//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // /// The pass tries to use the 32-bit encoding for instructions when possible. //===----------------------------------------------------------------------===// // #include "AMDGPU.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #define DEBUG_TYPE "si-shrink-instructions" STATISTIC(NumInstructionsShrunk, "Number of 64-bit instruction reduced to 32-bit."); STATISTIC(NumLiteralConstantsFolded, "Number of literal constants folded into 32-bit instructions."); using namespace llvm; namespace { class SIShrinkInstructions : public MachineFunctionPass { public: static char ID; void shrinkMIMG(MachineInstr &MI); public: SIShrinkInstructions() : MachineFunctionPass(ID) { } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI Shrink Instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace. INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE, "SI Shrink Instructions", false, false) char SIShrinkInstructions::ID = 0; FunctionPass *llvm::createSIShrinkInstructionsPass() { return new SIShrinkInstructions(); } /// This function checks \p MI for operands defined by a move immediate /// instruction and then folds the literal constant into the instruction if it /// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions. static bool foldImmediates(MachineInstr &MI, const SIInstrInfo *TII, MachineRegisterInfo &MRI, bool TryToCommute = true) { assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI)); int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); // Try to fold Src0 MachineOperand &Src0 = MI.getOperand(Src0Idx); if (Src0.isReg()) { Register Reg = Src0.getReg(); if (Reg.isVirtual() && MRI.hasOneUse(Reg)) { MachineInstr *Def = MRI.getUniqueVRegDef(Reg); if (Def && Def->isMoveImmediate()) { MachineOperand &MovSrc = Def->getOperand(1); bool ConstantFolded = false; if (TII->isOperandLegal(MI, Src0Idx, &MovSrc)) { if (MovSrc.isImm() && (isInt<32>(MovSrc.getImm()) || isUInt<32>(MovSrc.getImm()))) { Src0.ChangeToImmediate(MovSrc.getImm()); ConstantFolded = true; } else if (MovSrc.isFI()) { Src0.ChangeToFrameIndex(MovSrc.getIndex()); ConstantFolded = true; } else if (MovSrc.isGlobal()) { Src0.ChangeToGA(MovSrc.getGlobal(), MovSrc.getOffset(), MovSrc.getTargetFlags()); ConstantFolded = true; } } if (ConstantFolded) { assert(MRI.use_empty(Reg)); Def->eraseFromParent(); ++NumLiteralConstantsFolded; return true; } } } } // We have failed to fold src0, so commute the instruction and try again. if (TryToCommute && MI.isCommutable()) { if (TII->commuteInstruction(MI)) { if (foldImmediates(MI, TII, MRI, false)) return true; // Commute back. TII->commuteInstruction(MI); } } return false; } static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) { return isInt<16>(Src.getImm()) && !TII->isInlineConstant(*Src.getParent(), Src.getParent()->getOperandNo(&Src)); } static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) { return isUInt<16>(Src.getImm()) && !TII->isInlineConstant(*Src.getParent(), Src.getParent()->getOperandNo(&Src)); } static bool isKImmOrKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src, bool &IsUnsigned) { if (isInt<16>(Src.getImm())) { IsUnsigned = false; return !TII->isInlineConstant(Src); } if (isUInt<16>(Src.getImm())) { IsUnsigned = true; return !TII->isInlineConstant(Src); } return false; } /// \returns true if the constant in \p Src should be replaced with a bitreverse /// of an inline immediate. static bool isReverseInlineImm(const SIInstrInfo *TII, const MachineOperand &Src, int32_t &ReverseImm) { if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src)) return false; ReverseImm = reverseBits(static_cast(Src.getImm())); return ReverseImm >= -16 && ReverseImm <= 64; } /// Copy implicit register operands from specified instruction to this /// instruction that are not part of the instruction definition. static void copyExtraImplicitOps(MachineInstr &NewMI, MachineFunction &MF, const MachineInstr &MI) { for (unsigned i = MI.getDesc().getNumOperands() + MI.getDesc().getNumImplicitUses() + MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) NewMI.addOperand(MF, MO); } } static void shrinkScalarCompare(const SIInstrInfo *TII, MachineInstr &MI) { // cmpk instructions do scc = dst imm16, so commute the instruction to // get constants on the RHS. if (!MI.getOperand(0).isReg()) TII->commuteInstruction(MI, false, 0, 1); // cmpk requires src0 to be a register const MachineOperand &Src0 = MI.getOperand(0); if (!Src0.isReg()) return; const MachineOperand &Src1 = MI.getOperand(1); if (!Src1.isImm()) return; int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode()); if (SOPKOpc == -1) return; // eq/ne is special because the imm16 can be treated as signed or unsigned, // and initially selectd to the unsigned versions. if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) { bool HasUImm; if (isKImmOrKUImmOperand(TII, Src1, HasUImm)) { if (!HasUImm) { SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ? AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32; } MI.setDesc(TII->get(SOPKOpc)); } return; } const MCInstrDesc &NewDesc = TII->get(SOPKOpc); if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(TII, Src1)) || (!TII->sopkIsZext(SOPKOpc) && isKImmOperand(TII, Src1))) { MI.setDesc(NewDesc); } } // Shrink NSA encoded instructions with contiguous VGPRs to non-NSA encoding. void SIShrinkInstructions::shrinkMIMG(MachineInstr &MI) { const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); if (!Info || Info->MIMGEncoding != AMDGPU::MIMGEncGfx10NSA) return; MachineFunction *MF = MI.getParent()->getParent(); const GCNSubtarget &ST = MF->getSubtarget(); const SIInstrInfo *TII = ST.getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); int VAddr0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); unsigned NewAddrDwords = Info->VAddrDwords; const TargetRegisterClass *RC; if (Info->VAddrDwords == 2) { RC = &AMDGPU::VReg_64RegClass; } else if (Info->VAddrDwords == 3) { RC = &AMDGPU::VReg_96RegClass; } else if (Info->VAddrDwords == 4) { RC = &AMDGPU::VReg_128RegClass; } else if (Info->VAddrDwords <= 8) { RC = &AMDGPU::VReg_256RegClass; NewAddrDwords = 8; } else { RC = &AMDGPU::VReg_512RegClass; NewAddrDwords = 16; } unsigned VgprBase = 0; bool IsUndef = true; bool IsKill = NewAddrDwords == Info->VAddrDwords; for (unsigned i = 0; i < Info->VAddrDwords; ++i) { const MachineOperand &Op = MI.getOperand(VAddr0Idx + i); unsigned Vgpr = TRI.getHWRegIndex(Op.getReg()); if (i == 0) { VgprBase = Vgpr; } else if (VgprBase + i != Vgpr) return; if (!Op.isUndef()) IsUndef = false; if (!Op.isKill()) IsKill = false; } if (VgprBase + NewAddrDwords > 256) return; // Further check for implicit tied operands - this may be present if TFE is // enabled int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); int LWEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::lwe); unsigned TFEVal = (TFEIdx == -1) ? 0 : MI.getOperand(TFEIdx).getImm(); unsigned LWEVal = (LWEIdx == -1) ? 0 : MI.getOperand(LWEIdx).getImm(); int ToUntie = -1; if (TFEVal || LWEVal) { // TFE/LWE is enabled so we need to deal with an implicit tied operand for (unsigned i = LWEIdx + 1, e = MI.getNumOperands(); i != e; ++i) { if (MI.getOperand(i).isReg() && MI.getOperand(i).isTied() && MI.getOperand(i).isImplicit()) { // This is the tied operand assert( ToUntie == -1 && "found more than one tied implicit operand when expecting only 1"); ToUntie = i; MI.untieRegOperand(ToUntie); } } } unsigned NewOpcode = AMDGPU::getMIMGOpcode(Info->BaseOpcode, AMDGPU::MIMGEncGfx10Default, Info->VDataDwords, NewAddrDwords); MI.setDesc(TII->get(NewOpcode)); MI.getOperand(VAddr0Idx).setReg(RC->getRegister(VgprBase)); MI.getOperand(VAddr0Idx).setIsUndef(IsUndef); MI.getOperand(VAddr0Idx).setIsKill(IsKill); for (unsigned i = 1; i < Info->VAddrDwords; ++i) MI.RemoveOperand(VAddr0Idx + 1); if (ToUntie >= 0) { MI.tieOperands( AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata), ToUntie - (Info->VAddrDwords - 1)); } } /// Attempt to shink AND/OR/XOR operations requiring non-inlineable literals. /// For AND or OR, try using S_BITSET{0,1} to clear or set bits. /// If the inverse of the immediate is legal, use ANDN2, ORN2 or /// XNOR (as a ^ b == ~(a ^ ~b)). /// \returns true if the caller should continue the machine function iterator static bool shrinkScalarLogicOp(const GCNSubtarget &ST, MachineRegisterInfo &MRI, const SIInstrInfo *TII, MachineInstr &MI) { unsigned Opc = MI.getOpcode(); const MachineOperand *Dest = &MI.getOperand(0); MachineOperand *Src0 = &MI.getOperand(1); MachineOperand *Src1 = &MI.getOperand(2); MachineOperand *SrcReg = Src0; MachineOperand *SrcImm = Src1; if (!SrcImm->isImm() || AMDGPU::isInlinableLiteral32(SrcImm->getImm(), ST.hasInv2PiInlineImm())) return false; uint32_t Imm = static_cast(SrcImm->getImm()); uint32_t NewImm = 0; if (Opc == AMDGPU::S_AND_B32) { if (isPowerOf2_32(~Imm)) { NewImm = countTrailingOnes(Imm); Opc = AMDGPU::S_BITSET0_B32; } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) { NewImm = ~Imm; Opc = AMDGPU::S_ANDN2_B32; } } else if (Opc == AMDGPU::S_OR_B32) { if (isPowerOf2_32(Imm)) { NewImm = countTrailingZeros(Imm); Opc = AMDGPU::S_BITSET1_B32; } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) { NewImm = ~Imm; Opc = AMDGPU::S_ORN2_B32; } } else if (Opc == AMDGPU::S_XOR_B32) { if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) { NewImm = ~Imm; Opc = AMDGPU::S_XNOR_B32; } } else { llvm_unreachable("unexpected opcode"); } if ((Opc == AMDGPU::S_ANDN2_B32 || Opc == AMDGPU::S_ORN2_B32) && SrcImm == Src0) { if (!TII->commuteInstruction(MI, false, 1, 2)) NewImm = 0; } if (NewImm != 0) { if (Dest->getReg().isVirtual() && SrcReg->isReg()) { MRI.setRegAllocationHint(Dest->getReg(), 0, SrcReg->getReg()); MRI.setRegAllocationHint(SrcReg->getReg(), 0, Dest->getReg()); return true; } if (SrcReg->isReg() && SrcReg->getReg() == Dest->getReg()) { const bool IsUndef = SrcReg->isUndef(); const bool IsKill = SrcReg->isKill(); MI.setDesc(TII->get(Opc)); if (Opc == AMDGPU::S_BITSET0_B32 || Opc == AMDGPU::S_BITSET1_B32) { Src0->ChangeToImmediate(NewImm); // Remove the immediate and add the tied input. MI.getOperand(2).ChangeToRegister(Dest->getReg(), /*IsDef*/ false, /*isImp*/ false, IsKill, /*isDead*/ false, IsUndef); MI.tieOperands(0, 2); } else { SrcImm->setImm(NewImm); } } } return false; } // This is the same as MachineInstr::readsRegister/modifiesRegister except // it takes subregs into account. static bool instAccessReg(iterator_range &&R, Register Reg, unsigned SubReg, const SIRegisterInfo &TRI) { for (const MachineOperand &MO : R) { if (!MO.isReg()) continue; if (Reg.isPhysical() && MO.getReg().isPhysical()) { if (TRI.regsOverlap(Reg, MO.getReg())) return true; } else if (MO.getReg() == Reg && Reg.isVirtual()) { LaneBitmask Overlap = TRI.getSubRegIndexLaneMask(SubReg) & TRI.getSubRegIndexLaneMask(MO.getSubReg()); if (Overlap.any()) return true; } } return false; } static bool instReadsReg(const MachineInstr *MI, unsigned Reg, unsigned SubReg, const SIRegisterInfo &TRI) { return instAccessReg(MI->uses(), Reg, SubReg, TRI); } static bool instModifiesReg(const MachineInstr *MI, unsigned Reg, unsigned SubReg, const SIRegisterInfo &TRI) { return instAccessReg(MI->defs(), Reg, SubReg, TRI); } static TargetInstrInfo::RegSubRegPair getSubRegForIndex(Register Reg, unsigned Sub, unsigned I, const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) { if (TRI.getRegSizeInBits(Reg, MRI) != 32) { if (Reg.isPhysical()) { Reg = TRI.getSubReg(Reg, TRI.getSubRegFromChannel(I)); } else { Sub = TRI.getSubRegFromChannel(I + TRI.getChannelFromSubReg(Sub)); } } return TargetInstrInfo::RegSubRegPair(Reg, Sub); } static void dropInstructionKeepingImpDefs(MachineInstr &MI, const SIInstrInfo *TII) { for (unsigned i = MI.getDesc().getNumOperands() + MI.getDesc().getNumImplicitUses() + MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &Op = MI.getOperand(i); if (!Op.isDef()) continue; BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), TII->get(AMDGPU::IMPLICIT_DEF), Op.getReg()); } MI.eraseFromParent(); } // Match: // mov t, x // mov x, y // mov y, t // // => // // mov t, x (t is potentially dead and move eliminated) // v_swap_b32 x, y // // Returns next valid instruction pointer if was able to create v_swap_b32. // // This shall not be done too early not to prevent possible folding which may // remove matched moves, and this should prefereably be done before RA to // release saved registers and also possibly after RA which can insert copies // too. // // This is really just a generic peephole that is not a canocical shrinking, // although requirements match the pass placement and it reduces code size too. static MachineInstr* matchSwap(MachineInstr &MovT, MachineRegisterInfo &MRI, const SIInstrInfo *TII) { assert(MovT.getOpcode() == AMDGPU::V_MOV_B32_e32 || MovT.getOpcode() == AMDGPU::COPY); Register T = MovT.getOperand(0).getReg(); unsigned Tsub = MovT.getOperand(0).getSubReg(); MachineOperand &Xop = MovT.getOperand(1); if (!Xop.isReg()) return nullptr; Register X = Xop.getReg(); unsigned Xsub = Xop.getSubReg(); unsigned Size = TII->getOpSize(MovT, 0) / 4; const SIRegisterInfo &TRI = TII->getRegisterInfo(); if (!TRI.isVGPR(MRI, X)) return nullptr; if (MovT.hasRegisterImplicitUseOperand(AMDGPU::M0)) return nullptr; const unsigned SearchLimit = 16; unsigned Count = 0; bool KilledT = false; for (auto Iter = std::next(MovT.getIterator()), E = MovT.getParent()->instr_end(); Iter != E && Count < SearchLimit && !KilledT; ++Iter, ++Count) { MachineInstr *MovY = &*Iter; KilledT = MovY->killsRegister(T, &TRI); if ((MovY->getOpcode() != AMDGPU::V_MOV_B32_e32 && MovY->getOpcode() != AMDGPU::COPY) || !MovY->getOperand(1).isReg() || MovY->getOperand(1).getReg() != T || MovY->getOperand(1).getSubReg() != Tsub || MovY->hasRegisterImplicitUseOperand(AMDGPU::M0)) continue; Register Y = MovY->getOperand(0).getReg(); unsigned Ysub = MovY->getOperand(0).getSubReg(); if (!TRI.isVGPR(MRI, Y)) continue; MachineInstr *MovX = nullptr; for (auto IY = MovY->getIterator(), I = std::next(MovT.getIterator()); I != IY; ++I) { if (instReadsReg(&*I, X, Xsub, TRI) || instModifiesReg(&*I, Y, Ysub, TRI) || instModifiesReg(&*I, T, Tsub, TRI) || (MovX && instModifiesReg(&*I, X, Xsub, TRI))) { MovX = nullptr; break; } if (!instReadsReg(&*I, Y, Ysub, TRI)) { if (!MovX && instModifiesReg(&*I, X, Xsub, TRI)) { MovX = nullptr; break; } continue; } if (MovX || (I->getOpcode() != AMDGPU::V_MOV_B32_e32 && I->getOpcode() != AMDGPU::COPY) || I->getOperand(0).getReg() != X || I->getOperand(0).getSubReg() != Xsub) { MovX = nullptr; break; } // Implicit use of M0 is an indirect move. if (I->hasRegisterImplicitUseOperand(AMDGPU::M0)) continue; if (Size > 1 && (I->getNumImplicitOperands() > (I->isCopy() ? 0U : 1U))) continue; MovX = &*I; } if (!MovX) continue; LLVM_DEBUG(dbgs() << "Matched v_swap_b32:\n" << MovT << *MovX << *MovY); for (unsigned I = 0; I < Size; ++I) { TargetInstrInfo::RegSubRegPair X1, Y1; X1 = getSubRegForIndex(X, Xsub, I, TRI, MRI); Y1 = getSubRegForIndex(Y, Ysub, I, TRI, MRI); MachineBasicBlock &MBB = *MovT.getParent(); auto MIB = BuildMI(MBB, MovX->getIterator(), MovT.getDebugLoc(), TII->get(AMDGPU::V_SWAP_B32)) .addDef(X1.Reg, 0, X1.SubReg) .addDef(Y1.Reg, 0, Y1.SubReg) .addReg(Y1.Reg, 0, Y1.SubReg) .addReg(X1.Reg, 0, X1.SubReg).getInstr(); if (MovX->hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { // Drop implicit EXEC. MIB->RemoveOperand(MIB->getNumExplicitOperands()); MIB->copyImplicitOps(*MBB.getParent(), *MovX); } } MovX->eraseFromParent(); dropInstructionKeepingImpDefs(*MovY, TII); MachineInstr *Next = &*std::next(MovT.getIterator()); if (MRI.use_nodbg_empty(T)) { dropInstructionKeepingImpDefs(MovT, TII); } else { Xop.setIsKill(false); for (int I = MovT.getNumImplicitOperands() - 1; I >= 0; --I ) { unsigned OpNo = MovT.getNumExplicitOperands() + I; const MachineOperand &Op = MovT.getOperand(OpNo); if (Op.isKill() && TRI.regsOverlap(X, Op.getReg())) MovT.RemoveOperand(OpNo); } } return Next; } return nullptr; } bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; MachineRegisterInfo &MRI = MF.getRegInfo(); const GCNSubtarget &ST = MF.getSubtarget(); const SIInstrInfo *TII = ST.getInstrInfo(); unsigned VCCReg = ST.isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC; std::vector I1Defs; for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) { MachineBasicBlock &MBB = *BI; MachineBasicBlock::iterator I, Next; for (I = MBB.begin(); I != MBB.end(); I = Next) { Next = std::next(I); MachineInstr &MI = *I; if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) { // If this has a literal constant source that is the same as the // reversed bits of an inline immediate, replace with a bitreverse of // that constant. This saves 4 bytes in the common case of materializing // sign bits. // Test if we are after regalloc. We only want to do this after any // optimizations happen because this will confuse them. // XXX - not exactly a check for post-regalloc run. MachineOperand &Src = MI.getOperand(1); if (Src.isImm() && MI.getOperand(0).getReg().isPhysical()) { int32_t ReverseImm; if (isReverseInlineImm(TII, Src, ReverseImm)) { MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32)); Src.setImm(ReverseImm); continue; } } } if (ST.hasSwap() && (MI.getOpcode() == AMDGPU::V_MOV_B32_e32 || MI.getOpcode() == AMDGPU::COPY)) { if (auto *NextMI = matchSwap(MI, MRI, TII)) { Next = NextMI->getIterator(); continue; } } // FIXME: We also need to consider movs of constant operands since // immediate operands are not folded if they have more than one use, and // the operand folding pass is unaware if the immediate will be free since // it won't know if the src == dest constraint will end up being // satisfied. if (MI.getOpcode() == AMDGPU::S_ADD_I32 || MI.getOpcode() == AMDGPU::S_MUL_I32) { const MachineOperand *Dest = &MI.getOperand(0); MachineOperand *Src0 = &MI.getOperand(1); MachineOperand *Src1 = &MI.getOperand(2); if (!Src0->isReg() && Src1->isReg()) { if (TII->commuteInstruction(MI, false, 1, 2)) std::swap(Src0, Src1); } // FIXME: This could work better if hints worked with subregisters. If // we have a vector add of a constant, we usually don't get the correct // allocation due to the subregister usage. if (Dest->getReg().isVirtual() && Src0->isReg()) { MRI.setRegAllocationHint(Dest->getReg(), 0, Src0->getReg()); MRI.setRegAllocationHint(Src0->getReg(), 0, Dest->getReg()); continue; } if (Src0->isReg() && Src0->getReg() == Dest->getReg()) { if (Src1->isImm() && isKImmOperand(TII, *Src1)) { unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ? AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32; MI.setDesc(TII->get(Opc)); MI.tieOperands(0, 1); } } } // Try to use s_cmpk_* if (MI.isCompare() && TII->isSOPC(MI)) { shrinkScalarCompare(TII, MI); continue; } // Try to use S_MOVK_I32, which will save 4 bytes for small immediates. if (MI.getOpcode() == AMDGPU::S_MOV_B32) { const MachineOperand &Dst = MI.getOperand(0); MachineOperand &Src = MI.getOperand(1); if (Src.isImm() && Dst.getReg().isPhysical()) { int32_t ReverseImm; if (isKImmOperand(TII, Src)) MI.setDesc(TII->get(AMDGPU::S_MOVK_I32)); else if (isReverseInlineImm(TII, Src, ReverseImm)) { MI.setDesc(TII->get(AMDGPU::S_BREV_B32)); Src.setImm(ReverseImm); } } continue; } // Shrink scalar logic operations. if (MI.getOpcode() == AMDGPU::S_AND_B32 || MI.getOpcode() == AMDGPU::S_OR_B32 || MI.getOpcode() == AMDGPU::S_XOR_B32) { if (shrinkScalarLogicOp(ST, MRI, TII, MI)) continue; } if (TII->isMIMG(MI.getOpcode()) && ST.getGeneration() >= AMDGPUSubtarget::GFX10 && MF.getProperties().hasProperty( MachineFunctionProperties::Property::NoVRegs)) { shrinkMIMG(MI); continue; } if (!TII->hasVALU32BitEncoding(MI.getOpcode())) continue; if (!TII->canShrink(MI, MRI)) { // Try commuting the instruction and see if that enables us to shrink // it. if (!MI.isCommutable() || !TII->commuteInstruction(MI) || !TII->canShrink(MI, MRI)) continue; } // getVOPe32 could be -1 here if we started with an instruction that had // a 32-bit encoding and then commuted it to an instruction that did not. if (!TII->hasVALU32BitEncoding(MI.getOpcode())) continue; int Op32 = AMDGPU::getVOPe32(MI.getOpcode()); if (TII->isVOPC(Op32)) { Register DstReg = MI.getOperand(0).getReg(); if (DstReg.isVirtual()) { // VOPC instructions can only write to the VCC register. We can't // force them to use VCC here, because this is only one register and // cannot deal with sequences which would require multiple copies of // VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...) // // So, instead of forcing the instruction to write to VCC, we provide // a hint to the register allocator to use VCC and then we will run // this pass again after RA and shrink it if it outputs to VCC. MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, VCCReg); continue; } if (DstReg != VCCReg) continue; } if (Op32 == AMDGPU::V_CNDMASK_B32_e32) { // We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC // instructions. const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2); if (!Src2->isReg()) continue; Register SReg = Src2->getReg(); if (SReg.isVirtual()) { MRI.setRegAllocationHint(SReg, 0, VCCReg); continue; } if (SReg != VCCReg) continue; } // Check for the bool flag output for instructions like V_ADD_I32_e64. const MachineOperand *SDst = TII->getNamedOperand(MI, AMDGPU::OpName::sdst); // Check the carry-in operand for v_addc_u32_e64. const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2); if (SDst) { bool Next = false; if (SDst->getReg() != VCCReg) { if (SDst->getReg().isVirtual()) MRI.setRegAllocationHint(SDst->getReg(), 0, VCCReg); Next = true; } // All of the instructions with carry outs also have an SGPR input in // src2. if (Src2 && Src2->getReg() != VCCReg) { if (Src2->getReg().isVirtual()) MRI.setRegAllocationHint(Src2->getReg(), 0, VCCReg); Next = true; } if (Next) continue; } // We can shrink this instruction LLVM_DEBUG(dbgs() << "Shrinking " << MI); MachineInstr *Inst32 = TII->buildShrunkInst(MI, Op32); ++NumInstructionsShrunk; // Copy extra operands not present in the instruction definition. copyExtraImplicitOps(*Inst32, MF, MI); MI.eraseFromParent(); foldImmediates(*Inst32, TII, MRI); LLVM_DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n'); } } return false; }