//===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the RISC-V instructions from the standard 'F', // Single-Precision Floating-Point instruction set extension. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // RISC-V specific DAG Nodes. //===----------------------------------------------------------------------===// def SDT_RISCVFMV_W_X_RV64 : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i64>]>; def SDT_RISCVFMV_X_ANYEXTW_RV64 : SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, f32>]>; def riscv_fmv_w_x_rv64 : SDNode<"RISCVISD::FMV_W_X_RV64", SDT_RISCVFMV_W_X_RV64>; def riscv_fmv_x_anyextw_rv64 : SDNode<"RISCVISD::FMV_X_ANYEXTW_RV64", SDT_RISCVFMV_X_ANYEXTW_RV64>; //===----------------------------------------------------------------------===// // Operand and SDNode transformation definitions. //===----------------------------------------------------------------------===// // Floating-point rounding mode def FRMArg : AsmOperandClass { let Name = "FRMArg"; let RenderMethod = "addFRMArgOperands"; let DiagnosticType = "InvalidFRMArg"; } def frmarg : Operand { let ParserMatchClass = FRMArg; let PrintMethod = "printFRMArg"; let DecoderMethod = "decodeFRMArg"; } //===----------------------------------------------------------------------===// // Instruction class templates //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPFMAS_rrr_frm : RVInstR4<0b00, opcode, (outs FPR32:$rd), (ins FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, frmarg:$funct3), opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">; class FPFMASDynFrmAlias : InstAlias; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPALUS_rr funct7, bits<3> funct3, string opcodestr> : RVInstR; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPALUS_rr_frm funct7, string opcodestr> : RVInstRFrm; class FPALUSDynFrmAlias : InstAlias; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPUnaryOp_r funct7, bits<3> funct3, RegisterClass rdty, RegisterClass rs1ty, string opcodestr> : RVInstR; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPUnaryOp_r_frm funct7, RegisterClass rdty, RegisterClass rs1ty, string opcodestr> : RVInstRFrm; class FPUnaryOpDynFrmAlias : InstAlias; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPCmpS_rr funct3, string opcodestr> : RVInstR<0b1010000, funct3, OPC_OP_FP, (outs GPR:$rd), (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">, Sched<[WriteFCmp32, ReadFCmp32, ReadFCmp32]>; //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtF] in { let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in def FLW : RVInstI<0b010, OPC_LOAD_FP, (outs FPR32:$rd), (ins GPR:$rs1, simm12:$imm12), "flw", "$rd, ${imm12}(${rs1})">, Sched<[WriteFLD32, ReadFMemBase]>; // Operands for stores are in the order srcreg, base, offset rather than // reflecting the order these fields are specified in the instruction // encoding. let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in def FSW : RVInstS<0b010, OPC_STORE_FP, (outs), (ins FPR32:$rs2, GPR:$rs1, simm12:$imm12), "fsw", "$rs2, ${imm12}(${rs1})">, Sched<[WriteFST32, ReadStoreData, ReadFMemBase]>; def FMADD_S : FPFMAS_rrr_frm, Sched<[WriteFMulAdd32, ReadFMulAdd32, ReadFMulAdd32, ReadFMulAdd32]>; def : FPFMASDynFrmAlias; def FMSUB_S : FPFMAS_rrr_frm, Sched<[WriteFMulSub32, ReadFMulSub32, ReadFMulSub32, ReadFMulSub32]>; def : FPFMASDynFrmAlias; def FNMSUB_S : FPFMAS_rrr_frm, Sched<[WriteFMulSub32, ReadFMulSub32, ReadFMulSub32, ReadFMulSub32]>; def : FPFMASDynFrmAlias; def FNMADD_S : FPFMAS_rrr_frm, Sched<[WriteFMulAdd32, ReadFMulAdd32, ReadFMulAdd32, ReadFMulAdd32]>; def : FPFMASDynFrmAlias; def FADD_S : FPALUS_rr_frm<0b0000000, "fadd.s">, Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>; def : FPALUSDynFrmAlias; def FSUB_S : FPALUS_rr_frm<0b0000100, "fsub.s">, Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>; def : FPALUSDynFrmAlias; def FMUL_S : FPALUS_rr_frm<0b0001000, "fmul.s">, Sched<[WriteFMul32, ReadFMul32, ReadFMul32]>; def : FPALUSDynFrmAlias; def FDIV_S : FPALUS_rr_frm<0b0001100, "fdiv.s">, Sched<[WriteFDiv32, ReadFDiv32, ReadFDiv32]>; def : FPALUSDynFrmAlias; def FSQRT_S : FPUnaryOp_r_frm<0b0101100, FPR32, FPR32, "fsqrt.s">, Sched<[WriteFSqrt32, ReadFSqrt32]> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias; def FSGNJ_S : FPALUS_rr<0b0010000, 0b000, "fsgnj.s">, Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>; def FSGNJN_S : FPALUS_rr<0b0010000, 0b001, "fsgnjn.s">, Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>; def FSGNJX_S : FPALUS_rr<0b0010000, 0b010, "fsgnjx.s">, Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>; def FMIN_S : FPALUS_rr<0b0010100, 0b000, "fmin.s">, Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>; def FMAX_S : FPALUS_rr<0b0010100, 0b001, "fmax.s">, Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>; def FCVT_W_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.w.s">, Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias; def FCVT_WU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.wu.s">, Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> { let rs2 = 0b00001; } def : FPUnaryOpDynFrmAlias; def FMV_X_W : FPUnaryOp_r<0b1110000, 0b000, GPR, FPR32, "fmv.x.w">, Sched<[WriteFMovF32ToI32, ReadFMovF32ToI32]> { let rs2 = 0b00000; } def FEQ_S : FPCmpS_rr<0b010, "feq.s">; def FLT_S : FPCmpS_rr<0b001, "flt.s">; def FLE_S : FPCmpS_rr<0b000, "fle.s">; def FCLASS_S : FPUnaryOp_r<0b1110000, 0b001, GPR, FPR32, "fclass.s">, Sched<[WriteFClass32, ReadFClass32]> { let rs2 = 0b00000; } def FCVT_S_W : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.w">, Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias; def FCVT_S_WU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.wu">, Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> { let rs2 = 0b00001; } def : FPUnaryOpDynFrmAlias; def FMV_W_X : FPUnaryOp_r<0b1111000, 0b000, FPR32, GPR, "fmv.w.x">, Sched<[WriteFMovI32ToF32, ReadFMovI32ToF32]> { let rs2 = 0b00000; } } // Predicates = [HasStdExtF] let Predicates = [HasStdExtF, IsRV64] in { def FCVT_L_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.l.s">, Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> { let rs2 = 0b00010; } def : FPUnaryOpDynFrmAlias; def FCVT_LU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.lu.s">, Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> { let rs2 = 0b00011; } def : FPUnaryOpDynFrmAlias; def FCVT_S_L : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.l">, Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> { let rs2 = 0b00010; } def : FPUnaryOpDynFrmAlias; def FCVT_S_LU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.lu">, Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> { let rs2 = 0b00011; } def : FPUnaryOpDynFrmAlias; } // Predicates = [HasStdExtF, IsRV64] //===----------------------------------------------------------------------===// // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) //===----------------------------------------------------------------------===// let Predicates = [HasStdExtF] in { def : InstAlias<"flw $rd, (${rs1})", (FLW FPR32:$rd, GPR:$rs1, 0), 0>; def : InstAlias<"fsw $rs2, (${rs1})", (FSW FPR32:$rs2, GPR:$rs1, 0), 0>; def : InstAlias<"fmv.s $rd, $rs", (FSGNJ_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; // fgt.s/fge.s are recognised by the GNU assembler but the canonical // flt.s/fle.s forms will always be printed. Therefore, set a zero weight. def : InstAlias<"fgt.s $rd, $rs, $rt", (FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>; def : InstAlias<"fge.s $rd, $rs, $rt", (FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>; // The following csr instructions actually alias instructions from the base ISA. // However, it only makes sense to support them when the F extension is enabled. // NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr". def : InstAlias<"frcsr $rd", (CSRRS GPR:$rd, FCSR.Encoding, X0), 2>; def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs)>; def : InstAlias<"fscsr $rs", (CSRRW X0, FCSR.Encoding, GPR:$rs), 2>; // frsr, fssr are obsolete aliases replaced by frcsr, fscsr, so give them // zero weight. def : InstAlias<"frsr $rd", (CSRRS GPR:$rd, FCSR.Encoding, X0), 0>; def : InstAlias<"fssr $rd, $rs", (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs), 0>; def : InstAlias<"fssr $rs", (CSRRW X0, FCSR.Encoding, GPR:$rs), 0>; def : InstAlias<"frrm $rd", (CSRRS GPR:$rd, FRM.Encoding, X0), 2>; def : InstAlias<"fsrm $rd, $rs", (CSRRW GPR:$rd, FRM.Encoding, GPR:$rs)>; def : InstAlias<"fsrm $rs", (CSRRW X0, FRM.Encoding, GPR:$rs), 2>; def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, FRM.Encoding, uimm5:$imm)>; def : InstAlias<"fsrmi $imm", (CSRRWI X0, FRM.Encoding, uimm5:$imm), 2>; def : InstAlias<"frflags $rd", (CSRRS GPR:$rd, FFLAGS.Encoding, X0), 2>; def : InstAlias<"fsflags $rd, $rs", (CSRRW GPR:$rd, FFLAGS.Encoding, GPR:$rs)>; def : InstAlias<"fsflags $rs", (CSRRW X0, FFLAGS.Encoding, GPR:$rs), 2>; def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, FFLAGS.Encoding, uimm5:$imm)>; def : InstAlias<"fsflagsi $imm", (CSRRWI X0, FFLAGS.Encoding, uimm5:$imm), 2>; // fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both // spellings should be supported by standard tools. def : MnemonicAlias<"fmv.s.x", "fmv.w.x">; def : MnemonicAlias<"fmv.x.s", "fmv.x.w">; def PseudoFLW : PseudoFloatLoad<"flw", FPR32>; def PseudoFSW : PseudoStore<"fsw", FPR32>; } // Predicates = [HasStdExtF] //===----------------------------------------------------------------------===// // Pseudo-instructions and codegen patterns //===----------------------------------------------------------------------===// /// Floating point constants def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; /// Generic pattern classes class PatFpr32Fpr32 : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2)>; class PatFpr32Fpr32DynFrm : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2, 0b111)>; let Predicates = [HasStdExtF] in { /// Float constants def : Pat<(f32 (fpimm0)), (FMV_W_X X0)>; /// Float conversion operations // [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so // are defined later. /// Float arithmetic operations def : PatFpr32Fpr32DynFrm; def : PatFpr32Fpr32DynFrm; def : PatFpr32Fpr32DynFrm; def : PatFpr32Fpr32DynFrm; def : Pat<(fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, 0b111)>; def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>; def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>; def : PatFpr32Fpr32; def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>; // fmadd: rs1 * rs2 + rs3 def : Pat<(fma FPR32:$rs1, FPR32:$rs2, FPR32:$rs3), (FMADD_S $rs1, $rs2, $rs3, 0b111)>; // fmsub: rs1 * rs2 - rs3 def : Pat<(fma FPR32:$rs1, FPR32:$rs2, (fneg FPR32:$rs3)), (FMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>; // fnmsub: -rs1 * rs2 + rs3 def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, FPR32:$rs3), (FNMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>; // fnmadd: -rs1 * rs2 - rs3 def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, (fneg FPR32:$rs3)), (FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>; // The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the // canonical NaN when given a signaling NaN. This doesn't match the LLVM // behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the // draft 2.3 ISA spec changes the definition of fmin and fmax in a way that // matches LLVM's fminnum and fmaxnum // . def : PatFpr32Fpr32; def : PatFpr32Fpr32; /// Setcc def : PatFpr32Fpr32; def : PatFpr32Fpr32; def : PatFpr32Fpr32; def : PatFpr32Fpr32; def : PatFpr32Fpr32; def : PatFpr32Fpr32; def Select_FPR32_Using_CC_GPR : SelectCC_rrirr; /// Loads defm : LdPat; /// Stores defm : StPat; } // Predicates = [HasStdExtF] let Predicates = [HasStdExtF, IsRV32] in { // Moves (no conversion) def : Pat<(bitconvert GPR:$rs1), (FMV_W_X GPR:$rs1)>; def : Pat<(bitconvert FPR32:$rs1), (FMV_X_W FPR32:$rs1)>; // float->[u]int. Round-to-zero must be used. def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_W_S $rs1, 0b001)>; def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>; // [u]int->float. Match GCC and default to using dynamic rounding mode. def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_W $rs1, 0b111)>; def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_WU $rs1, 0b111)>; } // Predicates = [HasStdExtF, IsRV32] let Predicates = [HasStdExtF, IsRV64] in { // Moves (no conversion) def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (FMV_W_X GPR:$src)>; def : Pat<(riscv_fmv_x_anyextw_rv64 FPR32:$src), (FMV_X_W FPR32:$src)>; def : Pat<(sext_inreg (riscv_fmv_x_anyextw_rv64 FPR32:$src), i32), (FMV_X_W FPR32:$src)>; // FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe // because fpto[u|s]i produces poison if the value can't fit into the target. // We match the single case below because fcvt.wu.s sign-extends its result so // is cheaper than fcvt.lu.s+sext.w. def : Pat<(sext_inreg (assertzexti32 (fp_to_uint FPR32:$rs1)), i32), (FCVT_WU_S $rs1, 0b001)>; // FP->[u]int64 def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_L_S $rs1, 0b001)>; def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_LU_S $rs1, 0b001)>; // [u]int->fp. Match GCC and default to using dynamic rounding mode. def : Pat<(sint_to_fp (sexti32 GPR:$rs1)), (FCVT_S_W $rs1, 0b111)>; def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_S_WU $rs1, 0b111)>; def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_L $rs1, 0b111)>; def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_LU $rs1, 0b111)>; } // Predicates = [HasStdExtF, IsRV64]