//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the X86SelectionDAGInfo class. // //===----------------------------------------------------------------------===// #include "X86SelectionDAGInfo.h" #include "X86ISelLowering.h" #include "X86InstrInfo.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/IR/DerivedTypes.h" using namespace llvm; #define DEBUG_TYPE "x86-selectiondag-info" static cl::opt UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false), cl::desc("Use fast short rep mov in memcpy lowering")); bool X86SelectionDAGInfo::isBaseRegConflictPossible( SelectionDAG &DAG, ArrayRef ClobberSet) const { // We cannot use TRI->hasBasePointer() until *after* we select all basic // blocks. Legalization may introduce new stack temporaries with large // alignment requirements. Fall back to generic code if there are any // dynamic stack adjustments (hopefully rare) and the base pointer would // conflict if we had to use it. MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) return false; const X86RegisterInfo *TRI = static_cast( DAG.getSubtarget().getRegisterInfo()); Register BaseReg = TRI->getBaseRegister(); for (unsigned R : ClobberSet) if (BaseReg == R) return true; return false; } SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, SDValue Size, Align Alignment, bool isVolatile, MachinePointerInfo DstPtrInfo) const { ConstantSDNode *ConstantSize = dyn_cast(Size); const X86Subtarget &Subtarget = DAG.getMachineFunction().getSubtarget(); #ifndef NDEBUG // If the base register might conflict with our physical registers, bail out. const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, X86::ECX, X86::EAX, X86::EDI}; assert(!isBaseRegConflictPossible(DAG, ClobberSet)); #endif // If to a segment-relative address space, use the default lowering. if (DstPtrInfo.getAddrSpace() >= 256) return SDValue(); // If not DWORD aligned or size is more than the threshold, call the library. // The libc version is likely to be faster for these cases. It can use the // address value and run time information about the CPU. if (Alignment < Align(4) || !ConstantSize || ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) { // Check to see if there is a specialized entry-point for memory zeroing. ConstantSDNode *ValC = dyn_cast(Val); if (const char *bzeroName = (ValC && ValC->isNullValue()) ? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO) : nullptr) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = Dst; Entry.Ty = IntPtrTy; Args.push_back(Entry); Entry.Node = Size; Args.push_back(Entry); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(Chain) .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), DAG.getExternalSymbol(bzeroName, IntPtr), std::move(Args)) .setDiscardResult(); std::pair CallResult = TLI.LowerCallTo(CLI); return CallResult.second; } // Otherwise have the target-independent code call memset. return SDValue(); } uint64_t SizeVal = ConstantSize->getZExtValue(); SDValue InFlag; EVT AVT; SDValue Count; ConstantSDNode *ValC = dyn_cast(Val); unsigned BytesLeft = 0; if (ValC) { unsigned ValReg; uint64_t Val = ValC->getZExtValue() & 255; // If the value is a constant, then we can potentially use larger sets. if (Alignment > Align(2)) { // DWORD aligned AVT = MVT::i32; ValReg = X86::EAX; Val = (Val << 8) | Val; Val = (Val << 16) | Val; if (Subtarget.is64Bit() && Alignment > Align(8)) { // QWORD aligned AVT = MVT::i64; ValReg = X86::RAX; Val = (Val << 32) | Val; } } else if (Alignment == Align(2)) { // WORD aligned AVT = MVT::i16; ValReg = X86::AX; Val = (Val << 8) | Val; } else { // Byte aligned AVT = MVT::i8; ValReg = X86::AL; Count = DAG.getIntPtrConstant(SizeVal, dl); } if (AVT.bitsGT(MVT::i8)) { unsigned UBytes = AVT.getSizeInBits() / 8; Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl); BytesLeft = SizeVal % UBytes; } Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT), InFlag); InFlag = Chain.getValue(1); } else { AVT = MVT::i8; Count = DAG.getIntPtrConstant(SizeVal, dl); Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag); InFlag = Chain.getValue(1); } bool Use64BitRegs = Subtarget.isTarget64BitLP64(); Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX, Count, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI, Dst, InFlag); InFlag = Chain.getValue(1); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); if (BytesLeft) { // Handle the last 1 - 7 bytes. unsigned Offset = SizeVal - BytesLeft; EVT AddrVT = Dst.getValueType(); EVT SizeVT = Size.getValueType(); Chain = DAG.getMemset(Chain, dl, DAG.getNode(ISD::ADD, dl, AddrVT, Dst, DAG.getConstant(Offset, dl, AddrVT)), Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, isVolatile, false, DstPtrInfo.getWithOffset(Offset)); } // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. return Chain; } /// Emit a single REP MOVS{B,W,D,Q} instruction. static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, MVT AVT) { const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI; SDValue InFlag; Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag); InFlag = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag); InFlag = Chain.getValue(1); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag}; return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops); } /// Emit a single REP MOVSB instruction for a particular constant size. static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size) { return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, DAG.getIntPtrConstant(Size, dl), MVT::i8); } /// Returns the best type to use with repmovs depending on alignment. static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget, uint64_t Align) { assert((Align != 0) && "Align is normalized"); assert(isPowerOf2_64(Align) && "Align is a power of 2"); switch (Align) { case 1: return MVT::i8; case 2: return MVT::i16; case 4: return MVT::i32; default: return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; } } /// Returns a REP MOVS instruction, possibly with a few load/stores to implement /// a constant size memory copy. In some cases where we know REP MOVS is /// inefficient we return an empty SDValue so the calling code can either /// generate a load/store sequence or call the runtime memcpy function. static SDValue emitConstantSizeRepmov( SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT, unsigned Align, bool isVolatile, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very /// efficient. if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold()) return SDValue(); /// If we have enhanced repmovs we use it. if (Subtarget.hasERMSB()) return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); assert(!Subtarget.hasERMSB() && "No efficient RepMovs"); /// We assume runtime memcpy will do a better job for unaligned copies when /// ERMS is not present. if (!AlwaysInline && (Align & 3) != 0) return SDValue(); const MVT BlockType = getOptimalRepmovsType(Subtarget, Align); const uint64_t BlockBytes = BlockType.getSizeInBits() / 8; const uint64_t BlockCount = Size / BlockBytes; const uint64_t BytesLeft = Size % BlockBytes; SDValue RepMovs = emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, DAG.getIntPtrConstant(BlockCount, dl), BlockType); /// RepMov can process the whole length. if (BytesLeft == 0) return RepMovs; assert(BytesLeft && "We have leftover at this point"); /// In case we optimize for size we use repmovsb even if it's less efficient /// so we can save the loads/stores of the leftover. if (DAG.getMachineFunction().getFunction().hasMinSize()) return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); // Handle the last 1 - 7 bytes. SmallVector Results; Results.push_back(RepMovs); unsigned Offset = Size - BytesLeft; EVT DstVT = Dst.getValueType(); EVT SrcVT = Src.getValueType(); Results.push_back(DAG.getMemcpy( Chain, dl, DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)), DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)), DAG.getConstant(BytesLeft, dl, SizeVT), llvm::Align(Align), isVolatile, /*AlwaysInline*/ true, /*isTailCall*/ false, DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset))); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); } SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy( SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { // If to a segment-relative address space, use the default lowering. if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256) return SDValue(); // If the base registers conflict with our physical registers, use the default // lowering. const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI, X86::ECX, X86::ESI, X86::EDI}; if (isBaseRegConflictPossible(DAG, ClobberSet)) return SDValue(); const X86Subtarget &Subtarget = DAG.getMachineFunction().getSubtarget(); // If enabled and available, use fast short rep mov. if (UseFSRMForMemcpy && Subtarget.hasFSRM()) return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8); /// Handle constant sizes, if (ConstantSDNode *ConstantSize = dyn_cast(Size)) return emitConstantSizeRepmov( DAG, Subtarget, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Size.getValueType(), Alignment.value(), isVolatile, AlwaysInline, DstPtrInfo, SrcPtrInfo); return SDValue(); }