//===- HexagonPatterns.td - Selection Patterns for Hexagon -*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Table of contents: // (0) Definitions // (1) Immediates // (2) Type casts // (3) Extend/truncate // (4) Logical // (5) Compare // (6) Select // (7) Insert/extract // (8) Shift/permute // (9) Arithmetic/bitwise // (10) Bit // (11) PIC // (12) Load // (13) Store // (14) Memop // (15) Call // (16) Branch // (17) Misc // Guidelines (in no particular order): // 1. Avoid relying on pattern ordering to give preference to one pattern // over another, prefer using AddedComplexity instead. The reason for // this is to avoid unintended conseqeuences (caused by altering the // order) when making changes. The current order of patterns in this // file obviously does play some role, but none of the ordering was // deliberately chosen (other than to create a logical structure of // this file). When making changes, adding AddedComplexity to existing // patterns may be needed. // 2. Maintain the logical structure of the file, try to put new patterns // in designated sections. // 3. Do not use A2_combinew instruction directly, use Combinew fragment // instead. It uses REG_SEQUENCE, which is more amenable to optimizations. // 4. Most selection macros are based on PatFrags. For DAGs that involve // SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags // whenever possible (see the Definitions section). When adding new // macro, try to make is general to enable reuse across sections. // 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition // that the nested operation has only one use. Having it separated in case // of multiple uses avoids duplication of (processor) work. // 6. The v4 vector instructions (64-bit) are treated as core instructions, // for example, A2_vaddh is in the "arithmetic" section with A2_add. // 7. When adding a pattern for an instruction with a constant-extendable // operand, allow all possible kinds of inputs for the immediate value // (see AnyImm/anyimm and their variants in the Definitions section). // --(0) Definitions ----------------------------------------------------- // // This complex pattern exists only to create a machine instruction operand // of type "frame index". There doesn't seem to be a way to do that directly // in the patterns. def AddrFI: ComplexPattern; // These complex patterns are not strictly necessary, since global address // folding will happen during DAG combining. For distinguishing between GA // and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used. def AddrGA: ComplexPattern; def AddrGP: ComplexPattern; def AnyImm: ComplexPattern; def AnyInt: ComplexPattern; // Global address or a constant being a multiple of 2^n. def AnyImm0: ComplexPattern; def AnyImm1: ComplexPattern; def AnyImm2: ComplexPattern; def AnyImm3: ComplexPattern; // Type helper frags. def V2I1: PatLeaf<(v2i1 PredRegs:$R)>; def V4I1: PatLeaf<(v4i1 PredRegs:$R)>; def V8I1: PatLeaf<(v8i1 PredRegs:$R)>; def V4I8: PatLeaf<(v4i8 IntRegs:$R)>; def V2I16: PatLeaf<(v2i16 IntRegs:$R)>; def V8I8: PatLeaf<(v8i8 DoubleRegs:$R)>; def V4I16: PatLeaf<(v4i16 DoubleRegs:$R)>; def V2I32: PatLeaf<(v2i32 DoubleRegs:$R)>; def HQ8: PatLeaf<(VecQ8 HvxQR:$R)>; def HQ16: PatLeaf<(VecQ16 HvxQR:$R)>; def HQ32: PatLeaf<(VecQ32 HvxQR:$R)>; def HVI8: PatLeaf<(VecI8 HvxVR:$R)>; def HVI16: PatLeaf<(VecI16 HvxVR:$R)>; def HVI32: PatLeaf<(VecI32 HvxVR:$R)>; def HWI8: PatLeaf<(VecPI8 HvxWR:$R)>; def HWI16: PatLeaf<(VecPI16 HvxWR:$R)>; def HWI32: PatLeaf<(VecPI32 HvxWR:$R)>; def SDTVecLeaf: SDTypeProfile<1, 0, [SDTCisVec<0>]>; def SDTVecVecIntOp: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>, SDTCisVT<3,i32>]>; def HexagonPTRUE: SDNode<"HexagonISD::PTRUE", SDTVecLeaf>; def HexagonPFALSE: SDNode<"HexagonISD::PFALSE", SDTVecLeaf>; def HexagonVALIGN: SDNode<"HexagonISD::VALIGN", SDTVecVecIntOp>; def HexagonVALIGNADDR: SDNode<"HexagonISD::VALIGNADDR", SDTIntUnaryOp>; def ptrue: PatFrag<(ops), (HexagonPTRUE)>; def pfalse: PatFrag<(ops), (HexagonPFALSE)>; def pnot: PatFrag<(ops node:$Pu), (xor node:$Pu, ptrue)>; def valign: PatFrag<(ops node:$Vt, node:$Vs, node:$Ru), (HexagonVALIGN node:$Vt, node:$Vs, node:$Ru)>; def valignaddr: PatFrag<(ops node:$Addr), (HexagonVALIGNADDR node:$Addr)>; // Pattern fragments to extract the low and high subregisters from a // 64-bit value. def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>; def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>; def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{ return isOrEquivalentToAdd(N); }]>; def IsPow2_32: PatLeaf<(i32 imm), [{ uint32_t V = N->getZExtValue(); return isPowerOf2_32(V); }]>; def IsPow2_64: PatLeaf<(i64 imm), [{ uint64_t V = N->getZExtValue(); return isPowerOf2_64(V); }]>; def IsNPow2_32: PatLeaf<(i32 imm), [{ uint32_t NV = ~N->getZExtValue(); return isPowerOf2_32(NV); }]>; def IsPow2_64L: PatLeaf<(i64 imm), [{ uint64_t V = N->getZExtValue(); return isPowerOf2_64(V) && Log2_64(V) < 32; }]>; def IsPow2_64H: PatLeaf<(i64 imm), [{ uint64_t V = N->getZExtValue(); return isPowerOf2_64(V) && Log2_64(V) >= 32; }]>; def IsNPow2_64L: PatLeaf<(i64 imm), [{ uint64_t NV = ~N->getZExtValue(); return isPowerOf2_64(NV) && Log2_64(NV) < 32; }]>; def IsNPow2_64H: PatLeaf<(i64 imm), [{ uint64_t NV = ~N->getZExtValue(); return isPowerOf2_64(NV) && Log2_64(NV) >= 32; }]>; class IsULE: PatLeaf<(i32 imm), "uint64_t V = N->getZExtValue();" # "return isUInt<" # Width # ">(V) && V <= " # Arg # ";" >; class IsUGT: PatLeaf<(i32 imm), "uint64_t V = N->getZExtValue();" # "return isUInt<" # Width # ">(V) && V > " # Arg # ";" >; def SDEC1: SDNodeXFormgetSExtValue(); return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32); }]>; def UDEC1: SDNodeXFormgetZExtValue(); assert(V >= 1); return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32); }]>; def UDEC32: SDNodeXFormgetZExtValue(); assert(V >= 32); return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32); }]>; class Subi: SDNodeXFormgetSExtValue();" # "return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32);" >; def Log2_32: SDNodeXFormgetZExtValue(); return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32); }]>; def Log2_64: SDNodeXFormgetZExtValue(); return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32); }]>; def LogN2_32: SDNodeXFormgetZExtValue(); return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32); }]>; def LogN2_64: SDNodeXFormgetZExtValue(); return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32); }]>; def NegImm8: SDNodeXFormgetSExtValue(); return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32); }]>; def NegImm16: SDNodeXFormgetSExtValue(); return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32); }]>; def NegImm32: SDNodeXFormgetSExtValue(); return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32); }]>; def SplatB: SDNodeXFormgetZExtValue(); assert(isUInt<8>(V) || V >> 8 == 0xFFFFFF); V &= 0xFF; uint32_t S = V << 24 | V << 16 | V << 8 | V; return CurDAG->getTargetConstant(S, SDLoc(N), MVT::i32); }]>; def SplatH: SDNodeXFormgetZExtValue(); assert(isUInt<16>(V) || V >> 16 == 0xFFFF); V &= 0xFFFF; return CurDAG->getTargetConstant(V << 16 | V, SDLoc(N), MVT::i32); }]>; // Helpers for type promotions/contractions. def I1toI32: OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>; def I32toI1: OutPatFrag<(ops node:$Rs), (i1 (C2_cmpgtui (i32 $Rs), (i32 0)))>; def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>; def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>; def ToAext64: OutPatFrag<(ops node:$Rs), (REG_SEQUENCE DoubleRegs, (i32 (IMPLICIT_DEF)), isub_hi, (i32 $Rs), isub_lo)>; def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt), (REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>; def addrga: PatLeaf<(i32 AddrGA:$Addr)>; def addrgp: PatLeaf<(i32 AddrGP:$Addr)>; def anyimm: PatLeaf<(i32 AnyImm:$Imm)>; def anyint: PatLeaf<(i32 AnyInt:$Imm)>; // Global address or an aligned constant. def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>; def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>; def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>; def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>; def f32ImmPred : PatLeaf<(f32 fpimm:$F)>; def f64ImmPred : PatLeaf<(f64 fpimm:$F)>; // This complex pattern is really only to detect various forms of // sign-extension i32->i64. The selected value will be of type i64 // whose low word is the value being extended. The high word is // unspecified. def Usxtw: ComplexPattern; def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>; def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>; def Sext64: PatLeaf<(i64 Usxtw:$Rs)>; def azext: PatFrags<(ops node:$Rs), [(zext node:$Rs), (anyext node:$Rs)]>; def asext: PatFrags<(ops node:$Rs), [(sext node:$Rs), (anyext node:$Rs)]>; def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off), (PS_fi (i32 AddrFI:$Rs), imm:$off)>; // Converters from unary/binary SDNode to PatFrag. class pf1 : PatFrag<(ops node:$a), (Op node:$a)>; class pf2 : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>; class Not2 : PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>; // If there is a constant operand that feeds the and/or instruction, // do not generate the compound instructions. // It is not always profitable, as some times we end up with a transfer. // Check the below example. // ra = #65820; rb = lsr(rb, #8); rc ^= and (rb, ra) // Instead this is preferable. // ra = and (#65820, lsr(ra, #8)); rb = xor(rb, ra) class Su_ni1 : PatFraggetOperand(1); return !isa(Op1); } return false;}], Op.OperandTransform>; class Su : PatFrag; // Main selection macros. class OpR_R_pat : Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>; class OpR_RI_pat : Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)), (MI RegPred:$Rs, imm:$I)>; class OpR_RR_pat : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)), (MI RsPred:$Rs, RtPred:$Rt)>; class AccRRI_pat : Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)), (MI RegPred:$Rx, RegPred:$Rs, imm:$I)>; class AccRRR_pat : Pat<(AccOp RxPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)), (MI RxPred:$Rx, RsPred:$Rs, RtPred:$Rt)>; multiclass SelMinMax_pats { def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B), (InstA Val:$A, Val:$B)>; def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A), (InstB Val:$A, Val:$B)>; } multiclass MinMax_pats { def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)), CmpPred:$Vt, CmpPred:$Vs), (PickT CmpPred:$Vs, CmpPred:$Vt)>; def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)), CmpPred:$Vs, CmpPred:$Vt), (PickS CmpPred:$Vs, CmpPred:$Vt)>; } // Bitcasts between same-size vector types are no-ops, except for the // actual type change. multiclass NopCast_pat { def: Pat<(Ty1 (bitconvert (Ty2 RC:$Val))), (Ty1 RC:$Val)>; def: Pat<(Ty2 (bitconvert (Ty1 RC:$Val))), (Ty2 RC:$Val)>; } // Frags for commonly used SDNodes. def Add: pf2; def And: pf2; def Sra: pf2; def Sub: pf2; def Or: pf2; def Srl: pf2; def Mul: pf2; def Xor: pf2; def Shl: pf2; def Smin: pf2; def Smax: pf2; def Umin: pf2; def Umax: pf2; def Rol: pf2; // --(1) Immediate ------------------------------------------------------- // def Imm64Lo: SDNodeXFormgetTargetConstant(int32_t (N->getSExtValue()), SDLoc(N), MVT::i32); }]>; def Imm64Hi: SDNodeXFormgetTargetConstant(int32_t (N->getSExtValue()>>32), SDLoc(N), MVT::i32); }]>; def SDTHexagonCONST32 : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>; def HexagonJT: SDNode<"HexagonISD::JT", SDTIntUnaryOp>; def HexagonCP: SDNode<"HexagonISD::CP", SDTIntUnaryOp>; def HexagonCONST32: SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>; def HexagonCONST32_GP: SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>; def TruncI64ToI32: SDNodeXFormgetTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32); }]>; def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>; def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>; def: Pat<(HexagonCONST32 tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>; def: Pat<(HexagonCONST32 bbl:$A), (A2_tfrsi imm:$A)>; def: Pat<(HexagonCONST32 tglobaladdr:$A), (A2_tfrsi imm:$A)>; def: Pat<(HexagonCONST32_GP tblockaddress:$A), (A2_tfrsi imm:$A)>; def: Pat<(HexagonCONST32_GP tglobaladdr:$A), (A2_tfrsi imm:$A)>; def: Pat<(HexagonJT tjumptable:$A), (A2_tfrsi imm:$A)>; def: Pat<(HexagonCP tconstpool:$A), (A2_tfrsi imm:$A)>; // The HVX load patterns also match CP directly. Make sure that if // the selection of this opcode changes, it's updated in all places. def: Pat<(i1 0), (PS_false)>; def: Pat<(i1 1), (PS_true)>; def: Pat<(i64 imm:$v), (CONST64 imm:$v)>, Requires<[UseSmallData,NotOptTinyCore]>; def: Pat<(i64 imm:$v), (Combinew (A2_tfrsi (Imm64Hi $v)), (A2_tfrsi (Imm64Lo $v)))>; def ftoi : SDNodeXFormgetValueAPF().bitcastToAPInt(); return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N), MVT::getIntegerVT(I.getBitWidth())); }]>; def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>; def: Pat<(f64ImmPred:$f), (CONST64 (ftoi $f))>; def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>; // --(2) Type cast ------------------------------------------------------- // def: OpR_R_pat, f64, F32>; def: OpR_R_pat, f32, F64>; def: OpR_R_pat, f32, I32>; def: OpR_R_pat, f32, I64>; def: OpR_R_pat, f64, I32>; def: OpR_R_pat, f64, I64>; def: OpR_R_pat, f32, I32>; def: OpR_R_pat, f32, I64>; def: OpR_R_pat, f64, I32>; def: OpR_R_pat, f64, I64>; def: OpR_R_pat, i32, F32>; def: OpR_R_pat, i32, F64>; def: OpR_R_pat, i64, F32>; def: OpR_R_pat, i64, F64>; def: OpR_R_pat, i32, F32>; def: OpR_R_pat, i32, F64>; def: OpR_R_pat, i64, F32>; def: OpR_R_pat, i64, F64>; // Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp]. def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>; def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>; def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>; def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>; // Bit convert 32- and 64-bit types. // All of these are bitcastable to one another: i32, v2i16, v4i8. defm: NopCast_pat; defm: NopCast_pat; defm: NopCast_pat; // All of these are bitcastable to one another: i64, v2i32, v4i16, v8i8. defm: NopCast_pat; defm: NopCast_pat; defm: NopCast_pat; defm: NopCast_pat; defm: NopCast_pat; defm: NopCast_pat; // --(3) Extend/truncate ------------------------------------------------- // def: Pat<(sext_inreg I32:$Rs, i8), (A2_sxtb I32:$Rs)>; def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>; def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>; def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>; def: Pat<(sext_inreg I64:$Rs, i8), (A2_sxtw (A2_sxtb (LoReg $Rs)))>; def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>; def: Pat<(Zext64 I32:$Rs), (ToZext64 $Rs)>; def: Pat<(Aext64 I32:$Rs), (ToZext64 $Rs)>; def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>; def: Pat<(i1 (trunc I32:$Rs)), (S2_tstbit_i I32:$Rs, 0)>; def: Pat<(i1 (trunc I64:$Rs)), (S2_tstbit_i (LoReg $Rs), 0)>; let AddedComplexity = 20 in { def: Pat<(and I32:$Rs, 255), (A2_zxtb I32:$Rs)>; def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>; } // Extensions from i1 or vectors of i1. def: Pat<(i32 (azext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>; def: Pat<(i64 (azext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>; def: Pat<(i32 (sext I1:$Pu)), (C2_muxii I1:$Pu, -1, 0)>; def: Pat<(i64 (sext I1:$Pu)), (Combinew (C2_muxii PredRegs:$Pu, -1, 0), (C2_muxii PredRegs:$Pu, -1, 0))>; def: Pat<(v2i16 (sext V2I1:$Pu)), (S2_vtrunehb (C2_mask V2I1:$Pu))>; def: Pat<(v2i32 (sext V2I1:$Pu)), (C2_mask V2I1:$Pu)>; def: Pat<(v4i8 (sext V4I1:$Pu)), (S2_vtrunehb (C2_mask V4I1:$Pu))>; def: Pat<(v4i16 (sext V4I1:$Pu)), (C2_mask V4I1:$Pu)>; def: Pat<(v8i8 (sext V8I1:$Pu)), (C2_mask V8I1:$Pu)>; def Vsplatpi: OutPatFrag<(ops node:$V), (Combinew (A2_tfrsi $V), (A2_tfrsi $V))>; def: Pat<(v2i16 (azext V2I1:$Pu)), (A2_andir (LoReg (C2_mask V2I1:$Pu)), (i32 0x00010001))>; def: Pat<(v2i32 (azext V2I1:$Pu)), (A2_andp (C2_mask V2I1:$Pu), (A2_combineii (i32 1), (i32 1)))>; def: Pat<(v4i8 (azext V4I1:$Pu)), (A2_andir (LoReg (C2_mask V4I1:$Pu)), (i32 0x01010101))>; def: Pat<(v4i16 (azext V4I1:$Pu)), (A2_andp (C2_mask V4I1:$Pu), (Vsplatpi (i32 0x00010001)))>; def: Pat<(v8i8 (azext V8I1:$Pu)), (A2_andp (C2_mask V8I1:$Pu), (Vsplatpi (i32 0x01010101)))>; def: Pat<(v4i16 (azext V4I8:$Rs)), (S2_vzxtbh V4I8:$Rs)>; def: Pat<(v2i32 (azext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>; def: Pat<(v4i16 (sext V4I8:$Rs)), (S2_vsxtbh V4I8:$Rs)>; def: Pat<(v2i32 (sext V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>; def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)), (Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>; def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)), (Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>; // Truncate: from vector B copy all 'E'ven 'B'yte elements: // A[0] = B[0]; A[1] = B[2]; A[2] = B[4]; A[3] = B[6]; def: Pat<(v4i8 (trunc V4I16:$Rs)), (S2_vtrunehb V4I16:$Rs)>; // Truncate: from vector B copy all 'O'dd 'B'yte elements: // A[0] = B[1]; A[1] = B[3]; A[2] = B[5]; A[3] = B[7]; // S2_vtrunohb // Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements: // A[0] = B[0]; A[1] = B[2]; A[2] = C[0]; A[3] = C[2]; // S2_vtruneh def: Pat<(v2i16 (trunc V2I32:$Rs)), (A2_combine_ll (HiReg $Rs), (LoReg $Rs))>; // --(4) Logical --------------------------------------------------------- // def: Pat<(not I1:$Ps), (C2_not I1:$Ps)>; def: Pat<(pnot V2I1:$Ps), (C2_not V2I1:$Ps)>; def: Pat<(pnot V4I1:$Ps), (C2_not V4I1:$Ps)>; def: Pat<(pnot V8I1:$Ps), (C2_not V8I1:$Ps)>; def: Pat<(add I1:$Ps, -1), (C2_not I1:$Ps)>; multiclass BoolOpR_RR_pat { def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; } multiclass BoolAccRRR_pat { def: AccRRR_pat; def: AccRRR_pat; def: AccRRR_pat; def: AccRRR_pat; } defm: BoolOpR_RR_pat; defm: BoolOpR_RR_pat; defm: BoolOpR_RR_pat; defm: BoolOpR_RR_pat>; defm: BoolOpR_RR_pat>; // op(Ps, op(Pt, Pu)) defm: BoolAccRRR_pat>; defm: BoolAccRRR_pat>; defm: BoolAccRRR_pat>; defm: BoolAccRRR_pat>; // op(Ps, op(Pt, ~Pu)) defm: BoolAccRRR_pat>>; defm: BoolAccRRR_pat>>; defm: BoolAccRRR_pat>>; defm: BoolAccRRR_pat>>; // --(5) Compare --------------------------------------------------------- // // Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)". // These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt). def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RI_pat; def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)), (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>; def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)), (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>; def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)), (C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>; def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)), (C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>; // Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones // that reverse the order of the operands. class RevCmp : PatFrag<(ops node:$rhs, node:$lhs), !head(F.Fragments), F.PredicateCode, F.OperandTransform>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i1, I32>; def: OpR_RR_pat, i1, I32>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i1, I64>; def: OpR_RR_pat, i1, I64>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i1, V8I8>; def: OpR_RR_pat, v8i1, V8I8>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i1, V8I8>; def: OpR_RR_pat, v8i1, V8I8>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i1, V4I16>; def: OpR_RR_pat, v4i1, V4I16>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i1, V4I16>; def: OpR_RR_pat, v4i1, V4I16>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i1, V2I32>; def: OpR_RR_pat, v2i1, V2I32>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i1, V2I32>; def: OpR_RR_pat, v2i1, V2I32>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i1, F32>; def: OpR_RR_pat, i1, F32>; def: OpR_RR_pat, i1, F32>; def: OpR_RR_pat, i1, F32>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i1, F64>; def: OpR_RR_pat, i1, F64>; def: OpR_RR_pat, i1, F64>; def: OpR_RR_pat, i1, F64>; def: OpR_RR_pat; // Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds. def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)), (C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>; def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)), (C2_not (C2_cmpgti I32:$Rs, imm:$u5))>; def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)), (C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>; class OpmR_RR_pat : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)), (Output RsPred:$Rs, RtPred:$Rt)>; class Outn : OutPatFrag<(ops node:$Rs, node:$Rt), (C2_not (MI $Rs, $Rt))>; def: OpmR_RR_pat, setne, i1, I32>; def: OpmR_RR_pat, setle, i1, I32>; def: OpmR_RR_pat, setule, i1, I32>; def: OpmR_RR_pat, RevCmp, i1, I32>; def: OpmR_RR_pat, RevCmp, i1, I32>; def: OpmR_RR_pat, setne, i1, I64>; def: OpmR_RR_pat, setle, i1, I64>; def: OpmR_RR_pat, setule, i1, I64>; def: OpmR_RR_pat, RevCmp, i1, I64>; def: OpmR_RR_pat, RevCmp, i1, I64>; def: OpmR_RR_pat, setne, v8i1, V8I8>; def: OpmR_RR_pat, setle, v8i1, V8I8>; def: OpmR_RR_pat, setule, v8i1, V8I8>; def: OpmR_RR_pat, RevCmp, v8i1, V8I8>; def: OpmR_RR_pat, RevCmp, v8i1, V8I8>; def: OpmR_RR_pat, setne, v4i1, V4I16>; def: OpmR_RR_pat, setle, v4i1, V4I16>; def: OpmR_RR_pat, setule, v4i1, V4I16>; def: OpmR_RR_pat, RevCmp, v4i1, V4I16>; def: OpmR_RR_pat, RevCmp, v4i1, V4I16>; def: OpmR_RR_pat, setne, v2i1, V2I32>; def: OpmR_RR_pat, setle, v2i1, V2I32>; def: OpmR_RR_pat, setule, v2i1, V2I32>; def: OpmR_RR_pat, RevCmp, v2i1, V2I32>; def: OpmR_RR_pat, RevCmp, v2i1, V2I32>; let AddedComplexity = 100 in { def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)), (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)), (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>; def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)), (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)), (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>; } // PatFrag for AsserZext which takes the original type as a parameter. def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>; def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>; class AssertZext: PatFrag<(ops node:$A), (AssertZextSD $A, T)>; multiclass Cmpb_pat { def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)), (MI I32:$Rs, imm:$I)>; def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)), (MI I32:$Rs, imm:$I)>; } multiclass CmpbN_pat { def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)), (C2_not (MI I32:$Rs, imm:$I))>; def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)), (C2_not (MI I32:$Rs, imm:$I))>; } multiclass CmpbND_pat { def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)), (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>; def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)), (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>; } let AddedComplexity = 200 in { defm: Cmpb_pat , IsUGT<8,31>, 255>; defm: CmpbN_pat , IsUGT<8,31>, 255>; defm: Cmpb_pat , IsUGT<32,31>, 255>; defm: CmpbN_pat , IsUGT<32,31>, 255>; defm: Cmpb_pat , IsUGT<32,31>, 65535>; defm: CmpbN_pat , IsUGT<32,31>, 65535>; defm: CmpbND_pat, IsUGT<32,32>, 255>; defm: CmpbND_pat, IsUGT<32,32>, 65535>; } def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))), (A4_rcmpeq I32:$Rs, I32:$Rt)>; def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))), (A4_rcmpneq I32:$Rs, I32:$Rt)>; def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))), (A4_rcmpeqi I32:$Rs, imm:$s8)>; def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))), (A4_rcmpneqi I32:$Rs, imm:$s8)>; def: Pat<(i1 (seteq I1:$Ps, (i1 -1))), (I1:$Ps)>; def: Pat<(i1 (setne I1:$Ps, (i1 -1))), (C2_not I1:$Ps)>; def: Pat<(i1 (seteq I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, (C2_not I1:$Pt))>; def: Pat<(i1 (setne I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, I1:$Pt)>; // Floating-point comparisons with checks for ordered/unordered status. class T3 : OutPatFrag<(ops node:$Rs, node:$Rt), (MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>; class Cmpuf: T3; class Cmpud: T3; class Cmpufn: T3; class Cmpudn: T3; def: OpmR_RR_pat, setueq, i1, F32>; def: OpmR_RR_pat, setuge, i1, F32>; def: OpmR_RR_pat, setugt, i1, F32>; def: OpmR_RR_pat, RevCmp, i1, F32>; def: OpmR_RR_pat, RevCmp, i1, F32>; def: OpmR_RR_pat, setune, i1, F32>; def: OpmR_RR_pat, setueq, i1, F64>; def: OpmR_RR_pat, setuge, i1, F64>; def: OpmR_RR_pat, setugt, i1, F64>; def: OpmR_RR_pat, RevCmp, i1, F64>; def: OpmR_RR_pat, RevCmp, i1, F64>; def: OpmR_RR_pat, setune, i1, F64>; def: OpmR_RR_pat, setone, i1, F32>; def: OpmR_RR_pat, setne, i1, F32>; def: OpmR_RR_pat, setone, i1, F64>; def: OpmR_RR_pat, setne, i1, F64>; def: OpmR_RR_pat, seto, i1, F32>; def: OpmR_RR_pat, seto, i1, F64>; // --(6) Select ---------------------------------------------------------- // def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt), (C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>; def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs), (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>; def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8), (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>; def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8), (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>; def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt), (C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>; def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8), (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>; def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs), (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>; def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8), (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>; // Map from a 64-bit select to an emulated 64-bit mux. // Hexagon does not support 64-bit MUXes; so emulate with combines. def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt), (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)), (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>; def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I), (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>; def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt), (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>; def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt), (C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>; def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt), (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)), (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>; def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt), (C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>; def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt), (C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>; def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs), (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>; def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I), (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>; def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt), (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>; def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt), (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>; def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt), (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>; def: Pat<(vselect (pnot V8I1:$Pu), V8I8:$Rs, V8I8:$Rt), (C2_vmux V8I1:$Pu, V8I8:$Rt, V8I8:$Rs)>; def: Pat<(vselect (pnot V4I1:$Pu), V4I16:$Rs, V4I16:$Rt), (C2_vmux V4I1:$Pu, V4I16:$Rt, V4I16:$Rs)>; def: Pat<(vselect (pnot V2I1:$Pu), V2I32:$Rs, V2I32:$Rt), (C2_vmux V2I1:$Pu, V2I32:$Rt, V2I32:$Rs)>; // From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw). def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw), (C2_or (C2_and I1:$Pu, I1:$Pv), (C2_andn I1:$Pw, I1:$Pu))>; def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{ return isPositiveHalfWord(N); }]>; multiclass SelMinMax16_pats { def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)), IsPosHalf:$Rs, IsPosHalf:$Rt), i16), (InstA IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)), IsPosHalf:$Rt, IsPosHalf:$Rs), i16), (InstB IntRegs:$Rs, IntRegs:$Rt)>; } let AddedComplexity = 200 in { defm: SelMinMax16_pats; defm: SelMinMax16_pats; defm: SelMinMax16_pats; defm: SelMinMax16_pats; defm: SelMinMax16_pats; defm: SelMinMax16_pats; defm: SelMinMax16_pats; defm: SelMinMax16_pats; } def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; let AddedComplexity = 100 in { defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; } let AddedComplexity = 100, Predicates = [HasV67] in { defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; } def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; // --(7) Insert/extract -------------------------------------------------- // def SDTHexagonINSERT: SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>; def HexagonINSERT: SDNode<"HexagonISD::INSERT", SDTHexagonINSERT>; let AddedComplexity = 10 in { def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2), (S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>; def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2), (S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>; } def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, I32:$Width, I32:$Off), (S2_insert_rp I32:$Rs, I32:$Rt, (Combinew $Width, $Off))>; def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, I32:$Width, I32:$Off), (S2_insertp_rp I64:$Rs, I64:$Rt, (Combinew $Width, $Off))>; def SDTHexagonEXTRACTU : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>, SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; def HexagonEXTRACTU: SDNode<"HexagonISD::EXTRACTU", SDTHexagonEXTRACTU>; let AddedComplexity = 10 in { def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5), (S2_extractu I32:$Rs, imm:$u5, imm:$U5)>; def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6), (S2_extractup I64:$Rs, imm:$u6, imm:$U6)>; } def: Pat<(HexagonEXTRACTU I32:$Rs, I32:$Width, I32:$Off), (S2_extractu_rp I32:$Rs, (Combinew $Width, $Off))>; def: Pat<(HexagonEXTRACTU I64:$Rs, I32:$Width, I32:$Off), (S2_extractup_rp I64:$Rs, (Combinew $Width, $Off))>; def: Pat<(v4i8 (splat_vector anyint:$V)), (ToI32 (SplatB $V))>; def: Pat<(v2i16 (splat_vector anyint:$V)), (ToI32 (SplatH $V))>; def: Pat<(v8i8 (splat_vector anyint:$V)), (Combinew (ToI32 (SplatB $V)), (ToI32 (SplatB $V)))>; def: Pat<(v4i16 (splat_vector anyint:$V)), (Combinew (ToI32 (SplatH $V)), (ToI32 (SplatH $V)))>; let AddedComplexity = 10 in def: Pat<(v2i32 (splat_vector s8_0ImmPred:$s8)), (A2_combineii imm:$s8, imm:$s8)>; def: Pat<(v2i32 (splat_vector anyimm:$V)), (Combinew (ToI32 $V), (ToI32 $V))>; def: Pat<(v4i8 (splat_vector I32:$Rs)), (S2_vsplatrb I32:$Rs)>; def: Pat<(v2i16 (splat_vector I32:$Rs)), (LoReg (S2_vsplatrh I32:$Rs))>; def: Pat<(v4i16 (splat_vector I32:$Rs)), (S2_vsplatrh I32:$Rs)>; def: Pat<(v2i32 (splat_vector I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>; let AddedComplexity = 10 in def: Pat<(v8i8 (splat_vector I32:$Rs)), (S6_vsplatrbp I32:$Rs)>, Requires<[HasV62]>; def: Pat<(v8i8 (splat_vector I32:$Rs)), (Combinew (S2_vsplatrb I32:$Rs), (S2_vsplatrb I32:$Rs))>; // --(8) Shift/permute --------------------------------------------------- // def SDTHexagonI64I32I32: SDTypeProfile<1, 2, [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def HexagonCOMBINE: SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>; def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>; // The complexity of the combines involving immediates should be greater // than the complexity of the combine with two registers. let AddedComplexity = 50 in { def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8), (A4_combineri IntRegs:$Rs, imm:$s8)>; def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs), (A4_combineir imm:$s8, IntRegs:$Rs)>; } // The complexity of the combine with two immediates should be greater than // the complexity of a combine involving a register. let AddedComplexity = 75 in { def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6), (A4_combineii imm:$s8, imm:$u6)>; def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8), (A2_combineii imm:$s8, imm:$S8)>; } def: Pat<(bswap I32:$Rs), (A2_swiz I32:$Rs)>; def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)), (A2_swiz (HiReg $Rss)))>; def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt), (S4_lsli imm:$s6, I32:$Rt)>; def: Pat<(shl I32:$Rs, (i32 16)), (A2_aslh I32:$Rs)>; def: Pat<(sra I32:$Rs, (i32 16)), (A2_asrh I32:$Rs)>; def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RI_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; // Funnel shifts. def IsMul8_U3: PatLeaf<(i32 imm), [{ uint64_t V = N->getZExtValue(); return V % 8 == 0 && isUInt<3>(V / 8); }]>; def Divu8: SDNodeXFormgetTargetConstant(N->getZExtValue() / 8, SDLoc(N), MVT::i32); }]>; // Funnel shift-left. def FShl32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S), (HiReg (S2_asl_i_p (Combinew $Rs, $Rt), $S))>; def FShl32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru), (HiReg (S2_asl_r_p (Combinew $Rs, $Rt), $Ru))>; def FShl64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S), (S2_lsr_i_p_or (S2_asl_i_p $Rs, $S), $Rt, (Subi<64> $S))>; def FShl64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru), (S2_lsr_r_p_or (S2_asl_r_p $Rs, $Ru), $Rt, (A2_subri 64, $Ru))>; // Combined SDNodeXForm: (Divu8 (Subi<64> $S)) def Divu64_8: SDNodeXFormgetTargetConstant((64 - N->getSExtValue()) / 8, SDLoc(N), MVT::i32); }]>; // Special cases: let AddedComplexity = 100 in { def: Pat<(fshl I32:$Rs, I32:$Rt, (i32 16)), (A2_combine_lh I32:$Rs, I32:$Rt)>; def: Pat<(fshl I64:$Rs, I64:$Rt, IsMul8_U3:$S), (S2_valignib I64:$Rs, I64:$Rt, (Divu64_8 $S))>; } let Predicates = [HasV60], AddedComplexity = 50 in { def: OpR_RI_pat; def: OpR_RI_pat; } let AddedComplexity = 30 in { def: Pat<(rotl I32:$Rs, u5_0ImmPred:$S), (FShl32i $Rs, $Rs, imm:$S)>; def: Pat<(rotl I64:$Rs, u6_0ImmPred:$S), (FShl64i $Rs, $Rs, imm:$S)>; def: Pat<(fshl I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShl32i $Rs, $Rt, imm:$S)>; def: Pat<(fshl I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShl64i $Rs, $Rt, imm:$S)>; } def: Pat<(rotl I32:$Rs, I32:$Rt), (FShl32r $Rs, $Rs, $Rt)>; def: Pat<(rotl I64:$Rs, I32:$Rt), (FShl64r $Rs, $Rs, $Rt)>; def: Pat<(fshl I32:$Rs, I32:$Rt, I32:$Ru), (FShl32r $Rs, $Rt, $Ru)>; def: Pat<(fshl I64:$Rs, I64:$Rt, I32:$Ru), (FShl64r $Rs, $Rt, $Ru)>; // Funnel shift-right. def FShr32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S), (LoReg (S2_lsr_i_p (Combinew $Rs, $Rt), $S))>; def FShr32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru), (LoReg (S2_lsr_r_p (Combinew $Rs, $Rt), $Ru))>; def FShr64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S), (S2_asl_i_p_or (S2_lsr_i_p $Rt, $S), $Rs, (Subi<64> $S))>; def FShr64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru), (S2_asl_r_p_or (S2_lsr_r_p $Rt, $Ru), $Rs, (A2_subri 64, $Ru))>; // Special cases: let AddedComplexity = 100 in { def: Pat<(fshr I32:$Rs, I32:$Rt, (i32 16)), (A2_combine_lh I32:$Rs, I32:$Rt)>; def: Pat<(fshr I64:$Rs, I64:$Rt, IsMul8_U3:$S), (S2_valignib I64:$Rs, I64:$Rt, (Divu8 $S))>; } let Predicates = [HasV60], AddedComplexity = 50 in { def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S), (S6_rol_i_r I32:$Rs, (Subi<32> $S))>; def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S), (S6_rol_i_p I64:$Rs, (Subi<64> $S))>; } let AddedComplexity = 30 in { def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S), (FShr32i $Rs, $Rs, imm:$S)>; def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S), (FShr64i $Rs, $Rs, imm:$S)>; def: Pat<(fshr I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShr32i $Rs, $Rt, imm:$S)>; def: Pat<(fshr I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShr64i $Rs, $Rt, imm:$S)>; } def: Pat<(rotr I32:$Rs, I32:$Rt), (FShr32r $Rs, $Rs, $Rt)>; def: Pat<(rotr I64:$Rs, I32:$Rt), (FShr64r $Rs, $Rs, $Rt)>; def: Pat<(fshr I32:$Rs, I32:$Rt, I32:$Ru), (FShr32r $Rs, $Rt, $Ru)>; def: Pat<(fshr I64:$Rs, I64:$Rt, I32:$Ru), (FShr64r $Rs, $Rt, $Ru)>; def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)), (S2_asr_i_r_rnd I32:$Rs, imm:$u5)>; def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)), (S2_asr_i_p_rnd I64:$Rs, imm:$u6)>; // Prefer S2_addasl_rrri over S2_asl_i_r_acc. let AddedComplexity = 120 in def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)), (S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>; let AddedComplexity = 100 in { def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; let Predicates = [HasV60] in { def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I32, u5_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; def: AccRRI_pat, I64, u6_0ImmPred>; } } let AddedComplexity = 100 in { def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; def: AccRRR_pat, I64, I64, I32>; } class OpshIRI_pat : Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)), (MI anyimm:$u8, RegPred:$Rs, imm:$U5)>; let AddedComplexity = 200, Predicates = [UseCompound] in { def: OpshIRI_pat, I32, u5_0ImmPred>; def: OpshIRI_pat, I32, u5_0ImmPred>; def: OpshIRI_pat, I32, u5_0ImmPred>; def: OpshIRI_pat, I32, u5_0ImmPred>; def: OpshIRI_pat, I32, u5_0ImmPred>; def: OpshIRI_pat, I32, u5_0ImmPred>; def: OpshIRI_pat, I32, u5_0ImmPred>; def: OpshIRI_pat, I32, u5_0ImmPred>; } // Prefer this pattern to S2_asl_i_p_or for the special case of joining // two 32-bit words into a 64-bit word. let AddedComplexity = 200 in def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)), (Combinew I32:$a, I32:$b)>; def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)), (Zext64 (and I32:$a, (i32 65535)))), (shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))), (shl (Aext64 I32:$d), (i32 48))), (Combinew (A2_combine_ll I32:$d, I32:$c), (A2_combine_ll I32:$b, I32:$a))>; let AddedComplexity = 200 in { def: Pat<(or (shl I32:$Rt, (i32 16)), (and I32:$Rs, (i32 65535))), (A2_combine_ll I32:$Rt, I32:$Rs)>; def: Pat<(or (shl I32:$Rt, (i32 16)), (srl I32:$Rs, (i32 16))), (A2_combine_lh I32:$Rt, I32:$Rs)>; def: Pat<(or (and I32:$Rt, (i32 268431360)), (and I32:$Rs, (i32 65535))), (A2_combine_hl I32:$Rt, I32:$Rs)>; def: Pat<(or (and I32:$Rt, (i32 268431360)), (srl I32:$Rs, (i32 16))), (A2_combine_hh I32:$Rt, I32:$Rs)>; } def SDTHexagonVShift : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>; def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>; def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>; def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>; def: OpR_RI_pat, v2i32, V2I32, u5_0ImmPred>; def: OpR_RI_pat, v4i16, V4I16, u4_0ImmPred>; def: OpR_RI_pat, v2i32, V2I32, u5_0ImmPred>; def: OpR_RI_pat, v4i16, V4I16, u4_0ImmPred>; def: OpR_RI_pat, v2i32, V2I32, u5_0ImmPred>; def: OpR_RI_pat, v4i16, V4I16, u4_0ImmPred>; def: OpR_RR_pat, v2i32, V2I32, I32>; def: OpR_RR_pat, v4i16, V4I16, I32>; def: OpR_RR_pat, v2i32, V2I32, I32>; def: OpR_RR_pat, v4i16, V4I16, I32>; def: OpR_RR_pat, v2i32, V2I32, I32>; def: OpR_RR_pat, v4i16, V4I16, I32>; def: Pat<(sra V2I32:$b, (v2i32 (splat_vector u5_0ImmPred:$c))), (S2_asr_i_vw V2I32:$b, imm:$c)>; def: Pat<(srl V2I32:$b, (v2i32 (splat_vector u5_0ImmPred:$c))), (S2_lsr_i_vw V2I32:$b, imm:$c)>; def: Pat<(shl V2I32:$b, (v2i32 (splat_vector u5_0ImmPred:$c))), (S2_asl_i_vw V2I32:$b, imm:$c)>; def: Pat<(sra V4I16:$b, (v4i16 (splat_vector u4_0ImmPred:$c))), (S2_asr_i_vh V4I16:$b, imm:$c)>; def: Pat<(srl V4I16:$b, (v4i16 (splat_vector u4_0ImmPred:$c))), (S2_lsr_i_vh V4I16:$b, imm:$c)>; def: Pat<(shl V4I16:$b, (v4i16 (splat_vector u4_0ImmPred:$c))), (S2_asl_i_vh V4I16:$b, imm:$c)>; def: Pat<(HexagonVASR V2I16:$Rs, u4_0ImmPred:$S), (LoReg (S2_asr_i_vh (ToAext64 $Rs), imm:$S))>; def: Pat<(HexagonVASL V2I16:$Rs, u4_0ImmPred:$S), (LoReg (S2_asl_i_vh (ToAext64 $Rs), imm:$S))>; def: Pat<(HexagonVLSR V2I16:$Rs, u4_0ImmPred:$S), (LoReg (S2_lsr_i_vh (ToAext64 $Rs), imm:$S))>; def: Pat<(HexagonVASR V2I16:$Rs, I32:$Rt), (LoReg (S2_asr_i_vh (ToAext64 $Rs), I32:$Rt))>; def: Pat<(HexagonVASL V2I16:$Rs, I32:$Rt), (LoReg (S2_asl_i_vh (ToAext64 $Rs), I32:$Rt))>; def: Pat<(HexagonVLSR V2I16:$Rs, I32:$Rt), (LoReg (S2_lsr_i_vh (ToAext64 $Rs), I32:$Rt))>; // --(9) Arithmetic/bitwise ---------------------------------------------- // def: Pat<(abs I32:$Rs), (A2_abs I32:$Rs)>; def: Pat<(abs I64:$Rs), (A2_absp I64:$Rs)>; def: Pat<(not I32:$Rs), (A2_subri -1, I32:$Rs)>; def: Pat<(not I64:$Rs), (A2_notp I64:$Rs)>; def: Pat<(ineg I64:$Rs), (A2_negp I64:$Rs)>; def: Pat<(fabs F32:$Rs), (S2_clrbit_i F32:$Rs, 31)>; def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>; def: Pat<(fabs F64:$Rs), (Combinew (S2_clrbit_i (HiReg $Rs), 31), (i32 (LoReg $Rs)))>; def: Pat<(fneg F64:$Rs), (Combinew (S2_togglebit_i (HiReg $Rs), 31), (i32 (LoReg $Rs)))>; def: Pat<(add I32:$Rs, anyimm:$s16), (A2_addi I32:$Rs, imm:$s16)>; def: Pat<(or I32:$Rs, anyimm:$s10), (A2_orir I32:$Rs, imm:$s10)>; def: Pat<(and I32:$Rs, anyimm:$s10), (A2_andir I32:$Rs, imm:$s10)>; def: Pat<(sub anyimm:$s10, I32:$Rs), (A2_subri imm:$s10, I32:$Rs)>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i64, I64>; def: OpR_RR_pat, i64, I64>; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, i32, I32>; def: OpR_RR_pat, i32, I32>; def: OpR_RI_pat; def: OpR_RI_pat; // Arithmetic on predicates. def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat; def: OpR_RR_pat, f32, F32>; def: OpR_RR_pat, f32, F32>; def: OpR_RR_pat, f32, F32>; def: OpR_RR_pat, f32, F32>; def: OpR_RR_pat, f32, F32>; let Predicates = [HasV66] in { def: OpR_RR_pat, f64, F64>; def: OpR_RR_pat, f64, F64>; } def DfMpy: OutPatFrag<(ops node:$Rs, node:$Rt), (F2_dfmpyhh (F2_dfmpylh (F2_dfmpylh (F2_dfmpyll $Rs, $Rt), $Rs, $Rt), $Rt, $Rs), $Rs, $Rt)>; let Predicates = [HasV67,UseUnsafeMath], AddedComplexity = 50 in { def: Pat<(fmul F64:$Rs, F64:$Rt), (DfMpy $Rs, $Rt)>; } let Predicates = [HasV67] in { def: OpR_RR_pat, f64, F64>; def: OpR_RR_pat, f64, F64>; def: Pat<(fmul F64:$Rs, F64:$Rt), (DfMpy (F2_dfmpyfix $Rs, $Rt), (F2_dfmpyfix $Rt, $Rs))>; } // In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add, // over add-add with individual multiplies as inputs. let AddedComplexity = 10 in { def: AccRRI_pat, I32, u32_0ImmPred>; def: AccRRI_pat, I32, u32_0ImmPred>; def: AccRRR_pat, I32, I32, I32>; let Predicates = [HasV66] in def: AccRRR_pat, I32, I32, I32>; } def: AccRRI_pat, I32, s32_0ImmPred>; def: AccRRI_pat, I32, s32_0ImmPred>; def: AccRRR_pat, I32, I32, I32>; // Mulh for vectors // def: Pat<(v2i32 (mulhu V2I32:$Rss, V2I32:$Rtt)), (Combinew (M2_mpyu_up (HiReg $Rss), (HiReg $Rtt)), (M2_mpyu_up (LoReg $Rss), (LoReg $Rtt)))>; def: Pat<(v2i32 (mulhs V2I32:$Rs, V2I32:$Rt)), (Combinew (M2_mpy_up (HiReg $Rs), (HiReg $Rt)), (M2_mpy_up (LoReg $Rt), (LoReg $Rt)))>; def Mulhub: OutPatFrag<(ops node:$Rss, node:$Rtt), (Combinew (S2_vtrunohb (M5_vmpybuu (HiReg $Rss), (HiReg $Rtt))), (S2_vtrunohb (M5_vmpybuu (LoReg $Rss), (LoReg $Rtt))))>; // Equivalent of byte-wise arithmetic shift right by 7 in v8i8. def Asr7: OutPatFrag<(ops node:$Rss), (C2_mask (C2_not (A4_vcmpbgti $Rss, 0)))>; def: Pat<(v8i8 (mulhu V8I8:$Rss, V8I8:$Rtt)), (Mulhub $Rss, $Rtt)>; def: Pat<(v8i8 (mulhs V8I8:$Rss, V8I8:$Rtt)), (A2_vsubub (Mulhub $Rss, $Rtt), (A2_vaddub (A2_andp V8I8:$Rss, (Asr7 $Rtt)), (A2_andp V8I8:$Rtt, (Asr7 $Rss))))>; def Mpysh: OutPatFrag<(ops node:$Rs, node:$Rt), (M2_vmpy2s_s0 $Rs, $Rt)>; def Mpyshh: OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (HiReg $Rss), (HiReg $Rtt))>; def Mpyshl: OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (LoReg $Rss), (LoReg $Rtt))>; def Mulhsh: OutPatFrag<(ops node:$Rss, node:$Rtt), (Combinew (A2_combine_hh (HiReg (Mpyshh $Rss, $Rtt)), (LoReg (Mpyshh $Rss, $Rtt))), (A2_combine_hh (HiReg (Mpyshl $Rss, $Rtt)), (LoReg (Mpyshl $Rss, $Rtt))))>; def: Pat<(v4i16 (mulhs V4I16:$Rss, V4I16:$Rtt)), (Mulhsh $Rss, $Rtt)>; def: Pat<(v4i16 (mulhu V4I16:$Rss, V4I16:$Rtt)), (A2_vaddh (Mulhsh $Rss, $Rtt), (A2_vaddh (A2_andp V4I16:$Rss, (S2_asr_i_vh $Rtt, 15)), (A2_andp V4I16:$Rtt, (S2_asr_i_vh $Rss, 15))))>; def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)), (M2_mpysin IntRegs:$Rs, imm:$u8)>; def n8_0ImmPred: PatLeaf<(i32 imm), [{ int64_t V = N->getSExtValue(); return -255 <= V && V <= 0; }]>; // Change the sign of the immediate for Rd=-mpyi(Rs,#u8) def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8), (M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>; def: Pat<(add Sext64:$Rs, I64:$Rt), (A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I32, I32, I32>; def: AccRRR_pat, I64, I64, I64>; // For dags like (or (and (not _), _), (shl _, _)) where the "or" with // one argument matches the patterns below, and with the other argument // matches S2_asl_r_r_or, etc, prefer the patterns below. let AddedComplexity = 110 in { // greater than S2_asl_r_r_and/or/xor. def: AccRRR_pat>, I32, I32, I32>; def: AccRRR_pat>, I32, I32, I32>; def: AccRRR_pat>, I32, I32, I32>; } // S4_addaddi and S4_subaddi don't have tied operands, so give them // a bit of preference. let AddedComplexity = 30, Predicates = [UseCompound] in { def: Pat<(add I32:$Rs, (Su I32:$Ru, anyimm:$s6)), (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>; def: Pat<(add anyimm:$s6, (Su I32:$Rs, I32:$Ru)), (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>; def: Pat<(add I32:$Rs, (Su anyimm:$s6, I32:$Ru)), (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>; def: Pat<(sub (Su I32:$Rs, anyimm:$s6), I32:$Ru), (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>; def: Pat<(add (Su I32:$Rs, I32:$Ru), anyimm:$s6), (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>; } let Predicates = [UseCompound] in def: Pat<(or I32:$Ru, (Su I32:$Rx, anyimm:$s10)), (S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>; def: Pat<(or I32:$Rx, (Su I32:$Rs, anyimm:$s10)), (S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>; def: Pat<(or I32:$Rx, (Su I32:$Rs, anyimm:$s10)), (S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>; def: Pat<(i32 (trunc (sra (Su Sext64:$Rs, Sext64:$Rt), (i32 32)))), (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; def: Pat<(i32 (trunc (srl (Su Sext64:$Rs, Sext64:$Rt), (i32 32)))), (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)), (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>; def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)), (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>; def: Pat<(mul Sext64:$Rs, Sext64:$Rt), (M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; def: Pat<(add I64:$Rx, (Su Sext64:$Rs, Sext64:$Rt)), (M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; def: Pat<(sub I64:$Rx, (Su Sext64:$Rs, Sext64:$Rt)), (M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; def: Pat<(add I64:$Rx, (Su (Aext64 I32:$Rs), (Aext64 I32:$Rt))), (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; def: Pat<(add I64:$Rx, (Su (Zext64 I32:$Rs), (Zext64 I32:$Rt))), (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; def: Pat<(sub I64:$Rx, (Su (Aext64 I32:$Rs), (Aext64 I32:$Rt))), (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; def: Pat<(sub I64:$Rx, (Su (Zext64 I32:$Rs), (Zext64 I32:$Rt))), (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; // Add halfword. def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16), (A2_addh_l16_ll I32:$Rt, I32:$Rs)>; def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)), (A2_addh_l16_hl I32:$Rt, I32:$Rs)>; def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)), (A2_addh_h16_ll I32:$Rt, I32:$Rs)>; // Subtract halfword. def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16), (A2_subh_l16_ll I32:$Rt, I32:$Rs)>; def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)), (A2_addh_l16_hl I32:$Rt, I32:$Rs)>; def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)), (A2_subh_h16_ll I32:$Rt, I32:$Rs)>; def: Pat<(mul I64:$Rss, I64:$Rtt), (Combinew (M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))), (LoReg $Rss), (HiReg $Rtt)), (LoReg $Rtt), (HiReg $Rss)), (i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>; def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt), (A2_addp (M2_dpmpyuu_acc_s0 (S2_lsr_i_p (A2_addp (M2_dpmpyuu_acc_s0 (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32), (HiReg $Rss), (LoReg $Rtt)), (A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))), 32), (HiReg $Rss), (HiReg $Rtt)), (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>; // Multiply 64-bit unsigned and use upper result. def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>; // Multiply 64-bit signed and use upper result. // // For two signed 64-bit integers A and B, let A' and B' denote A and B // with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the // sign bit of A (and identically for B). With this notation, the signed // product A*B can be written as: // AB = (-2^63 s(A) + A') * (-2^63 s(B) + B') // = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B' // = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A'] // = (unsigned product AB) - 2^64 [s(A)B'+s(B)A'] // Clear the sign bit in a 64-bit register. def ClearSign : OutPatFrag<(ops node:$Rss), (Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>; def : Pat <(mulhs I64:$Rss, I64:$Rtt), (A2_subp (MulHU $Rss, $Rtt), (A2_addp (A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)), (A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>; // Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions // will put the immediate addend into a register, while these instructions will // use it directly. Such a construct does not appear in the middle of a gep, // where M2_macsip would be preferable. let AddedComplexity = 20, Predicates = [UseCompound] in { def: Pat<(add (Su I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6), (M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>; def: Pat<(add (Su I32:$Rs, I32:$Rt), anyimm:$u6), (M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>; } // Keep these instructions less preferable to M2_macsip/M2_macsin. let Predicates = [UseCompound] in { def: Pat<(add I32:$Ru, (Su I32:$Rs, u6_2ImmPred:$u6_2)), (M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>; def: Pat<(add I32:$Ru, (Su I32:$Rs, anyimm:$u6)), (M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>; def: Pat<(add I32:$Ru, (Su I32:$Ry, I32:$Rs)), (M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>; } def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx), (F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>; def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx), (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>; def: Pat<(mul V2I32:$Rs, V2I32:$Rt), (PS_vmulw V2I32:$Rs, V2I32:$Rt)>; def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)), (PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>; // Add/subtract two v4i8: Hexagon does not have an insn for this one, so // we use the double add v8i8, and use only the low part of the result. def: Pat<(add V4I8:$Rs, V4I8:$Rt), (LoReg (A2_vaddub (ToAext64 $Rs), (ToAext64 $Rt)))>; def: Pat<(sub V4I8:$Rs, V4I8:$Rt), (LoReg (A2_vsubub (ToAext64 $Rs), (ToAext64 $Rt)))>; // Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two // half-words, and saturates the result to a 32-bit value, except the // saturation never happens (it can only occur with scaling). def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)), (LoReg (S2_vtrunewh (A2_combineii 0, 0), (M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>; def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)), (S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)), (M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>; // Multiplies two v4i8 vectors. def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)), (S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>; // Multiplies two v8i8 vectors. def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)), (Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))), (S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>; // --(10) Bit ------------------------------------------------------------ // // Count leading zeros. def: Pat<(i32 (ctlz I32:$Rs)), (S2_cl0 I32:$Rs)>; def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>; // Count trailing zeros. def: Pat<(i32 (cttz I32:$Rs)), (S2_ct0 I32:$Rs)>; def: Pat<(i32 (trunc (cttz I64:$Rss))), (S2_ct0p I64:$Rss)>; // Count leading ones. def: Pat<(i32 (ctlz (not I32:$Rs))), (S2_cl1 I32:$Rs)>; def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>; // Count trailing ones. def: Pat<(i32 (cttz (not I32:$Rs))), (S2_ct1 I32:$Rs)>; def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>; // Define leading/trailing patterns that require zero-extensions to 64 bits. def: Pat<(i64 (ctlz I64:$Rss)), (ToZext64 (S2_cl0p I64:$Rss))>; def: Pat<(i64 (cttz I64:$Rss)), (ToZext64 (S2_ct0p I64:$Rss))>; def: Pat<(i64 (ctlz (not I64:$Rss))), (ToZext64 (S2_cl1p I64:$Rss))>; def: Pat<(i64 (cttz (not I64:$Rss))), (ToZext64 (S2_ct1p I64:$Rss))>; def: Pat<(i64 (ctpop I64:$Rss)), (ToZext64 (S5_popcountp I64:$Rss))>; def: Pat<(i32 (ctpop I32:$Rs)), (S5_popcountp (A4_combineir 0, I32:$Rs))>; def: Pat<(bitreverse I32:$Rs), (S2_brev I32:$Rs)>; def: Pat<(bitreverse I64:$Rss), (S2_brevp I64:$Rss)>; let AddedComplexity = 20 in { // Complexity greater than and/or/xor def: Pat<(and I32:$Rs, IsNPow2_32:$V), (S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>; def: Pat<(or I32:$Rs, IsPow2_32:$V), (S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>; def: Pat<(xor I32:$Rs, IsPow2_32:$V), (S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>; def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))), (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)), (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)), (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>; } // Clr/set/toggle bit for 64-bit values with immediate bit index. let AddedComplexity = 20 in { // Complexity greater than and/or/xor def: Pat<(and I64:$Rss, IsNPow2_64L:$V), (Combinew (i32 (HiReg $Rss)), (S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>; def: Pat<(and I64:$Rss, IsNPow2_64H:$V), (Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))), (i32 (LoReg $Rss)))>; def: Pat<(or I64:$Rss, IsPow2_64L:$V), (Combinew (i32 (HiReg $Rss)), (S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>; def: Pat<(or I64:$Rss, IsPow2_64H:$V), (Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))), (i32 (LoReg $Rss)))>; def: Pat<(xor I64:$Rss, IsPow2_64L:$V), (Combinew (i32 (HiReg $Rss)), (S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>; def: Pat<(xor I64:$Rss, IsPow2_64H:$V), (Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))), (i32 (LoReg $Rss)))>; } let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm. def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)), (S2_tstbit_i IntRegs:$Rs, imm:$u5)>; def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)), (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(i1 (trunc I32:$Rs)), (S2_tstbit_i IntRegs:$Rs, 0)>; def: Pat<(i1 (trunc I64:$Rs)), (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>; } def: Pat<(and (srl I32:$Rs, u5_0ImmPred:$u5), 1), (I1toI32 (S2_tstbit_i I32:$Rs, imm:$u5))>; def: Pat<(and (srl I64:$Rss, IsULE<32,31>:$u6), 1), (ToZext64 (I1toI32 (S2_tstbit_i (LoReg $Rss), imm:$u6)))>; def: Pat<(and (srl I64:$Rss, IsUGT<32,31>:$u6), 1), (ToZext64 (I1toI32 (S2_tstbit_i (HiReg $Rss), (UDEC32 $u6))))>; def: Pat<(and (not (srl I32:$Rs, u5_0ImmPred:$u5)), 1), (I1toI32 (S4_ntstbit_i I32:$Rs, imm:$u5))>; def: Pat<(and (not (srl I64:$Rss, IsULE<32,31>:$u6)), 1), (ToZext64 (I1toI32 (S4_ntstbit_i (LoReg $Rss), imm:$u6)))>; def: Pat<(and (not (srl I64:$Rss, IsUGT<32,31>:$u6)), 1), (ToZext64 (I1toI32 (S4_ntstbit_i (HiReg $Rss), (UDEC32 $u6))))>; let AddedComplexity = 20 in { // Complexity greater than compare reg-imm. def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)), (C2_bitsclri IntRegs:$Rs, imm:$u6)>; def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)), (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>; } let AddedComplexity = 10 in // Complexity greater than compare reg-reg. def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)), (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>; def SDTTestBit: SDTypeProfile<1, 2, [SDTCisVT<0, i1>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; def HexagonTSTBIT: SDNode<"HexagonISD::TSTBIT", SDTTestBit>; def: Pat<(HexagonTSTBIT I32:$Rs, u5_0ImmPred:$u5), (S2_tstbit_i I32:$Rs, imm:$u5)>; def: Pat<(HexagonTSTBIT I32:$Rs, I32:$Rt), (S2_tstbit_r I32:$Rs, I32:$Rt)>; // Add extra complexity to prefer these instructions over bitsset/bitsclr. // The reason is that tstbit/ntstbit can be folded into a compound instruction: // if ([!]tstbit(...)) jump ... let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm. def: Pat<(i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)), (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>; def: Pat<(i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)), (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>; def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)), (S4_ntstbit_r I32:$Rs, I32:$Rt)>; def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)), (S2_tstbit_r I32:$Rs, I32:$Rt)>; } def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64L:$u6), 0)), (S4_ntstbit_i (LoReg $Rs), (Log2_64 $u6))>; def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64H:$u6), 0)), (S4_ntstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 $u6))))>; def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64L:$u6), 0)), (S2_tstbit_i (LoReg $Rs), (Log2_64 imm:$u6))>; def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64H:$u6), 0)), (S2_tstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 imm:$u6))))>; // Do not increase complexity of these patterns. In the DAG, "cmp i8" may be // represented as a compare against "value & 0xFF", which is an exact match // for cmpb (same for cmph). The patterns below do not contain any additional // complexity that would make them preferable, and if they were actually used // instead of cmpb/cmph, they would result in a compare against register that // is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF). def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)), (C4_nbitsclri I32:$Rs, imm:$u6)>; def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)), (C4_nbitsclr I32:$Rs, I32:$Rt)>; def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)), (C4_nbitsset I32:$Rs, I32:$Rt)>; // Special patterns to address certain cases where the "top-down" matching // algorithm would cause suboptimal selection. let AddedComplexity = 100 in { // Avoid A4_rcmp[n]eqi in these cases: def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))), (I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>; def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))), (I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>; def: Pat<(i32 (zext (i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)))), (I1toI32 (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5)))>; def: Pat<(i32 (zext (i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)))), (I1toI32 (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5)))>; def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))), (I1toI32 (S4_ntstbit_r I32:$Rs, I32:$Rt))>; def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))), (I1toI32 (S2_tstbit_r I32:$Rs, I32:$Rt))>; } // --(11) PIC ------------------------------------------------------------ // def SDT_HexagonAtGot : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; def SDT_HexagonAtPcrel : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; // AT_GOT address-of-GOT, address-of-global, offset-in-global def HexagonAtGot : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>; // AT_PCREL address-of-global def HexagonAtPcrel : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>; def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)), (L2_loadri_io I32:$got, imm:$addr)>; def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off), (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>; def: Pat<(HexagonAtPcrel I32:$addr), (C4_addipc imm:$addr)>; // The HVX load patterns also match AT_PCREL directly. Make sure that // if the selection of this opcode changes, it's updated in all places. // --(12) Load ----------------------------------------------------------- // def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::v2i8; }]>; def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::v4i8; }]>; def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::v2i8; }]>; def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::v4i8; }]>; def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::v2i8; }]>; def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::v4i8; }]>; // Patterns to select load-indexed: Rs + Off. // - frameindex [+ imm], multiclass Loadxfi_pat { def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))), (VT (MI AddrFI:$fi, imm:$Off))>; def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))), (VT (MI AddrFI:$fi, imm:$Off))>; def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>; } // Patterns to select load-indexed: Rs + Off. // - base reg [+ imm] multiclass Loadxgi_pat { def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))), (VT (MI IntRegs:$Rs, imm:$Off))>; def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))), (VT (MI IntRegs:$Rs, imm:$Off))>; def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>; } // Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi. multiclass Loadxi_pat { defm: Loadxfi_pat; defm: Loadxgi_pat; } // Patterns to select load reg indexed: Rs + Off with a value modifier. // - frameindex [+ imm] multiclass Loadxfim_pat { def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))), (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>; def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))), (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>; def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>; } // Patterns to select load reg indexed: Rs + Off with a value modifier. // - base reg [+ imm] multiclass Loadxgim_pat { def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))), (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>; def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))), (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>; def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>; } // Patterns to select load reg indexed: Rs + Off with a value modifier. // Combines Loadxfim + Loadxgim. multiclass Loadxim_pat { defm: Loadxfim_pat; defm: Loadxgim_pat; } // Pattern to select load reg reg-indexed: Rs + Rt< : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))), (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>; // Pattern to select load reg reg-indexed: Rs + Rt<<0. class Loadxr_add_pat : Pat<(VT (Load (add I32:$Rs, I32:$Rt))), (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>; // Pattern to select load reg reg-indexed: Rs + Rt< : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))), (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>; // Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier. class Loadxrm_add_pat : Pat<(VT (Load (add I32:$Rs, I32:$Rt))), (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>; // Pattern to select load long-offset reg-indexed: Addr + Rt< : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))), (VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>; class Loadxum_pat : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))), (VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>; // Pattern to select load absolute. class Loada_pat : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>; // Pattern to select load absolute with value modifier. class Loadam_pat : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>; let AddedComplexity = 20 in { defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; // No sextloadi1. defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; defm: Loadxi_pat; } let AddedComplexity = 30 in { defm: Loadxim_pat; defm: Loadxim_pat; defm: Loadxim_pat; defm: Loadxim_pat; defm: Loadxim_pat; defm: Loadxim_pat; defm: Loadxim_pat; defm: Loadxim_pat; defm: Loadxim_pat; defm: Loadxim_pat; defm: Loadxim_pat; } let AddedComplexity = 60 in { def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxu_pat; def: Loadxum_pat; def: Loadxum_pat; def: Loadxum_pat; def: Loadxum_pat; def: Loadxum_pat; def: Loadxum_pat; def: Loadxum_pat; def: Loadxum_pat; def: Loadxum_pat; } let AddedComplexity = 40 in { def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; def: Loadxr_shl_pat; } let AddedComplexity = 20 in { def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; def: Loadxr_add_pat; } let AddedComplexity = 40 in { def: Loadxrm_shl_pat; def: Loadxrm_shl_pat; def: Loadxrm_shl_pat; def: Loadxrm_shl_pat; def: Loadxrm_shl_pat; def: Loadxrm_shl_pat; def: Loadxrm_shl_pat; def: Loadxrm_shl_pat; def: Loadxrm_shl_pat; } let AddedComplexity = 20 in { def: Loadxrm_add_pat; def: Loadxrm_add_pat; def: Loadxrm_add_pat; def: Loadxrm_add_pat; def: Loadxrm_add_pat; def: Loadxrm_add_pat; def: Loadxrm_add_pat; def: Loadxrm_add_pat; def: Loadxrm_add_pat; } // Absolute address let AddedComplexity = 60 in { def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; } let AddedComplexity = 30 in { def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; } // GP-relative address let AddedComplexity = 100 in { def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; def: Loada_pat; } let AddedComplexity = 70 in { def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; def: Loadam_pat; } // Sign-extending loads of i1 need to replicate the lowest bit throughout // the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should // do the trick. let AddedComplexity = 20 in def: Pat<(i32 (sextloadi1 I32:$Rs)), (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>; // Patterns for loads of i1: def: Pat<(i1 (load AddrFI:$fi)), (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>; def: Pat<(i1 (load (add I32:$Rs, anyimm0:$Off))), (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>; def: Pat<(i1 (load I32:$Rs)), (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>; // --(13) Store ---------------------------------------------------------- // class Storepi_pat : Pat<(Store Value:$Rt, I32:$Rx, Offset:$s4), (MI I32:$Rx, imm:$s4, Value:$Rt)>; def: Storepi_pat; def: Storepi_pat; def: Storepi_pat; def: Storepi_pat; // Patterns for generating stores, where the address takes different forms: // - frameindex, // - frameindex + offset, // - base + offset, // - simple (base address without offset). // These would usually be used together (via Storexi_pat defined below), but // in some cases one may want to apply different properties (such as // AddedComplexity) to the individual patterns. class Storexi_fi_pat : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>; multiclass Storexi_fi_add_pat { def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)), (MI AddrFI:$fi, imm:$Off, Value:$Rs)>; def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)), (MI AddrFI:$fi, imm:$Off, Value:$Rs)>; } multiclass Storexi_add_pat { def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)), (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>; def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)), (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>; } class Storexi_base_pat : Pat<(Store Value:$Rt, I32:$Rs), (MI IntRegs:$Rs, 0, Value:$Rt)>; // Patterns for generating stores, where the address takes different forms, // and where the value being stored is transformed through the value modifier // ValueMod. The address forms are same as above. class Storexim_fi_pat : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>; multiclass Storexim_fi_add_pat { def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)), (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>; def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)), (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>; } multiclass Storexim_add_pat { def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)), (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>; def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)), (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>; } class Storexim_base_pat : Pat<(Store Value:$Rt, I32:$Rs), (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>; multiclass Storexi_pat { defm: Storexi_fi_add_pat ; def: Storexi_fi_pat ; defm: Storexi_add_pat ; } multiclass Storexim_pat { defm: Storexim_fi_add_pat ; def: Storexim_fi_pat ; defm: Storexim_add_pat ; } // Reg< : Pat<(Store Value:$Rt, (add (shl I32:$Ru, u2_0ImmPred:$u2), ImmPred:$A)), (MI IntRegs:$Ru, imm:$u2, ImmPred:$A, Value:$Rt)>; // Reg< : Pat<(Store Value:$Ru, (add I32:$Rs, (shl I32:$Rt, u2_0ImmPred:$u2))), (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>; // Reg + Reg class Storexr_add_pat : Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)), (MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>; class Storea_pat : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>; class Stoream_pat : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, (ValueMod Value:$val))>; // Regular stores in the DAG have two operands: value and address. // Atomic stores also have two, but they are reversed: address, value. // To use atomic stores with the patterns, they need to have their operands // swapped. This relies on the knowledge that the F.Fragment uses names // "ptr" and "val". class AtomSt : PatFrag<(ops node:$val, node:$ptr), !head(F.Fragments), F.PredicateCode, F.OperandTransform> { let IsAtomic = F.IsAtomic; let MemoryVT = F.MemoryVT; } def IMM_BYTE : SDNodeXFormgetSExtValue(); return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32); }]>; def IMM_HALF : SDNodeXFormgetSExtValue(); return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32); }]>; def IMM_WORD : SDNodeXFormgetSExtValue(); return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32); }]>; def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>; def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>; def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>; // Even though the offset is not extendable in the store-immediate, we // can still generate the fi# in the base address. If the final offset // is not valid for the instruction, we will replace it with a scratch // register. class SmallStackStore : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{ return isSmallStackStore(cast(N)); }]>; // This is the complement of SmallStackStore. class LargeStackStore : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{ return !isSmallStackStore(cast(N)); }]>; // Preferred addressing modes for various combinations of stored value // and address computation. // For stores where the address and value are both immediates, prefer // store-immediate. The reason is that the constant-extender optimization // can replace store-immediate with a store-register, but there is nothing // to generate a store-immediate out of a store-register. // // C R F F+C R+C R+R R<getSExtValue(); return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v); }]>; def RoundTo8 : SDNodeXFormgetSExtValue(); return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32); }]>; let AddedComplexity = 150 in def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)), (S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>; class Storexi_abs_pat : Pat<(Store Value:$val, anyimm:$addr), (MI (ToI32 $addr), 0, Value:$val)>; class Storexim_abs_pat : Pat<(Store Value:$val, anyimm:$addr), (MI (ToI32 $addr), 0, (ValueMod Value:$val))>; let AddedComplexity = 140 in { def: Storexim_abs_pat; def: Storexim_abs_pat; def: Storexim_abs_pat; def: Storexi_abs_pat; def: Storexi_abs_pat; def: Storexi_abs_pat; } // GP-relative address let AddedComplexity = 120 in { def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat, I32, addrgp, S2_storerbgp>; def: Storea_pat, I32, addrgp, S2_storerhgp>; def: Storea_pat, I32, addrgp, S2_storerigp>; def: Storea_pat, V4I8, addrgp, S2_storerigp>; def: Storea_pat, V2I16, addrgp, S2_storerigp>; def: Storea_pat, I64, addrgp, S2_storerdgp>; def: Storea_pat, V8I8, addrgp, S2_storerdgp>; def: Storea_pat, V4I16, addrgp, S2_storerdgp>; def: Storea_pat, V2I32, addrgp, S2_storerdgp>; def: Stoream_pat; def: Stoream_pat; def: Stoream_pat; def: Stoream_pat; } // Absolute address let AddedComplexity = 110 in { def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat; def: Storea_pat, I32, anyimm0, PS_storerbabs>; def: Storea_pat, I32, anyimm1, PS_storerhabs>; def: Storea_pat, I32, anyimm2, PS_storeriabs>; def: Storea_pat, V4I8, anyimm2, PS_storeriabs>; def: Storea_pat, V2I16, anyimm2, PS_storeriabs>; def: Storea_pat, I64, anyimm3, PS_storerdabs>; def: Storea_pat, V8I8, anyimm3, PS_storerdabs>; def: Storea_pat, V4I16, anyimm3, PS_storerdabs>; def: Storea_pat, V2I32, anyimm3, PS_storerdabs>; def: Stoream_pat; def: Stoream_pat; def: Stoream_pat; def: Stoream_pat; } // Reg<; def: Storexu_shl_pat; def: Storexu_shl_pat; def: Storexu_shl_pat; def: Storexu_shl_pat; def: Storexu_shl_pat; def: Storexu_shl_pat; def: Storexu_shl_pat; def: Storexu_shl_pat; def: Storexu_shl_pat; def: Storexu_shl_pat; def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), anyimm:$A)), (S4_storerb_ur IntRegs:$Rs, imm:$u2, imm:$A, (I1toI32 I1:$Pu))>; } // Reg<; def: Storexr_shl_pat; def: Storexr_shl_pat; def: Storexr_shl_pat; def: Storexr_shl_pat; def: Storexr_shl_pat; def: Storexr_shl_pat; def: Storexr_shl_pat; def: Storexr_shl_pat; def: Storexr_shl_pat; def: Storexr_shl_pat; def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), I32:$Rt)), (S4_storerb_ur IntRegs:$Rt, IntRegs:$Rs, imm:$u2, (I1toI32 I1:$Pu))>; } class SS_ : SmallStackStore; class LS_ : LargeStackStore; multiclass IMFA_ { defm: Storexim_fi_add_pat; } multiclass IFA_ { defm: Storexi_fi_add_pat; } // Fi+Imm, store-immediate let AddedComplexity = 80 in { defm: IMFA_, anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>; defm: IMFA_, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>; defm: IMFA_, anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>; defm: IFA_, anyimm, u6_0ImmPred, S4_storeirb_io>; defm: IFA_, anyimm, u6_1ImmPred, S4_storeirh_io>; defm: IFA_, anyimm, u6_2ImmPred, S4_storeiri_io>; // For large-stack stores, generate store-register (prefer explicit Fi // in the address). defm: IMFA_, anyimm, u6_0ImmPred, ToI32, S2_storerb_io>; defm: IMFA_, anyimm, u6_1ImmPred, ToI32, S2_storerh_io>; defm: IMFA_, anyimm, u6_2ImmPred, ToI32, S2_storeri_io>; } // Fi, store-immediate let AddedComplexity = 70 in { def: Storexim_fi_pat, anyint, ToImmByte, S4_storeirb_io>; def: Storexim_fi_pat, anyint, ToImmHalf, S4_storeirh_io>; def: Storexim_fi_pat, anyint, ToImmWord, S4_storeiri_io>; def: Storexi_fi_pat, anyimm, S4_storeirb_io>; def: Storexi_fi_pat, anyimm, S4_storeirh_io>; def: Storexi_fi_pat, anyimm, S4_storeiri_io>; // For large-stack stores, generate store-register (prefer explicit Fi // in the address). def: Storexim_fi_pat, anyimm, ToI32, S2_storerb_io>; def: Storexim_fi_pat, anyimm, ToI32, S2_storerh_io>; def: Storexim_fi_pat, anyimm, ToI32, S2_storeri_io>; } // Fi+Imm, Fi, store-register let AddedComplexity = 60 in { defm: Storexi_fi_add_pat; defm: Storexi_fi_add_pat; defm: Storexi_fi_add_pat; defm: Storexi_fi_add_pat; defm: Storexi_fi_add_pat; defm: Storexi_fi_add_pat; defm: Storexi_fi_add_pat; defm: Storexi_fi_add_pat; defm: Storexi_fi_add_pat; defm: Storexi_fi_add_pat; defm: Storexi_fi_add_pat; defm: Storexim_fi_add_pat; def: Storexi_fi_pat; def: Storexi_fi_pat; def: Storexi_fi_pat; def: Storexi_fi_pat; def: Storexi_fi_pat; def: Storexi_fi_pat; def: Storexi_fi_pat; def: Storexi_fi_pat; def: Storexi_fi_pat; def: Storexi_fi_pat; def: Storexi_fi_pat; def: Storexim_fi_pat; } multiclass IMRA_ { defm: Storexim_add_pat; } multiclass IRA_ { defm: Storexi_add_pat; } // Reg+Imm, store-immediate let AddedComplexity = 50 in { defm: IMRA_; defm: IMRA_; defm: IMRA_; defm: IRA_; defm: IRA_; defm: IRA_; } // Reg+Imm, store-register let AddedComplexity = 40 in { defm: Storexi_pat; defm: Storexi_pat; defm: Storexi_pat; defm: Storexi_pat; defm: Storexi_pat; defm: Storexi_pat; defm: Storexi_pat; defm: Storexi_pat; defm: Storexi_pat; defm: Storexi_pat; defm: Storexi_pat; defm: Storexim_pat; defm: Storexim_pat; defm: Storexim_pat; defm: Storexim_pat; defm: Storexi_pat, I32, anyimm0, S2_storerb_io>; defm: Storexi_pat, I32, anyimm1, S2_storerh_io>; defm: Storexi_pat, I32, anyimm2, S2_storeri_io>; defm: Storexi_pat, V4I8, anyimm2, S2_storeri_io>; defm: Storexi_pat, V2I16, anyimm2, S2_storeri_io>; defm: Storexi_pat, I64, anyimm3, S2_storerd_io>; defm: Storexi_pat, V8I8, anyimm3, S2_storerd_io>; defm: Storexi_pat, V4I16, anyimm3, S2_storerd_io>; defm: Storexi_pat, V2I32, anyimm3, S2_storerd_io>; } // Reg+Reg let AddedComplexity = 30 in { def: Storexr_add_pat; def: Storexr_add_pat; def: Storexr_add_pat; def: Storexr_add_pat; def: Storexr_add_pat; def: Storexr_add_pat; def: Storexr_add_pat; def: Storexr_add_pat; def: Storexr_add_pat; def: Storexr_add_pat; def: Storexr_add_pat; def: Pat<(store I1:$Pu, (add I32:$Rs, I32:$Rt)), (S4_storerb_rr IntRegs:$Rs, IntRegs:$Rt, 0, (I1toI32 I1:$Pu))>; } // Reg, store-immediate let AddedComplexity = 20 in { def: Storexim_base_pat; def: Storexim_base_pat; def: Storexim_base_pat; def: Storexi_base_pat; def: Storexi_base_pat; def: Storexi_base_pat; } // Reg, store-register let AddedComplexity = 10 in { def: Storexi_base_pat; def: Storexi_base_pat; def: Storexi_base_pat; def: Storexi_base_pat; def: Storexi_base_pat; def: Storexi_base_pat; def: Storexi_base_pat; def: Storexi_base_pat; def: Storexi_base_pat; def: Storexi_base_pat; def: Storexi_base_pat; def: Storexim_base_pat; def: Storexim_base_pat; def: Storexim_base_pat; def: Storexim_base_pat; def: Storexi_base_pat, I32, S2_storerb_io>; def: Storexi_base_pat, I32, S2_storerh_io>; def: Storexi_base_pat, I32, S2_storeri_io>; def: Storexi_base_pat, V4I8, S2_storeri_io>; def: Storexi_base_pat, V2I16, S2_storeri_io>; def: Storexi_base_pat, I64, S2_storerd_io>; def: Storexi_base_pat, V8I8, S2_storerd_io>; def: Storexi_base_pat, V4I16, S2_storerd_io>; def: Storexi_base_pat, V2I32, S2_storerd_io>; } // --(14) Memop ---------------------------------------------------------- // def m5_0Imm8Pred : PatLeaf<(i32 imm), [{ int8_t V = N->getSExtValue(); return -32 < V && V <= -1; }]>; def m5_0Imm16Pred : PatLeaf<(i32 imm), [{ int16_t V = N->getSExtValue(); return -32 < V && V <= -1; }]>; def m5_0ImmPred : PatLeaf<(i32 imm), [{ int64_t V = N->getSExtValue(); return -31 <= V && V <= -1; }]>; def IsNPow2_8 : PatLeaf<(i32 imm), [{ uint8_t NV = ~N->getZExtValue(); return isPowerOf2_32(NV); }]>; def IsNPow2_16 : PatLeaf<(i32 imm), [{ uint16_t NV = ~N->getZExtValue(); return isPowerOf2_32(NV); }]>; def Log2_8 : SDNodeXFormgetZExtValue(); return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32); }]>; def Log2_16 : SDNodeXFormgetZExtValue(); return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32); }]>; def LogN2_8 : SDNodeXFormgetZExtValue(); return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32); }]>; def LogN2_16 : SDNodeXFormgetZExtValue(); return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32); }]>; def IdImm : SDNodeXForm; multiclass Memopxr_base_pat { // Addr: i32 def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs), (MI I32:$Rs, 0, I32:$A)>; // Addr: fi def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs), (MI AddrFI:$Rs, 0, I32:$A)>; } multiclass Memopxr_add_pat { // Addr: i32 def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A), (add I32:$Rs, ImmPred:$Off)), (MI I32:$Rs, imm:$Off, I32:$A)>; def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A), (IsOrAdd I32:$Rs, ImmPred:$Off)), (MI I32:$Rs, imm:$Off, I32:$A)>; // Addr: fi def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A), (add AddrFI:$Rs, ImmPred:$Off)), (MI AddrFI:$Rs, imm:$Off, I32:$A)>; def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A), (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), (MI AddrFI:$Rs, imm:$Off, I32:$A)>; } multiclass Memopxr_pat { let Predicates = [UseMEMOPS] in { defm: Memopxr_base_pat ; defm: Memopxr_add_pat ; } } let AddedComplexity = 200 in { // add reg defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; // sub reg defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; // and reg defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; // or reg defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; defm: Memopxr_pat; } multiclass Memopxi_base_pat { // Addr: i32 def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs), (MI I32:$Rs, 0, (ArgMod Arg:$A))>; // Addr: fi def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs), (MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>; } multiclass Memopxi_add_pat { // Addr: i32 def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A), (add I32:$Rs, ImmPred:$Off)), (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>; def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A), (IsOrAdd I32:$Rs, ImmPred:$Off)), (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>; // Addr: fi def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A), (add AddrFI:$Rs, ImmPred:$Off)), (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>; def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A), (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>; } multiclass Memopxi_pat { let Predicates = [UseMEMOPS] in { defm: Memopxi_base_pat ; defm: Memopxi_add_pat ; } } let AddedComplexity = 220 in { // add imm defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; // sub imm defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; // clrbit imm defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; // setbit imm defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; defm: Memopxi_pat; } // --(15) Call ----------------------------------------------------------- // // Pseudo instructions. def SDT_SPCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_SPCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def callseq_start: SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end: SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def SDT_SPCall: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def HexagonTCRet: SDNode<"HexagonISD::TC_RETURN", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def callv3: SDNode<"HexagonISD::CALL", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def callv3nr: SDNode<"HexagonISD::CALLnr", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def: Pat<(callseq_start timm:$amt, timm:$amt2), (ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>; def: Pat<(callseq_end timm:$amt1, timm:$amt2), (ADJCALLSTACKUP imm:$amt1, imm:$amt2)>; def: Pat<(HexagonTCRet tglobaladdr:$dst), (PS_tailcall_i tglobaladdr:$dst)>; def: Pat<(HexagonTCRet texternalsym:$dst), (PS_tailcall_i texternalsym:$dst)>; def: Pat<(HexagonTCRet I32:$dst), (PS_tailcall_r I32:$dst)>; def: Pat<(callv3 I32:$dst), (J2_callr I32:$dst)>; def: Pat<(callv3 tglobaladdr:$dst), (J2_call tglobaladdr:$dst)>; def: Pat<(callv3 texternalsym:$dst), (J2_call texternalsym:$dst)>; def: Pat<(callv3 tglobaltlsaddr:$dst), (J2_call tglobaltlsaddr:$dst)>; def: Pat<(callv3nr I32:$dst), (PS_callr_nr I32:$dst)>; def: Pat<(callv3nr tglobaladdr:$dst), (PS_call_nr tglobaladdr:$dst)>; def: Pat<(callv3nr texternalsym:$dst), (PS_call_nr texternalsym:$dst)>; def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>; def: Pat<(retflag), (PS_jmpret (i32 R31))>; def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>; // --(16) Branch --------------------------------------------------------- // def: Pat<(br bb:$dst), (J2_jump b30_2Imm:$dst)>; def: Pat<(brind I32:$dst), (J2_jumpr I32:$dst)>; def: Pat<(brcond I1:$Pu, bb:$dst), (J2_jumpt I1:$Pu, bb:$dst)>; def: Pat<(brcond (not I1:$Pu), bb:$dst), (J2_jumpf I1:$Pu, bb:$dst)>; def: Pat<(brcond (i1 (setne I1:$Pu, -1)), bb:$dst), (J2_jumpf I1:$Pu, bb:$dst)>; def: Pat<(brcond (i1 (seteq I1:$Pu, 0)), bb:$dst), (J2_jumpf I1:$Pu, bb:$dst)>; def: Pat<(brcond (i1 (setne I1:$Pu, 0)), bb:$dst), (J2_jumpt I1:$Pu, bb:$dst)>; // --(17) Misc ----------------------------------------------------------- // Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)' // for C code of the form r = (c>='0' && c<='9') ? 1 : 0. // The isdigit transformation relies on two 'clever' aspects: // 1) The data type is unsigned which allows us to eliminate a zero test after // biasing the expression by 48. We are depending on the representation of // the unsigned types, and semantics. // 2) The front end has converted <= 9 into < 10 on entry to LLVM. // // For the C code: // retval = (c >= '0' && c <= '9') ? 1 : 0; // The code is transformed upstream of llvm into // retval = (c-48) < 10 ? 1 : 0; def u7_0PosImmPred : ImmLeaf 0 && isUInt<7>(Imm); }]>; let AddedComplexity = 139 in def: Pat<(i32 (zext (i1 (setult (and I32:$Rs, 255), u7_0PosImmPred:$u7)))), (C2_muxii (A4_cmpbgtui IntRegs:$Rs, (UDEC1 imm:$u7)), 0, 1)>; let AddedComplexity = 100 in def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))), (i32 (extloadi8 (add I32:$b, 3))), 24, 8), (i32 16)), (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))), (zextloadi8 I32:$b)), (A2_swiz (L2_loadri_io I32:$b, 0))>; // We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH // because the SDNode ISD::PREFETCH has properties MayLoad and MayStore. // We don't really want either one here. def SDTHexagonDCFETCH: SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>; def HexagonDCFETCH: SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH, [SDNPHasChain]>; def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3), (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>; def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)), (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>; def SDTHexagonALLOCA : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def HexagonALLOCA : SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA, [SDNPHasChain]>; def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)), (PS_alloca IntRegs:$Rs, imm:$A)>; def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>; def: Pat<(HexagonBARRIER), (Y2_barrier)>; def: Pat<(trap), (PS_crash)>; // Read cycle counter. def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>; def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf, [SDNPHasChain]>; def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>; // The declared return value of the store-locked intrinsics is i32, but // the instructions actually define i1. To avoid register copies from // IntRegs to PredRegs and back, fold the entire pattern checking the // result against true/false. let AddedComplexity = 100 in { def: Pat<(i1 (setne (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)), (S2_storew_locked I32:$Rs, I32:$Rt)>; def: Pat<(i1 (seteq (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)), (C2_not (S2_storew_locked I32:$Rs, I32:$Rt))>; def: Pat<(i1 (setne (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)), (S4_stored_locked I32:$Rs, I64:$Rt)>; def: Pat<(i1 (seteq (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)), (C2_not (S4_stored_locked I32:$Rs, I64:$Rt))>; }