//=== lib/CodeGen/GlobalISel/AMDGPUPostLegalizerCombiner.cpp ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass does combining of machine instructions at the generic MI level, // after the legalizer. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPULegalizerInfo.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/CodeGen/GlobalISel/Combiner.h" #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" #include "llvm/CodeGen/GlobalISel/CombinerInfo.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/Target/TargetMachine.h" #define DEBUG_TYPE "amdgpu-postlegalizer-combiner" using namespace llvm; using namespace MIPatternMatch; class AMDGPUPostLegalizerCombinerHelper { protected: MachineIRBuilder &B; MachineFunction &MF; MachineRegisterInfo &MRI; CombinerHelper &Helper; public: AMDGPUPostLegalizerCombinerHelper(MachineIRBuilder &B, CombinerHelper &Helper) : B(B), MF(B.getMF()), MRI(*B.getMRI()), Helper(Helper){}; struct FMinFMaxLegacyInfo { Register LHS; Register RHS; Register True; Register False; CmpInst::Predicate Pred; }; // TODO: Make sure fmin_legacy/fmax_legacy don't canonicalize bool matchFMinFMaxLegacy(MachineInstr &MI, FMinFMaxLegacyInfo &Info); void applySelectFCmpToFMinToFMaxLegacy(MachineInstr &MI, const FMinFMaxLegacyInfo &Info); bool matchUCharToFloat(MachineInstr &MI); void applyUCharToFloat(MachineInstr &MI); // FIXME: Should be able to have 2 separate matchdatas rather than custom // struct boilerplate. struct CvtF32UByteMatchInfo { Register CvtVal; unsigned ShiftOffset; }; bool matchCvtF32UByteN(MachineInstr &MI, CvtF32UByteMatchInfo &MatchInfo); void applyCvtF32UByteN(MachineInstr &MI, const CvtF32UByteMatchInfo &MatchInfo); }; bool AMDGPUPostLegalizerCombinerHelper::matchFMinFMaxLegacy( MachineInstr &MI, FMinFMaxLegacyInfo &Info) { // FIXME: Combines should have subtarget predicates, and we shouldn't need // this here. if (!MF.getSubtarget().hasFminFmaxLegacy()) return false; // FIXME: Type predicate on pattern if (MRI.getType(MI.getOperand(0).getReg()) != LLT::scalar(32)) return false; Register Cond = MI.getOperand(1).getReg(); if (!MRI.hasOneNonDBGUse(Cond) || !mi_match(Cond, MRI, m_GFCmp(m_Pred(Info.Pred), m_Reg(Info.LHS), m_Reg(Info.RHS)))) return false; Info.True = MI.getOperand(2).getReg(); Info.False = MI.getOperand(3).getReg(); if (!(Info.LHS == Info.True && Info.RHS == Info.False) && !(Info.LHS == Info.False && Info.RHS == Info.True)) return false; switch (Info.Pred) { case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UNE: case CmpInst::FCMP_TRUE: return false; default: return true; } } void AMDGPUPostLegalizerCombinerHelper::applySelectFCmpToFMinToFMaxLegacy( MachineInstr &MI, const FMinFMaxLegacyInfo &Info) { B.setInstrAndDebugLoc(MI); auto buildNewInst = [&MI, this](unsigned Opc, Register X, Register Y) { B.buildInstr(Opc, {MI.getOperand(0)}, {X, Y}, MI.getFlags()); }; switch (Info.Pred) { case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: if (Info.LHS == Info.True) buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.RHS, Info.LHS); else buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.LHS, Info.RHS); break; case CmpInst::FCMP_OLE: case CmpInst::FCMP_OLT: { // We need to permute the operands to get the correct NaN behavior. The // selected operand is the second one based on the failing compare with NaN, // so permute it based on the compare type the hardware uses. if (Info.LHS == Info.True) buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.LHS, Info.RHS); else buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.RHS, Info.LHS); break; } case CmpInst::FCMP_UGE: case CmpInst::FCMP_UGT: { if (Info.LHS == Info.True) buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.RHS, Info.LHS); else buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.LHS, Info.RHS); break; } case CmpInst::FCMP_OGT: case CmpInst::FCMP_OGE: { if (Info.LHS == Info.True) buildNewInst(AMDGPU::G_AMDGPU_FMAX_LEGACY, Info.LHS, Info.RHS); else buildNewInst(AMDGPU::G_AMDGPU_FMIN_LEGACY, Info.RHS, Info.LHS); break; } default: llvm_unreachable("predicate should not have matched"); } MI.eraseFromParent(); } bool AMDGPUPostLegalizerCombinerHelper::matchUCharToFloat(MachineInstr &MI) { Register DstReg = MI.getOperand(0).getReg(); // TODO: We could try to match extracting the higher bytes, which would be // easier if i8 vectors weren't promoted to i32 vectors, particularly after // types are legalized. v4i8 -> v4f32 is probably the only case to worry // about in practice. LLT Ty = MRI.getType(DstReg); if (Ty == LLT::scalar(32) || Ty == LLT::scalar(16)) { Register SrcReg = MI.getOperand(1).getReg(); unsigned SrcSize = MRI.getType(SrcReg).getSizeInBits(); assert(SrcSize == 16 || SrcSize == 32 || SrcSize == 64); const APInt Mask = APInt::getHighBitsSet(SrcSize, SrcSize - 8); return Helper.getKnownBits()->maskedValueIsZero(SrcReg, Mask); } return false; } void AMDGPUPostLegalizerCombinerHelper::applyUCharToFloat(MachineInstr &MI) { B.setInstrAndDebugLoc(MI); const LLT S32 = LLT::scalar(32); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(DstReg); LLT SrcTy = MRI.getType(SrcReg); if (SrcTy != S32) SrcReg = B.buildAnyExtOrTrunc(S32, SrcReg).getReg(0); if (Ty == S32) { B.buildInstr(AMDGPU::G_AMDGPU_CVT_F32_UBYTE0, {DstReg}, {SrcReg}, MI.getFlags()); } else { auto Cvt0 = B.buildInstr(AMDGPU::G_AMDGPU_CVT_F32_UBYTE0, {S32}, {SrcReg}, MI.getFlags()); B.buildFPTrunc(DstReg, Cvt0, MI.getFlags()); } MI.eraseFromParent(); } bool AMDGPUPostLegalizerCombinerHelper::matchCvtF32UByteN( MachineInstr &MI, CvtF32UByteMatchInfo &MatchInfo) { Register SrcReg = MI.getOperand(1).getReg(); // Look through G_ZEXT. mi_match(SrcReg, MRI, m_GZExt(m_Reg(SrcReg))); Register Src0; int64_t ShiftAmt; bool IsShr = mi_match(SrcReg, MRI, m_GLShr(m_Reg(Src0), m_ICst(ShiftAmt))); if (IsShr || mi_match(SrcReg, MRI, m_GShl(m_Reg(Src0), m_ICst(ShiftAmt)))) { const unsigned Offset = MI.getOpcode() - AMDGPU::G_AMDGPU_CVT_F32_UBYTE0; unsigned ShiftOffset = 8 * Offset; if (IsShr) ShiftOffset += ShiftAmt; else ShiftOffset -= ShiftAmt; MatchInfo.CvtVal = Src0; MatchInfo.ShiftOffset = ShiftOffset; return ShiftOffset < 32 && ShiftOffset >= 8 && (ShiftOffset % 8) == 0; } // TODO: Simplify demanded bits. return false; } void AMDGPUPostLegalizerCombinerHelper::applyCvtF32UByteN( MachineInstr &MI, const CvtF32UByteMatchInfo &MatchInfo) { B.setInstrAndDebugLoc(MI); unsigned NewOpc = AMDGPU::G_AMDGPU_CVT_F32_UBYTE0 + MatchInfo.ShiftOffset / 8; const LLT S32 = LLT::scalar(32); Register CvtSrc = MatchInfo.CvtVal; LLT SrcTy = MRI.getType(MatchInfo.CvtVal); if (SrcTy != S32) { assert(SrcTy.isScalar() && SrcTy.getSizeInBits() >= 8); CvtSrc = B.buildAnyExt(S32, CvtSrc).getReg(0); } assert(MI.getOpcode() != NewOpc); B.buildInstr(NewOpc, {MI.getOperand(0)}, {CvtSrc}, MI.getFlags()); MI.eraseFromParent(); } class AMDGPUPostLegalizerCombinerHelperState { protected: CombinerHelper &Helper; AMDGPUPostLegalizerCombinerHelper &PostLegalizerHelper; public: AMDGPUPostLegalizerCombinerHelperState( CombinerHelper &Helper, AMDGPUPostLegalizerCombinerHelper &PostLegalizerHelper) : Helper(Helper), PostLegalizerHelper(PostLegalizerHelper) {} }; #define AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS #include "AMDGPUGenPostLegalizeGICombiner.inc" #undef AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS namespace { #define AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H #include "AMDGPUGenPostLegalizeGICombiner.inc" #undef AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H class AMDGPUPostLegalizerCombinerInfo final : public CombinerInfo { GISelKnownBits *KB; MachineDominatorTree *MDT; public: AMDGPUGenPostLegalizerCombinerHelperRuleConfig GeneratedRuleCfg; AMDGPUPostLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize, const AMDGPULegalizerInfo *LI, GISelKnownBits *KB, MachineDominatorTree *MDT) : CombinerInfo(/*AllowIllegalOps*/ false, /*ShouldLegalizeIllegal*/ true, /*LegalizerInfo*/ LI, EnableOpt, OptSize, MinSize), KB(KB), MDT(MDT) { if (!GeneratedRuleCfg.parseCommandLineOption()) report_fatal_error("Invalid rule identifier"); } bool combine(GISelChangeObserver &Observer, MachineInstr &MI, MachineIRBuilder &B) const override; }; bool AMDGPUPostLegalizerCombinerInfo::combine(GISelChangeObserver &Observer, MachineInstr &MI, MachineIRBuilder &B) const { CombinerHelper Helper(Observer, B, KB, MDT, LInfo); AMDGPUPostLegalizerCombinerHelper PostLegalizerHelper(B, Helper); AMDGPUGenPostLegalizerCombinerHelper Generated(GeneratedRuleCfg, Helper, PostLegalizerHelper); if (Generated.tryCombineAll(Observer, MI, B)) return true; switch (MI.getOpcode()) { case TargetOpcode::G_SHL: case TargetOpcode::G_LSHR: case TargetOpcode::G_ASHR: // On some subtargets, 64-bit shift is a quarter rate instruction. In the // common case, splitting this into a move and a 32-bit shift is faster and // the same code size. return Helper.tryCombineShiftToUnmerge(MI, 32); } return false; } #define AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP #include "AMDGPUGenPostLegalizeGICombiner.inc" #undef AMDGPUPOSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP // Pass boilerplate // ================ class AMDGPUPostLegalizerCombiner : public MachineFunctionPass { public: static char ID; AMDGPUPostLegalizerCombiner(bool IsOptNone = false); StringRef getPassName() const override { return "AMDGPUPostLegalizerCombiner"; } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override; private: bool IsOptNone; }; } // end anonymous namespace void AMDGPUPostLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesCFG(); getSelectionDAGFallbackAnalysisUsage(AU); AU.addRequired(); AU.addPreserved(); if (!IsOptNone) { AU.addRequired(); AU.addPreserved(); } MachineFunctionPass::getAnalysisUsage(AU); } AMDGPUPostLegalizerCombiner::AMDGPUPostLegalizerCombiner(bool IsOptNone) : MachineFunctionPass(ID), IsOptNone(IsOptNone) { initializeAMDGPUPostLegalizerCombinerPass(*PassRegistry::getPassRegistry()); } bool AMDGPUPostLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) { if (MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailedISel)) return false; auto *TPC = &getAnalysis(); const Function &F = MF.getFunction(); bool EnableOpt = MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F); const GCNSubtarget &ST = MF.getSubtarget(); const AMDGPULegalizerInfo *LI = static_cast(ST.getLegalizerInfo()); GISelKnownBits *KB = &getAnalysis().get(MF); MachineDominatorTree *MDT = IsOptNone ? nullptr : &getAnalysis(); AMDGPUPostLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(), F.hasMinSize(), LI, KB, MDT); Combiner C(PCInfo, TPC); return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr); } char AMDGPUPostLegalizerCombiner::ID = 0; INITIALIZE_PASS_BEGIN(AMDGPUPostLegalizerCombiner, DEBUG_TYPE, "Combine AMDGPU machine instrs after legalization", false, false) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis) INITIALIZE_PASS_END(AMDGPUPostLegalizerCombiner, DEBUG_TYPE, "Combine AMDGPU machine instrs after legalization", false, false) namespace llvm { FunctionPass *createAMDGPUPostLegalizeCombiner(bool IsOptNone) { return new AMDGPUPostLegalizerCombiner(IsOptNone); } } // end namespace llvm