuntimeFunctions() { Module &M = *((*ModuleSlice.begin())->getParent()); // Helper macros for handling __VA_ARGS__ in OMP_RTL #define OMP_TYPE(VarName, ...) \ Type *VarName = OMPBuilder.VarName; \ (void)VarName; #define OMP_ARRAY_TYPE(VarName, ...) \ ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \ (void)VarName##Ty; \ PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \ (void)VarName##PtrTy; #define OMP_FUNCTION_TYPE(VarName, ...) \ FunctionType *VarName = OMPBuilder.VarName; \ (void)VarName; \ PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ (void)VarName##Ptr; #define OMP_STRUCT_TYPE(VarName, ...) \ StructType *VarName = OMPBuilder.VarName; \ (void)VarName; \ PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \ (void)VarName##Ptr; #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \ { \ SmallVector ArgsTypes({__VA_ARGS__}); \ Function *F = M.getFunction(_Name); \ if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \ auto &RFI = RFIs[_Enum]; \ RFI.Kind = _Enum; \ RFI.Name = _Name; \ RFI.IsVarArg = _IsVarArg; \ RFI.ReturnType = OMPBuilder._ReturnType; \ RFI.ArgumentTypes = std::move(ArgsTypes); \ RFI.Declaration = F; \ unsigned NumUses = collectUses(RFI); \ (void)NumUses; \ LLVM_DEBUG({ \ dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \ << " found\n"; \ if (RFI.Declaration) \ dbgs() << TAG << "-> got " << NumUses << " uses in " \ << RFI.getNumFunctionsWithUses() \ << " different functions.\n"; \ }); \ } \ } #include "llvm/Frontend/OpenMP/OMPKinds.def" // TODO: We should attach the attributes defined in OMPKinds.def. } /// Collection of known kernels (\see Kernel) in the module. SmallPtrSetImpl &Kernels; }; /// Used to map the values physically (in the IR) stored in an offload /// array, to a vector in memory. struct OffloadArray { /// Physical array (in the IR). AllocaInst *Array = nullptr; /// Mapped values. SmallVector StoredValues; /// Last stores made in the offload array. SmallVector LastAccesses; OffloadArray() = default; /// Initializes the OffloadArray with the values stored in \p Array before /// instruction \p Before is reached. Returns false if the initialization /// fails. /// This MUST be used immediately after the construction of the object. bool initialize(AllocaInst &Array, Instruction &Before) { if (!Array.getAllocatedType()->isArrayTy()) return false; if (!getValues(Array, Before)) return false; this->Array = &Array; return true; } static const unsigned DeviceIDArgNum = 1; static const unsigned BasePtrsArgNum = 3; static const unsigned PtrsArgNum = 4; static const unsigned SizesArgNum = 5; private: /// Traverses the BasicBlock where \p Array is, collecting the stores made to /// \p Array, leaving StoredValues with the values stored before the /// instruction \p Before is reached. bool getValues(AllocaInst &Array, Instruction &Before) { // Initialize container. const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements(); StoredValues.assign(NumValues, nullptr); LastAccesses.assign(NumValues, nullptr); // TODO: This assumes the instruction \p Before is in the same // BasicBlock as Array. Make it general, for any control flow graph. BasicBlock *BB = Array.getParent(); if (BB != Before.getParent()) return false; const DataLayout &DL = Array.getModule()->getDataLayout(); const unsigned int PointerSize = DL.getPointerSize(); for (Instruction &I : *BB) { if (&I == &Before) break; if (!isa(&I)) continue; auto *S = cast(&I); int64_t Offset = -1; auto *Dst = GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL); if (Dst == &Array) { int64_t Idx = Offset / PointerSize; StoredValues[Idx] = getUnderlyingObject(S->getValueOperand()); LastAccesses[Idx] = S; } } return isFilled(); } /// Returns true if all values in StoredValues and /// LastAccesses are not nullptrs. bool isFilled() { const unsigned NumValues = StoredValues.size(); for (unsigned I = 0; I < NumValues; ++I) { if (!StoredValues[I] || !LastAccesses[I]) return false; } return true; } }; struct OpenMPOpt { using OptimizationRemarkGetter = function_ref; OpenMPOpt(SmallVectorImpl &SCC, CallGraphUpdater &CGUpdater, OptimizationRemarkGetter OREGetter, OMPInformationCache &OMPInfoCache, Attributor &A) : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater), OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {} /// Check if any remarks are enabled for openmp-opt bool remarksEnabled() { auto &Ctx = M.getContext(); return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE); } /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice. bool run() { if (SCC.empty()) return false; bool Changed = false; LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size() << " functions in a slice with " << OMPInfoCache.ModuleSlice.size() << " functions\n"); if (PrintICVValues) printICVs(); if (PrintOpenMPKernels) printKernels(); Changed |= rewriteDeviceCodeStateMachine(); Changed |= runAttributor(); // Recollect uses, in case Attributor deleted any. OMPInfoCache.recollectUses(); Changed |= deleteParallelRegions(); if (HideMemoryTransferLatency) Changed |= hideMemTransfersLatency(); if (remarksEnabled()) analysisGlobalization(); Changed |= deduplicateRuntimeCalls(); if (EnableParallelRegionMerging) { if (mergeParallelRegions()) { deduplicateRuntimeCalls(); Changed = true; } } return Changed; } /// Print initial ICV values for testing. /// FIXME: This should be done from the Attributor once it is added. void printICVs() const { InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel, ICV_proc_bind}; for (Function *F : OMPInfoCache.ModuleSlice) { for (auto ICV : ICVs) { auto ICVInfo = OMPInfoCache.ICVs[ICV]; auto Remark = [&](OptimizationRemark OR) { return OR << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name) << " Value: " << (ICVInfo.InitValue ? ICVInfo.InitValue->getValue().toString(10, true) : "IMPLEMENTATION_DEFINED"); }; emitRemarkOnFunction(F, "OpenMPICVTracker", Remark); } } } /// Print OpenMP GPU kernels for testing. void printKernels() const { for (Function *F : SCC) { if (!OMPInfoCache.Kernels.count(F)) continue; auto Remark = [&](OptimizationRemark OR) { return OR << "OpenMP GPU kernel " << ore::NV("OpenMPGPUKernel", F->getName()) << "\n"; }; emitRemarkOnFunction(F, "OpenMPGPU", Remark); } } /// Return the call if \p U is a callee use in a regular call. If \p RFI is /// given it has to be the callee or a nullptr is returned. static CallInst *getCallIfRegularCall( Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { CallInst *CI = dyn_cast(U.getUser()); if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() && (!RFI || CI->getCalledFunction() == RFI->Declaration)) return CI; return nullptr; } /// Return the call if \p V is a regular call. If \p RFI is given it has to be /// the callee or a nullptr is returned. static CallInst *getCallIfRegularCall( Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) { CallInst *CI = dyn_cast(&V); if (CI && !CI->hasOperandBundles() && (!RFI || CI->getCalledFunction() == RFI->Declaration)) return CI; return nullptr; } private: /// Merge parallel regions when it is safe. bool mergeParallelRegions() { const unsigned CallbackCalleeOperand = 2; const unsigned CallbackFirstArgOperand = 3; using InsertPointTy = OpenMPIRBuilder::InsertPointTy; // Check if there are any __kmpc_fork_call calls to merge. OMPInformationCache::RuntimeFunctionInfo &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; if (!RFI.Declaration) return false; // Unmergable calls that prevent merging a parallel region. OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = { OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind], OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads], }; bool Changed = false; LoopInfo *LI = nullptr; DominatorTree *DT = nullptr; SmallDenseMap> BB2PRMap; BasicBlock *StartBB = nullptr, *EndBB = nullptr; auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, BasicBlock &ContinuationIP) { BasicBlock *CGStartBB = CodeGenIP.getBlock(); BasicBlock *CGEndBB = SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); assert(StartBB != nullptr && "StartBB should not be null"); CGStartBB->getTerminator()->setSuccessor(0, StartBB); assert(EndBB != nullptr && "EndBB should not be null"); EndBB->getTerminator()->setSuccessor(0, CGEndBB); }; auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &, Value &Inner, Value *&ReplacementValue) -> InsertPointTy { ReplacementValue = &Inner; return CodeGenIP; }; auto FiniCB = [&](InsertPointTy CodeGenIP) {}; /// Create a sequential execution region within a merged parallel region, /// encapsulated in a master construct with a barrier for synchronization. auto CreateSequentialRegion = [&](Function *OuterFn, BasicBlock *OuterPredBB, Instruction *SeqStartI, Instruction *SeqEndI) { // Isolate the instructions of the sequential region to a separate // block. BasicBlock *ParentBB = SeqStartI->getParent(); BasicBlock *SeqEndBB = SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI); BasicBlock *SeqAfterBB = SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI); BasicBlock *SeqStartBB = SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged"); assert(ParentBB->getUniqueSuccessor() == SeqStartBB && "Expected a different CFG"); const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc(); ParentBB->getTerminator()->eraseFromParent(); auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, BasicBlock &ContinuationIP) { BasicBlock *CGStartBB = CodeGenIP.getBlock(); BasicBlock *CGEndBB = SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI); assert(SeqStartBB != nullptr && "SeqStartBB should not be null"); CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB); assert(SeqEndBB != nullptr && "SeqEndBB should not be null"); SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB); }; auto FiniCB = [&](InsertPointTy CodeGenIP) {}; // Find outputs from the sequential region to outside users and // broadcast their values to them. for (Instruction &I : *SeqStartBB) { SmallPtrSet OutsideUsers; for (User *Usr : I.users()) { Instruction &UsrI = *cast(Usr); // Ignore outputs to LT intrinsics, code extraction for the merged // parallel region will fix them. if (UsrI.isLifetimeStartOrEnd()) continue; if (UsrI.getParent() != SeqStartBB) OutsideUsers.insert(&UsrI); } if (OutsideUsers.empty()) continue; // Emit an alloca in the outer region to store the broadcasted // value. const DataLayout &DL = M.getDataLayout(); AllocaInst *AllocaI = new AllocaInst( I.getType(), DL.getAllocaAddrSpace(), nullptr, I.getName() + ".seq.output.alloc", &OuterFn->front().front()); // Emit a store instruction in the sequential BB to update the // value. new StoreInst(&I, AllocaI, SeqStartBB->getTerminator()); // Emit a load instruction and replace the use of the output value // with it. for (Instruction *UsrI : OutsideUsers) { LoadInst *LoadI = new LoadInst(I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI); UsrI->replaceUsesOfWith(&I, LoadI); } } OpenMPIRBuilder::LocationDescription Loc( InsertPointTy(ParentBB, ParentBB->end()), DL); InsertPointTy SeqAfterIP = OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB); OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel); BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock()); LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn << "\n"); }; // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all // contained in BB and only separated by instructions that can be // redundantly executed in parallel. The block BB is split before the first // call (in MergableCIs) and after the last so the entire region we merge // into a single parallel region is contained in a single basic block // without any other instructions. We use the OpenMPIRBuilder to outline // that block and call the resulting function via __kmpc_fork_call. auto Merge = [&](SmallVectorImpl &MergableCIs, BasicBlock *BB) { // TODO: Change the interface to allow single CIs expanded, e.g, to // include an outer loop. assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs"); auto Remark = [&](OptimizationRemark OR) { OR << "Parallel region at " << ore::NV("OpenMPParallelMergeFront", MergableCIs.front()->getDebugLoc()) << " merged with parallel regions at "; for (auto *CI : llvm::drop_begin(MergableCIs)) { OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()); if (CI != MergableCIs.back()) OR << ", "; } return OR; }; emitRemark(MergableCIs.front(), "OpenMPParallelRegionMerging", Remark); Function *OriginalFn = BB->getParent(); LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size() << " parallel regions in " << OriginalFn->getName() << "\n"); // Isolate the calls to merge in a separate block. EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI); BasicBlock *AfterBB = SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI); StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr, "omp.par.merged"); assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG"); const DebugLoc DL = BB->getTerminator()->getDebugLoc(); BB->getTerminator()->eraseFromParent(); // Create sequential regions for sequential instructions that are // in-between mergable parallel regions. for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1; It != End; ++It) { Instruction *ForkCI = *It; Instruction *NextForkCI = *(It + 1); // Continue if there are not in-between instructions. if (ForkCI->getNextNode() == NextForkCI) continue; CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(), NextForkCI->getPrevNode()); } OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()), DL); IRBuilder<>::InsertPoint AllocaIP( &OriginalFn->getEntryBlock(), OriginalFn->getEntryBlock().getFirstInsertionPt()); // Create the merged parallel region with default proc binding, to // avoid overriding binding settings, and without explicit cancellation. InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel( Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr, OMP_PROC_BIND_default, /* IsCancellable */ false); BranchInst::Create(AfterBB, AfterIP.getBlock()); // Perform the actual outlining. OMPInfoCache.OMPBuilder.finalize(/* AllowExtractorSinking */ true); Function *OutlinedFn = MergableCIs.front()->getCaller(); // Replace the __kmpc_fork_call calls with direct calls to the outlined // callbacks. SmallVector Args; for (auto *CI : MergableCIs) { Value *Callee = CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts(); FunctionType *FT = cast(Callee->getType()->getPointerElementType()); Args.clear(); Args.push_back(OutlinedFn->getArg(0)); Args.push_back(OutlinedFn->getArg(1)); for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); U < E; ++U) Args.push_back(CI->getArgOperand(U)); CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI); if (CI->getDebugLoc()) NewCI->setDebugLoc(CI->getDebugLoc()); // Forward parameter attributes from the callback to the callee. for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands(); U < E; ++U) for (const Attribute &A : CI->getAttributes().getParamAttributes(U)) NewCI->addParamAttr( U - (CallbackFirstArgOperand - CallbackCalleeOperand), A); // Emit an explicit barrier to replace the implicit fork-join barrier. if (CI != MergableCIs.back()) { // TODO: Remove barrier if the merged parallel region includes the // 'nowait' clause. OMPInfoCache.OMPBuilder.createBarrier( InsertPointTy(NewCI->getParent(), NewCI->getNextNode()->getIterator()), OMPD_parallel); } auto Remark = [&](OptimizationRemark OR) { return OR << "Parallel region at " << ore::NV("OpenMPParallelMerge", CI->getDebugLoc()) << " merged with " << ore::NV("OpenMPParallelMergeFront", MergableCIs.front()->getDebugLoc()); }; if (CI != MergableCIs.front()) emitRemark(CI, "OpenMPParallelRegionMerging", Remark); CI->eraseFromParent(); } assert(OutlinedFn != OriginalFn && "Outlining failed"); CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn); CGUpdater.reanalyzeFunction(*OriginalFn); NumOpenMPParallelRegionsMerged += MergableCIs.size(); return true; }; // Helper function that identifes sequences of // __kmpc_fork_call uses in a basic block. auto DetectPRsCB = [&](Use &U, Function &F) { CallInst *CI = getCallIfRegularCall(U, &RFI); BB2PRMap[CI->getParent()].insert(CI); return false; }; BB2PRMap.clear(); RFI.foreachUse(SCC, DetectPRsCB); SmallVector, 4> MergableCIsVector; // Find mergable parallel regions within a basic block that are // safe to merge, that is any in-between instructions can safely // execute in parallel after merging. // TODO: support merging across basic-blocks. for (auto &It : BB2PRMap) { auto &CIs = It.getSecond(); if (CIs.size() < 2) continue; BasicBlock *BB = It.getFirst(); SmallVector MergableCIs; /// Returns true if the instruction is mergable, false otherwise. /// A terminator instruction is unmergable by definition since merging /// works within a BB. Instructions before the mergable region are /// mergable if they are not calls to OpenMP runtime functions that may /// set different execution parameters for subsequent parallel regions. /// Instructions in-between parallel regions are mergable if they are not /// calls to any non-intrinsic function since that may call a non-mergable /// OpenMP runtime function. auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) { // We do not merge across BBs, hence return false (unmergable) if the // instruction is a terminator. if (I.isTerminator()) return false; if (!isa(&I)) return true; CallInst *CI = cast(&I); if (IsBeforeMergableRegion) { Function *CalledFunction = CI->getCalledFunction(); if (!CalledFunction) return false; // Return false (unmergable) if the call before the parallel // region calls an explicit affinity (proc_bind) or number of // threads (num_threads) compiler-generated function. Those settings // may be incompatible with following parallel regions. // TODO: ICV tracking to detect compatibility. for (const auto &RFI : UnmergableCallsInfo) { if (CalledFunction == RFI.Declaration) return false; } } else { // Return false (unmergable) if there is a call instruction // in-between parallel regions when it is not an intrinsic. It // may call an unmergable OpenMP runtime function in its callpath. // TODO: Keep track of possible OpenMP calls in the callpath. if (!isa(CI)) return false; } return true; }; // Find maximal number of parallel region CIs that are safe to merge. for (auto It = BB->begin(), End = BB->end(); It != End;) { Instruction &I = *It; ++It; if (CIs.count(&I)) { MergableCIs.push_back(cast(&I)); continue; } // Continue expanding if the instruction is mergable. if (IsMergable(I, MergableCIs.empty())) continue; // Forward the instruction iterator to skip the next parallel region // since there is an unmergable instruction which can affect it. for (; It != End; ++It) { Instruction &SkipI = *It; if (CIs.count(&SkipI)) { LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI << " due to " << I << "\n"); ++It; break; } } // Store mergable regions found. if (MergableCIs.size() > 1) { MergableCIsVector.push_back(MergableCIs); LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size() << " parallel regions in block " << BB->getName() << " of function " << BB->getParent()->getName() << "\n";); } MergableCIs.clear(); } if (!MergableCIsVector.empty()) { Changed = true; for (auto &MergableCIs : MergableCIsVector) Merge(MergableCIs, BB); } } if (Changed) { /// Re-collect use for fork calls, emitted barrier calls, and /// any emitted master/end_master calls. OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call); OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier); OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master); OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master); } return Changed; } /// Try to delete parallel regions if possible. bool deleteParallelRegions() { const unsigned CallbackCalleeOperand = 2; OMPInformationCache::RuntimeFunctionInfo &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call]; if (!RFI.Declaration) return false; bool Changed = false; auto DeleteCallCB = [&](Use &U, Function &) { CallInst *CI = getCallIfRegularCall(U); if (!CI) return false; auto *Fn = dyn_cast( CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts()); if (!Fn) return false; if (!Fn->onlyReadsMemory()) return false; if (!Fn->hasFnAttribute(Attribute::WillReturn)) return false; LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in " << CI->getCaller()->getName() << "\n"); auto Remark = [&](OptimizationRemark OR) { return OR << "Parallel region in " << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName()) << " deleted"; }; emitRemark(CI, "OpenMPParallelRegionDeletion", Remark); CGUpdater.removeCallSite(*CI); CI->eraseFromParent(); Changed = true; ++NumOpenMPParallelRegionsDeleted; return true; }; RFI.foreachUse(SCC, DeleteCallCB); return Changed; } /// Try to eliminate runtime calls by reusing existing ones. bool deduplicateRuntimeCalls() { bool Changed = false; RuntimeFunction DeduplicableRuntimeCallIDs[] = { OMPRTL_omp_get_num_threads, OMPRTL_omp_in_parallel, OMPRTL_omp_get_cancellation, OMPRTL_omp_get_thread_limit, OMPRTL_omp_get_supported_active_levels, OMPRTL_omp_get_level, OMPRTL_omp_get_ancestor_thread_num, OMPRTL_omp_get_team_size, OMPRTL_omp_get_active_level, OMPRTL_omp_in_final, OMPRTL_omp_get_proc_bind, OMPRTL_omp_get_num_places, OMPRTL_omp_get_num_procs, OMPRTL_omp_get_place_num, OMPRTL_omp_get_partition_num_places, OMPRTL_omp_get_partition_place_nums}; // Global-tid is handled separately. SmallSetVector GTIdArgs; collectGlobalThreadIdArguments(GTIdArgs); LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size() << " global thread ID arguments\n"); for (Function *F : SCC) { for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs) Changed |= deduplicateRuntimeCalls( *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]); // __kmpc_global_thread_num is special as we can replace it with an // argument in enough cases to make it worth trying. Value *GTIdArg = nullptr; for (Argument &Arg : F->args()) if (GTIdArgs.count(&Arg)) { GTIdArg = &Arg; break; } Changed |= deduplicateRuntimeCalls( *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg); } return Changed; } /// Tries to hide the latency of runtime calls that involve host to /// device memory transfers by splitting them into their "issue" and "wait" /// versions. The "issue" is moved upwards as much as possible. The "wait" is /// moved downards as much as possible. The "issue" issues the memory transfer /// asynchronously, returning a handle. The "wait" waits in the returned /// handle for the memory transfer to finish. bool hideMemTransfersLatency() { auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper]; bool Changed = false; auto SplitMemTransfers = [&](Use &U, Function &Decl) { auto *RTCall = getCallIfRegularCall(U, &RFI); if (!RTCall) return false; OffloadArray OffloadArrays[3]; if (!getValuesInOffloadArrays(*RTCall, OffloadArrays)) return false; LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays)); // TODO: Check if can be moved upwards. bool WasSplit = false; Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall); if (WaitMovementPoint) WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint); Changed |= WasSplit; return WasSplit; }; RFI.foreachUse(SCC, SplitMemTransfers); return Changed; } void analysisGlobalization() { RuntimeFunction GlobalizationRuntimeIDs[] = { OMPRTL___kmpc_data_sharing_coalesced_push_stack, OMPRTL___kmpc_data_sharing_push_stack}; for (const auto GlobalizationCallID : GlobalizationRuntimeIDs) { auto &RFI = OMPInfoCache.RFIs[GlobalizationCallID]; auto CheckGlobalization = [&](Use &U, Function &Decl) { if (CallInst *CI = getCallIfRegularCall(U, &RFI)) { auto Remark = [&](OptimizationRemarkAnalysis ORA) { return ORA << "Found thread data sharing on the GPU. " << "Expect degraded performance due to data globalization."; }; emitRemark(CI, "OpenMPGlobalization", Remark); } return false; }; RFI.foreachUse(SCC, CheckGlobalization); } } /// Maps the values stored in the offload arrays passed as arguments to /// \p RuntimeCall into the offload arrays in \p OAs. bool getValuesInOffloadArrays(CallInst &RuntimeCall, MutableArrayRef OAs) { assert(OAs.size() == 3 && "Need space for three offload arrays!"); // A runtime call that involves memory offloading looks something like: // call void @__tgt_target_data_begin_mapper(arg0, arg1, // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes, // ...) // So, the idea is to access the allocas that allocate space for these // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes. // Therefore: // i8** %offload_baseptrs. Value *BasePtrsArg = RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum); // i8** %offload_ptrs. Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum); // i8** %offload_sizes. Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum); // Get values stored in **offload_baseptrs. auto *V = getUnderlyingObject(BasePtrsArg); if (!isa(V)) return false; auto *BasePtrsArray = cast(V); if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall)) return false; // Get values stored in **offload_baseptrs. V = getUnderlyingObject(PtrsArg); if (!isa(V)) return false; auto *PtrsArray = cast(V); if (!OAs[1].initialize(*PtrsArray, RuntimeCall)) return false; // Get values stored in **offload_sizes. V = getUnderlyingObject(SizesArg); // If it's a [constant] global array don't analyze it. if (isa(V)) return isa(V); if (!isa(V)) return false; auto *SizesArray = cast(V); if (!OAs[2].initialize(*SizesArray, RuntimeCall)) return false; return true; } /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG. /// For now this is a way to test that the function getValuesInOffloadArrays /// is working properly. /// TODO: Move this to a unittest when unittests are available for OpenMPOpt. void dumpValuesInOffloadArrays(ArrayRef OAs) { assert(OAs.size() == 3 && "There are three offload arrays to debug!"); LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n"); std::string ValuesStr; raw_string_ostream Printer(ValuesStr); std::string Separator = " --- "; for (auto *BP : OAs[0].StoredValues) { BP->print(Printer); Printer << Separator; } LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n"); ValuesStr.clear(); for (auto *P : OAs[1].StoredValues) { P->print(Printer); Printer << Separator; } LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n"); ValuesStr.clear(); for (auto *S : OAs[2].StoredValues) { S->print(Printer); Printer << Separator; } LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n"); } /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be /// moved. Returns nullptr if the movement is not possible, or not worth it. Instruction *canBeMovedDownwards(CallInst &RuntimeCall) { // FIXME: This traverses only the BasicBlock where RuntimeCall is. // Make it traverse the CFG. Instruction *CurrentI = &RuntimeCall; bool IsWorthIt = false; while ((CurrentI = CurrentI->getNextNode())) { // TODO: Once we detect the regions to be offloaded we should use the // alias analysis manager to check if CurrentI may modify one of // the offloaded regions. if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) { if (IsWorthIt) return CurrentI; return nullptr; } // FIXME: For now if we move it over anything without side effect // is worth it. IsWorthIt = true; } // Return end of BasicBlock. return RuntimeCall.getParent()->getTerminator(); } /// Splits \p RuntimeCall into its "issue" and "wait" counterparts. bool splitTargetDataBeginRTC(CallInst &RuntimeCall, Instruction &WaitMovementPoint) { // Create stack allocated handle (__tgt_async_info) at the beginning of the // function. Used for storing information of the async transfer, allowing to // wait on it later. auto &IRBuilder = OMPInfoCache.OMPBuilder; auto *F = RuntimeCall.getCaller(); Instruction *FirstInst = &(F->getEntryBlock().front()); AllocaInst *Handle = new AllocaInst( IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst); // Add "issue" runtime call declaration: // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32, // i8**, i8**, i64*, i64*) FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction( M, OMPRTL___tgt_target_data_begin_mapper_issue); // Change RuntimeCall call site for its asynchronous version. SmallVector Args; for (auto &Arg : RuntimeCall.args()) Args.push_back(Arg.get()); Args.push_back(Handle); CallInst *IssueCallsite = CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall); RuntimeCall.eraseFromParent(); // Add "wait" runtime call declaration: // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info) FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction( M, OMPRTL___tgt_target_data_begin_mapper_wait); Value *WaitParams[2] = { IssueCallsite->getArgOperand( OffloadArray::DeviceIDArgNum), // device_id. Handle // handle to wait on. }; CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint); return true; } static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent, bool GlobalOnly, bool &SingleChoice) { if (CurrentIdent == NextIdent) return CurrentIdent; // TODO: Figure out how to actually combine multiple debug locations. For // now we just keep an existing one if there is a single choice. if (!GlobalOnly || isa(NextIdent)) { SingleChoice = !CurrentIdent; return NextIdent; } return nullptr; } /// Return an `struct ident_t*` value that represents the ones used in the /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not /// return a local `struct ident_t*`. For now, if we cannot find a suitable /// return value we create one from scratch. We also do not yet combine /// information, e.g., the source locations, see combinedIdentStruct. Value * getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI, Function &F, bool GlobalOnly) { bool SingleChoice = true; Value *Ident = nullptr; auto CombineIdentStruct = [&](Use &U, Function &Caller) { CallInst *CI = getCallIfRegularCall(U, &RFI); if (!CI || &F != &Caller) return false; Ident = combinedIdentStruct(Ident, CI->getArgOperand(0), /* GlobalOnly */ true, SingleChoice); return false; }; RFI.foreachUse(SCC, CombineIdentStruct); if (!Ident || !SingleChoice) { // The IRBuilder uses the insertion block to get to the module, this is // unfortunate but we work around it for now. if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock()) OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy( &F.getEntryBlock(), F.getEntryBlock().begin())); // Create a fallback location if non was found. // TODO: Use the debug locations of the calls instead. Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(); Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc); } return Ident; } /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or /// \p ReplVal if given. bool deduplicateRuntimeCalls(Function &F, OMPInformationCache::RuntimeFunctionInfo &RFI, Value *ReplVal = nullptr) { auto *UV = RFI.getUseVector(F); if (!UV || UV->size() + (ReplVal != nullptr) < 2) return false; LLVM_DEBUG( dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name << (ReplVal ? " with an existing value\n" : "\n") << "\n"); assert((!ReplVal || (isa(ReplVal) && cast(ReplVal)->getParent() == &F)) && "Unexpected replacement value!"); // TODO: Use dominance to find a good position instead. auto CanBeMoved = [this](CallBase &CB) { unsigned NumArgs = CB.getNumArgOperands(); if (NumArgs == 0) return true; if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr) return false; for (unsigned u = 1; u < NumArgs; ++u) if (isa(CB.getArgOperand(u))) return false; return true; }; if (!ReplVal) { for (Use *U : *UV) if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) { if (!CanBeMoved(*CI)) continue; auto Remark = [&](OptimizationRemark OR) { auto newLoc = &*F.getEntryBlock().getFirstInsertionPt(); return OR << "OpenMP runtime call " << ore::NV("OpenMPOptRuntime", RFI.Name) << " moved to " << ore::NV("OpenMPRuntimeMoves", newLoc->getDebugLoc()); }; emitRemark(CI, "OpenMPRuntimeCodeMotion", Remark); CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt()); ReplVal = CI; break; } if (!ReplVal) return false; } // If we use a call as a replacement value we need to make sure the ident is // valid at the new location. For now we just pick a global one, either // existing and used by one of the calls, or created from scratch. if (CallBase *CI = dyn_cast(ReplVal)) { if (CI->getNumArgOperands() > 0 && CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) { Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F, /* GlobalOnly */ true); CI->setArgOperand(0, Ident); } } bool Changed = false; auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) { CallInst *CI = getCallIfRegularCall(U, &RFI); if (!CI || CI == ReplVal || &F != &Caller) return false; assert(CI->getCaller() == &F && "Unexpected call!"); auto Remark = [&](OptimizationRemark OR) { return OR << "OpenMP runtime call " << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated"; }; emitRemark(CI, "OpenMPRuntimeDeduplicated", Remark); CGUpdater.removeCallSite(*CI); CI->replaceAllUsesWith(ReplVal); CI->eraseFromParent(); ++NumOpenMPRuntimeCallsDeduplicated; Changed = true; return true; }; RFI.foreachUse(SCC, ReplaceAndDeleteCB); return Changed; } /// Collect arguments that represent the global thread id in \p GTIdArgs. void collectGlobalThreadIdArguments(SmallSetVector >IdArgs) { // TODO: Below we basically perform a fixpoint iteration with a pessimistic // initialization. We could define an AbstractAttribute instead and // run the Attributor here once it can be run as an SCC pass. // Helper to check the argument \p ArgNo at all call sites of \p F for // a GTId. auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) { if (!F.hasLocalLinkage()) return false; for (Use &U : F.uses()) { if (CallInst *CI = getCallIfRegularCall(U)) { Value *ArgOp = CI->getArgOperand(ArgNo); if (CI == &RefCI || GTIdArgs.count(ArgOp) || getCallIfRegularCall( *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num])) continue; } return false; } return true; }; // Helper to identify uses of a GTId as GTId arguments. auto AddUserArgs = [&](Value >Id) { for (Use &U : GTId.uses()) if (CallInst *CI = dyn_cast(U.getUser())) if (CI->isArgOperand(&U)) if (Function *Callee = CI->getCalledFunction()) if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI)) GTIdArgs.insert(Callee->getArg(U.getOperandNo())); }; // The argument users of __kmpc_global_thread_num calls are GTIds. OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]; GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) { if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI)) AddUserArgs(*CI); return false; }); // Transitively search for more arguments by looking at the users of the // ones we know already. During the search the GTIdArgs vector is extended // so we cannot cache the size nor can we use a range based for. for (unsigned u = 0; u < GTIdArgs.size(); ++u) AddUserArgs(*GTIdArgs[u]); } /// Kernel (=GPU) optimizations and utility functions /// ///{{ /// Check if \p F is a kernel, hence entry point for target offloading. bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); } /// Cache to remember the unique kernel for a function. DenseMap> UniqueKernelMap; /// Find the unique kernel that will execute \p F, if any. Kernel getUniqueKernelFor(Function &F); /// Find the unique kernel that will execute \p I, if any. Kernel getUniqueKernelFor(Instruction &I) { return getUniqueKernelFor(*I.getFunction()); } /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in /// the cases we can avoid taking the address of a function. bool rewriteDeviceCodeStateMachine(); /// ///}} /// Emit a remark generically /// /// This template function can be used to generically emit a remark. The /// RemarkKind should be one of the following: /// - OptimizationRemark to indicate a successful optimization attempt /// - OptimizationRemarkMissed to report a failed optimization attempt /// - OptimizationRemarkAnalysis to provide additional information about an /// optimization attempt /// /// The remark is built using a callback function provided by the caller that /// takes a RemarkKind as input and returns a RemarkKind. template > void emitRemark(Instruction *Inst, StringRef RemarkName, RemarkCallBack &&RemarkCB) const { Function *F = Inst->getParent()->getParent(); auto &ORE = OREGetter(F); ORE.emit( [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, Inst)); }); } /// Emit a remark on a function. Since only OptimizationRemark is supporting /// this, it can't be made generic. void emitRemarkOnFunction(Function *F, StringRef RemarkName, function_ref &&RemarkCB) const { auto &ORE = OREGetter(F); ORE.emit([&]() { return RemarkCB(OptimizationRemark(DEBUG_TYPE, RemarkName, F)); }); } /// The underlying module. Module &M; /// The SCC we are operating on. SmallVectorImpl &SCC; /// Callback to update the call graph, the first argument is a removed call, /// the second an optional replacement call. CallGraphUpdater &CGUpdater; /// Callback to get an OptimizationRemarkEmitter from a Function * OptimizationRemarkGetter OREGetter; /// OpenMP-specific information cache. Also Used for Attributor runs. OMPInformationCache &OMPInfoCache; /// Attributor instance. Attributor &A; /// Helper function to run Attributor on SCC. bool runAttributor() { if (SCC.empty()) return false; registerAAs(); ChangeStatus Changed = A.run(); LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size() << " functions, result: " << Changed << ".\n"); return Changed == ChangeStatus::CHANGED; } /// Populate the Attributor with abstract attribute opportunities in the /// function. void registerAAs() { if (SCC.empty()) return; // Create CallSite AA for all Getters. for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) { auto ICVInfo = OMPInfoCache.ICVs[static_cast(Idx)]; auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter]; auto CreateAA = [&](Use &U, Function &Caller) { CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI); if (!CI) return false; auto &CB = cast(*CI); IRPosition CBPos = IRPosition::callsite_function(CB); A.getOrCreateAAFor(CBPos); return false; }; GetterRFI.foreachUse(SCC, CreateAA); } } }; Kernel OpenMPOpt::getUniqueKernelFor(Function &F) { if (!OMPInfoCache.ModuleSlice.count(&F)) return nullptr; // Use a scope to keep the lifetime of the CachedKernel short. { Optional &CachedKernel = UniqueKernelMap[&F]; if (CachedKernel) return *CachedKernel; // TODO: We should use an AA to create an (optimistic and callback // call-aware) call graph. For now we stick to simple patterns that // are less powerful, basically the worst fixpoint. if (isKernel(F)) { CachedKernel = Kernel(&F); return *CachedKernel; } CachedKernel = nullptr; if (!F.hasLocalLinkage()) { // See https://openmp.llvm.org/remarks/OptimizationRemarks.html auto Remark = [&](OptimizationRemark OR) { return OR << "[OMP100] Potentially unknown OpenMP target region caller"; }; emitRemarkOnFunction(&F, "OMP100", Remark); return nullptr; } } auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel { if (auto *Cmp = dyn_cast(U.getUser())) { // Allow use in equality comparisons. if (Cmp->isEquality()) return getUniqueKernelFor(*Cmp); return nullptr; } if (auto *CB = dyn_cast(U.getUser())) { // Allow direct calls. if (CB->isCallee(&U)) return getUniqueKernelFor(*CB); // Allow the use in __kmpc_kernel_prepare_parallel calls. if (Function *Callee = CB->getCalledFunction()) if (Callee->getName() == "__kmpc_kernel_prepare_parallel") return getUniqueKernelFor(*CB); return nullptr; } // Disallow every other use. return nullptr; }; // TODO: In the future we want to track more than just a unique kernel. SmallPtrSet PotentialKernels; OMPInformationCache::foreachUse(F, [&](const Use &U) { PotentialKernels.insert(GetUniqueKernelForUse(U)); }); Kernel K = nullptr; if (PotentialKernels.size() == 1) K = *PotentialKernels.begin(); // Cache the result. UniqueKernelMap[&F] = K; return K; } bool OpenMPOpt::rewriteDeviceCodeStateMachine() { OMPInformationCache::RuntimeFunctionInfo &KernelPrepareParallelRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_kernel_prepare_parallel]; bool Changed = false; if (!KernelPrepareParallelRFI) return Changed; for (Function *F : SCC) { // Check if the function is uses in a __kmpc_kernel_prepare_parallel call at // all. bool UnknownUse = false; bool KernelPrepareUse = false; unsigned NumDirectCalls = 0; SmallVector ToBeReplacedStateMachineUses; OMPInformationCache::foreachUse(*F, [&](Use &U) { if (auto *CB = dyn_cast(U.getUser())) if (CB->isCallee(&U)) { ++NumDirectCalls; return; } if (isa(U.getUser())) { ToBeReplacedStateMachineUses.push_back(&U); return; } if (!KernelPrepareUse && OpenMPOpt::getCallIfRegularCall( *U.getUser(), &KernelPrepareParallelRFI)) { KernelPrepareUse = true; ToBeReplacedStateMachineUses.push_back(&U); return; } UnknownUse = true; }); // Do not emit a remark if we haven't seen a __kmpc_kernel_prepare_parallel // use. if (!KernelPrepareUse) continue; { auto Remark = [&](OptimizationRemark OR) { return OR << "Found a parallel region that is called in a target " "region but not part of a combined target construct nor " "nesed inside a target construct without intermediate " "code. This can lead to excessive register usage for " "unrelated target regions in the same translation unit " "due to spurious call edges assumed by ptxas."; }; emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark); } // If this ever hits, we should investigate. // TODO: Checking the number of uses is not a necessary restriction and // should be lifted. if (UnknownUse || NumDirectCalls != 1 || ToBeReplacedStateMachineUses.size() != 2) { { auto Remark = [&](OptimizationRemark OR) { return OR << "Parallel region is used in " << (UnknownUse ? "unknown" : "unexpected") << " ways; will not attempt to rewrite the state machine."; }; emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark); } continue; } // Even if we have __kmpc_kernel_prepare_parallel calls, we (for now) give // up if the function is not called from a unique kernel. Kernel K = getUniqueKernelFor(*F); if (!K) { { auto Remark = [&](OptimizationRemark OR) { return OR << "Parallel region is not known to be called from a " "unique single target region, maybe the surrounding " "function has external linkage?; will not attempt to " "rewrite the state machine use."; }; emitRemarkOnFunction(F, "OpenMPParallelRegionInMultipleKernesl", Remark); } continue; } // We now know F is a parallel body function called only from the kernel K. // We also identified the state machine uses in which we replace the // function pointer by a new global symbol for identification purposes. This // ensures only direct calls to the function are left. { auto RemarkParalleRegion = [&](OptimizationRemark OR) { return OR << "Specialize parallel region that is only reached from a " "single target region to avoid spurious call edges and " "excessive register usage in other target regions. " "(parallel region ID: " << ore::NV("OpenMPParallelRegion", F->getName()) << ", kernel ID: " << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; }; emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", RemarkParalleRegion); auto RemarkKernel = [&](OptimizationRemark OR) { return OR << "Target region containing the parallel region that is " "specialized. (parallel region ID: " << ore::NV("OpenMPParallelRegion", F->getName()) << ", kernel ID: " << ore::NV("OpenMPTargetRegion", K->getName()) << ")"; }; emitRemarkOnFunction(K, "OpenMPParallelRegionInNonSPMD", RemarkKernel); } Module &M = *F->getParent(); Type *Int8Ty = Type::getInt8Ty(M.getContext()); auto *ID = new GlobalVariable( M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage, UndefValue::get(Int8Ty), F->getName() + ".ID"); for (Use *U : ToBeReplacedStateMachineUses) U->set(ConstantExpr::getBitCast(ID, U->get()->getType())); ++NumOpenMPParallelRegionsReplacedInGPUStateMachine; Changed = true; } return Changed; } /// Abstract Attribute for tracking ICV values. struct AAICVTracker : public StateWrapper { using Base = StateWrapper; AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {} void initialize(Attributor &A) override { Function *F = getAnchorScope(); if (!F || !A.isFunctionIPOAmendable(*F)) indicatePessimisticFixpoint(); } /// Returns true if value is assumed to be tracked. bool isAssumedTracked() const { return getAssumed(); } /// Returns true if value is known to be tracked. bool isKnownTracked() const { return getAssumed(); } /// Create an abstract attribute biew for the position \p IRP. static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A); /// Return the value with which \p I can be replaced for specific \p ICV. virtual Optional getReplacementValue(InternalControlVar ICV, const Instruction *I, Attributor &A) const { return None; } /// Return an assumed unique ICV value if a single candidate is found. If /// there cannot be one, return a nullptr. If it is not clear yet, return the /// Optional::NoneType. virtual Optional getUniqueReplacementValue(InternalControlVar ICV) const = 0; // Currently only nthreads is being tracked. // this array will only grow with time. InternalControlVar TrackableICVs[1] = {ICV_nthreads}; /// See AbstractAttribute::getName() const std::string getName() const override { return "AAICVTracker"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is AAICVTracker static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } static const char ID; }; struct AAICVTrackerFunction : public AAICVTracker { AAICVTrackerFunction(const IRPosition &IRP, Attributor &A) : AAICVTracker(IRP, A) {} // FIXME: come up with better string. const std::string getAsStr() const override { return "ICVTrackerFunction"; } // FIXME: come up with some stats. void trackStatistics() const override {} /// We don't manifest anything for this AA. ChangeStatus manifest(Attributor &A) override { return ChangeStatus::UNCHANGED; } // Map of ICV to their values at specific program point. EnumeratedArray, InternalControlVar, InternalControlVar::ICV___last> ICVReplacementValuesMap; ChangeStatus updateImpl(Attributor &A) override { ChangeStatus HasChanged = ChangeStatus::UNCHANGED; Function *F = getAnchorScope(); auto &OMPInfoCache = static_cast(A.getInfoCache()); for (InternalControlVar ICV : TrackableICVs) { auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; auto &ValuesMap = ICVReplacementValuesMap[ICV]; auto TrackValues = [&](Use &U, Function &) { CallInst *CI = OpenMPOpt::getCallIfRegularCall(U); if (!CI) return false; // FIXME: handle setters with more that 1 arguments. /// Track new value. if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second) HasChanged = ChangeStatus::CHANGED; return false; }; auto CallCheck = [&](Instruction &I) { Optional ReplVal = getValueForCall(A, &I, ICV); if (ReplVal.hasValue() && ValuesMap.insert(std::make_pair(&I, *ReplVal)).second) HasChanged = ChangeStatus::CHANGED; return true; }; // Track all changes of an ICV. SetterRFI.foreachUse(TrackValues, F); A.checkForAllInstructions(CallCheck, *this, {Instruction::Call}, /* CheckBBLivenessOnly */ true); /// TODO: Figure out a way to avoid adding entry in /// ICVReplacementValuesMap Instruction *Entry = &F->getEntryBlock().front(); if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry)) ValuesMap.insert(std::make_pair(Entry, nullptr)); } return HasChanged; } /// Hepler to check if \p I is a call and get the value for it if it is /// unique. Optional getValueForCall(Attributor &A, const Instruction *I, InternalControlVar &ICV) const { const auto *CB = dyn_cast(I); if (!CB || CB->hasFnAttr("no_openmp") || CB->hasFnAttr("no_openmp_routines")) return None; auto &OMPInfoCache = static_cast(A.getInfoCache()); auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter]; auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter]; Function *CalledFunction = CB->getCalledFunction(); // Indirect call, assume ICV changes. if (CalledFunction == nullptr) return nullptr; if (CalledFunction == GetterRFI.Declaration) return None; if (CalledFunction == SetterRFI.Declaration) { if (ICVReplacementValuesMap[ICV].count(I)) return ICVReplacementValuesMap[ICV].lookup(I); return nullptr; } // Since we don't know, assume it changes the ICV. if (CalledFunction->isDeclaration()) return nullptr; const auto &ICVTrackingAA = A.getAAFor(*this, IRPosition::callsite_returned(*CB)); if (ICVTrackingAA.isAssumedTracked()) return ICVTrackingAA.getUniqueReplacementValue(ICV); // If we don't know, assume it changes. return nullptr; } // We don't check unique value for a function, so return None. Optional getUniqueReplacementValue(InternalControlVar ICV) const override { return None; } /// Return the value with which \p I can be replaced for specific \p ICV. Optional getReplacementValue(InternalControlVar ICV, const Instruction *I, Attributor &A) const override { const auto &ValuesMap = ICVReplacementValuesMap[ICV]; if (ValuesMap.count(I)) return ValuesMap.lookup(I); SmallVector Worklist; SmallPtrSet Visited; Worklist.push_back(I); Optional ReplVal; while (!Worklist.empty()) { const Instruction *CurrInst = Worklist.pop_back_val(); if (!Visited.insert(CurrInst).second) continue; const BasicBlock *CurrBB = CurrInst->getParent(); // Go up and look for all potential setters/calls that might change the // ICV. while ((CurrInst = CurrInst->getPrevNode())) { if (ValuesMap.count(CurrInst)) { Optional NewReplVal = ValuesMap.lookup(CurrInst); // Unknown value, track new. if (!ReplVal.hasValue()) { ReplVal = NewReplVal; break; } // If we found a new value, we can't know the icv value anymore. if (NewReplVal.hasValue()) if (ReplVal != NewReplVal) return nullptr; break; } Optional NewReplVal = getValueForCall(A, CurrInst, ICV); if (!NewReplVal.hasValue()) continue; // Unknown value, track new. if (!ReplVal.hasValue()) { ReplVal = NewReplVal; break; } // if (NewReplVal.hasValue()) // We found a new value, we can't know the icv value anymore. if (ReplVal != NewReplVal) return nullptr; } // If we are in the same BB and we have a value, we are done. if (CurrBB == I->getParent() && ReplVal.hasValue()) return ReplVal; // Go through all predecessors and add terminators for analysis. for (const BasicBlock *Pred : predecessors(CurrBB)) if (const Instruction *Terminator = Pred->getTerminator()) Worklist.push_back(Terminator); } return ReplVal; } }; struct AAICVTrackerFunctionReturned : AAICVTracker { AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A) : AAICVTracker(IRP, A) {} // FIXME: come up with better string. const std::string getAsStr() const override { return "ICVTrackerFunctionReturned"; } // FIXME: come up with some stats. void trackStatistics() const override {} /// We don't manifest anything for this AA. ChangeStatus manifest(Attributor &A) override { return ChangeStatus::UNCHANGED; } // Map of ICV to their values at specific program point. EnumeratedArray, InternalControlVar, InternalControlVar::ICV___last> ICVReplacementValuesMap; /// Return the value with which \p I can be replaced for specific \p ICV. Optional getUniqueReplacementValue(InternalControlVar ICV) const override { return ICVReplacementValuesMap[ICV]; } ChangeStatus updateImpl(Attributor &A) override { ChangeStatus Changed = ChangeStatus::UNCHANGED; const auto &ICVTrackingAA = A.getAAFor( *this, IRPosition::function(*getAnchorScope())); if (!ICVTrackingAA.isAssumedTracked()) return indicatePessimisticFixpoint(); for (InternalControlVar ICV : TrackableICVs) { Optional &ReplVal = ICVReplacementValuesMap[ICV]; Optional UniqueICVValue; auto CheckReturnInst = [&](Instruction &I) { Optional NewReplVal = ICVTrackingAA.getReplacementValue(ICV, &I, A); // If we found a second ICV value there is no unique returned value. if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal) return false; UniqueICVValue = NewReplVal; return true; }; if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}, /* CheckBBLivenessOnly */ true)) UniqueICVValue = nullptr; if (UniqueICVValue == ReplVal) continue; ReplVal = UniqueICVValue; Changed = ChangeStatus::CHANGED; } return Changed; } }; struct AAICVTrackerCallSite : AAICVTracker { AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A) : AAICVTracker(IRP, A) {} void initialize(Attributor &A) override { Function *F = getAnchorScope(); if (!F || !A.isFunctionIPOAmendable(*F)) indicatePessimisticFixpoint(); // We only initialize this AA for getters, so we need to know which ICV it // gets. auto &OMPInfoCache = static_cast(A.getInfoCache()); for (InternalControlVar ICV : TrackableICVs) { auto ICVInfo = OMPInfoCache.ICVs[ICV]; auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter]; if (Getter.Declaration == getAssociatedFunction()) { AssociatedICV = ICVInfo.Kind; return; } } /// Unknown ICV. indicatePessimisticFixpoint(); } ChangeStatus manifest(Attributor &A) override { if (!ReplVal.hasValue() || !ReplVal.getValue()) return ChangeStatus::UNCHANGED; A.changeValueAfterManifest(*getCtxI(), **ReplVal); A.deleteAfterManifest(*getCtxI()); return ChangeStatus::CHANGED; } // FIXME: come up with better string. const std::string getAsStr() const override { return "ICVTrackerCallSite"; } // FIXME: come up with some stats. void trackStatistics() const override {} InternalControlVar AssociatedICV; Optional ReplVal; ChangeStatus updateImpl(Attributor &A) override { const auto &ICVTrackingAA = A.getAAFor( *this, IRPosition::function(*getAnchorScope())); // We don't have any information, so we assume it changes the ICV. if (!ICVTrackingAA.isAssumedTracked()) return indicatePessimisticFixpoint(); Optional NewReplVal = ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A); if (ReplVal == NewReplVal) return ChangeStatus::UNCHANGED; ReplVal = NewReplVal; return ChangeStatus::CHANGED; } // Return the value with which associated value can be replaced for specific // \p ICV. Optional getUniqueReplacementValue(InternalControlVar ICV) const override { return ReplVal; } }; struct AAICVTrackerCallSiteReturned : AAICVTracker { AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A) : AAICVTracker(IRP, A) {} // FIXME: come up with better string. const std::string getAsStr() const override { return "ICVTrackerCallSiteReturned"; } // FIXME: come up with some stats. void trackStatistics() const override {} /// We don't manifest anything for this AA. ChangeStatus manifest(Attributor &A) override { return ChangeStatus::UNCHANGED; } // Map of ICV to their values at specific program point. EnumeratedArray, InternalControlVar, InternalControlVar::ICV___last> ICVReplacementValuesMap; /// Return the value with which associated value can be replaced for specific /// \p ICV. Optional getUniqueReplacementValue(InternalControlVar ICV) const override { return ICVReplacementValuesMap[ICV]; } ChangeStatus updateImpl(Attributor &A) override { ChangeStatus Changed = ChangeStatus::UNCHANGED; const auto &ICVTrackingAA = A.getAAFor( *this, IRPosition::returned(*getAssociatedFunction())); // We don't have any information, so we assume it changes the ICV. if (!ICVTrackingAA.isAssumedTracked()) return indicatePessimisticFixpoint(); for (InternalControlVar ICV : TrackableICVs) { Optional &ReplVal = ICVReplacementValuesMap[ICV]; Optional NewReplVal = ICVTrackingAA.getUniqueReplacementValue(ICV); if (ReplVal == NewReplVal) continue; ReplVal = NewReplVal; Changed = ChangeStatus::CHANGED; } return Changed; } }; } // namespace const char AAICVTracker::ID = 0; AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP, Attributor &A) { AAICVTracker *AA = nullptr; switch (IRP.getPositionKind()) { case IRPosition::IRP_INVALID: case IRPosition::IRP_FLOAT: case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_CALL_SITE_ARGUMENT: llvm_unreachable("ICVTracker can only be created for function position!"); case IRPosition::IRP_RETURNED: AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A); break; case IRPosition::IRP_CALL_SITE_RETURNED: AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A); break; case IRPosition::IRP_CALL_SITE: AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A); break; case IRPosition::IRP_FUNCTION: AA = new (A.Allocator) AAICVTrackerFunction(IRP, A); break; } return *AA; } PreservedAnalyses OpenMPOptPass::run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG, CGSCCUpdateResult &UR) { if (!containsOpenMP(*C.begin()->getFunction().getParent(), OMPInModule)) return PreservedAnalyses::all(); if (DisableOpenMPOptimizations) return PreservedAnalyses::all(); SmallVector SCC; // If there are kernels in the module, we have to run on all SCC's. bool SCCIsInteresting = !OMPInModule.getKernels().empty(); for (LazyCallGraph::Node &N : C) { Function *Fn = &N.getFunction(); SCC.push_back(Fn); // Do we already know that the SCC contains kernels, // or that OpenMP functions are called from this SCC? if (SCCIsInteresting) continue; // If not, let's check that. SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn); } if (!SCCIsInteresting || SCC.empty()) return PreservedAnalyses::all(); FunctionAnalysisManager &FAM = AM.getResult(C, CG).getManager(); AnalysisGetter AG(FAM); auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & { return FAM.getResult(*F); }; CallGraphUpdater CGUpdater; CGUpdater.initialize(CG, C, AM, UR); SetVector Functions(SCC.begin(), SCC.end()); BumpPtrAllocator Allocator; OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator, /*CGSCC*/ Functions, OMPInModule.getKernels()); Attributor A(Functions, InfoCache, CGUpdater); OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); bool Changed = OMPOpt.run(); if (Changed) return PreservedAnalyses::none(); return PreservedAnalyses::all(); } namespace { struct OpenMPOptLegacyPass : public CallGraphSCCPass { CallGraphUpdater CGUpdater; OpenMPInModule OMPInModule; static char ID; OpenMPOptLegacyPass() : CallGraphSCCPass(ID) { initializeOpenMPOptLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { CallGraphSCCPass::getAnalysisUsage(AU); } bool doInitialization(CallGraph &CG) override { // Disable the pass if there is no OpenMP (runtime call) in the module. containsOpenMP(CG.getModule(), OMPInModule); return false; } bool runOnSCC(CallGraphSCC &CGSCC) override { if (!containsOpenMP(CGSCC.getCallGraph().getModule(), OMPInModule)) return false; if (DisableOpenMPOptimizations || skipSCC(CGSCC)) return false; SmallVector SCC; // If there are kernels in the module, we have to run on all SCC's. bool SCCIsInteresting = !OMPInModule.getKernels().empty(); for (CallGraphNode *CGN : CGSCC) { Function *Fn = CGN->getFunction(); if (!Fn || Fn->isDeclaration()) continue; SCC.push_back(Fn); // Do we already know that the SCC contains kernels, // or that OpenMP functions are called from this SCC? if (SCCIsInteresting) continue; // If not, let's check that. SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn); } if (!SCCIsInteresting || SCC.empty()) return false; CallGraph &CG = getAnalysis().getCallGraph(); CGUpdater.initialize(CG, CGSCC); // Maintain a map of functions to avoid rebuilding the ORE DenseMap> OREMap; auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & { std::unique_ptr &ORE = OREMap[F]; if (!ORE) ORE = std::make_unique(F); return *ORE; }; AnalysisGetter AG; SetVector Functions(SCC.begin(), SCC.end()); BumpPtrAllocator Allocator; OMPInformationCache InfoCache( *(Functions.back()->getParent()), AG, Allocator, /*CGSCC*/ Functions, OMPInModule.getKernels()); Attributor A(Functions, InfoCache, CGUpdater); OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A); return OMPOpt.run(); } bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); } }; } // end anonymous namespace void OpenMPInModule::identifyKernels(Module &M) { NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); if (!MD) return; for (auto *Op : MD->operands()) { if (Op->getNumOperands() < 2) continue; MDString *KindID = dyn_cast(Op->getOperand(1)); if (!KindID || KindID->getString() != "kernel") continue; Function *KernelFn = mdconst::dyn_extract_or_null(Op->getOperand(0)); if (!KernelFn) continue; ++NumOpenMPTargetRegionKernels; Kernels.insert(KernelFn); } } bool llvm::omp::containsOpenMP(Module &M, OpenMPInModule &OMPInModule) { if (OMPInModule.isKnown()) return OMPInModule; auto RecordFunctionsContainingUsesOf = [&](Function *F) { for (User *U : F->users()) if (auto *I = dyn_cast(U)) OMPInModule.FuncsWithOMPRuntimeCalls.insert(I->getFunction()); }; // MSVC doesn't like long if-else chains for some reason and instead just // issues an error. Work around it.. do { #define OMP_RTL(_Enum, _Name, ...) \ if (Function *F = M.getFunction(_Name)) { \ RecordFunctionsContainingUsesOf(F); \ OMPInModule = true; \ } #include "llvm/Frontend/OpenMP/OMPKinds.def" } while (false); // Identify kernels once. TODO: We should split the OMPInformationCache into a // module and an SCC part. The kernel information, among other things, could // go into the module part. if (OMPInModule.isKnown() && OMPInModule) { OMPInModule.identifyKernels(M); return true; } return OMPInModule = false; } char OpenMPOptLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(OpenMPOptLegacyPass, "openmpopt", "OpenMP specific optimizations", false, false) INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) INITIALIZE_PASS_END(OpenMPOptLegacyPass, "openmpopt", "OpenMP specific optimizations", false, false) Pass *llvm::createOpenMPOptLegacyPass() { return new OpenMPOptLegacyPass(); }