//===- AMDGPULibCalls.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This file does AMD library function optimizations. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPULibFunc.h" #include "GCNSubtarget.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/Loads.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/InitializePasses.h" #include "llvm/Target/TargetMachine.h" #define DEBUG_TYPE "amdgpu-simplifylib" using namespace llvm; static cl::opt EnablePreLink("amdgpu-prelink", cl::desc("Enable pre-link mode optimizations"), cl::init(false), cl::Hidden); static cl::list UseNative("amdgpu-use-native", cl::desc("Comma separated list of functions to replace with native, or all"), cl::CommaSeparated, cl::ValueOptional, cl::Hidden); #define MATH_PI numbers::pi #define MATH_E numbers::e #define MATH_SQRT2 numbers::sqrt2 #define MATH_SQRT1_2 numbers::inv_sqrt2 namespace llvm { class AMDGPULibCalls { private: typedef llvm::AMDGPULibFunc FuncInfo; const TargetMachine *TM; // -fuse-native. bool AllNative = false; bool useNativeFunc(const StringRef F) const; // Return a pointer (pointer expr) to the function if function defintion with // "FuncName" exists. It may create a new function prototype in pre-link mode. FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); // Replace a normal function with its native version. bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); bool parseFunctionName(const StringRef& FMangledName, FuncInfo *FInfo=nullptr /*out*/); bool TDOFold(CallInst *CI, const FuncInfo &FInfo); /* Specialized optimizations */ // recip (half or native) bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // divide (half or native) bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // pow/powr/pown bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // rootn bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // fma/mad bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // -fuse-native for sincos bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); // evaluate calls if calls' arguments are constants. bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); bool evaluateCall(CallInst *aCI, FuncInfo &FInfo); // exp bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // exp2 bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // exp10 bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // log bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // log2 bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // log10 bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // sqrt bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // sin/cos bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); // __read_pipe/__write_pipe bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo); // llvm.amdgcn.wavefrontsize bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B); // Get insertion point at entry. BasicBlock::iterator getEntryIns(CallInst * UI); // Insert an Alloc instruction. AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); // Get a scalar native builtin signle argument FP function FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); protected: CallInst *CI; bool isUnsafeMath(const CallInst *CI) const; void replaceCall(Value *With) { CI->replaceAllUsesWith(With); CI->eraseFromParent(); } public: AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {} bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); void initNativeFuncs(); // Replace a normal math function call with that native version bool useNative(CallInst *CI); }; } // end llvm namespace namespace { class AMDGPUSimplifyLibCalls : public FunctionPass { AMDGPULibCalls Simplifier; public: static char ID; // Pass identification AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr) : FunctionPass(ID), Simplifier(TM) { initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); } bool runOnFunction(Function &M) override; }; class AMDGPUUseNativeCalls : public FunctionPass { AMDGPULibCalls Simplifier; public: static char ID; // Pass identification AMDGPUUseNativeCalls() : FunctionPass(ID) { initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); Simplifier.initNativeFuncs(); } bool runOnFunction(Function &F) override; }; } // end anonymous namespace. char AMDGPUSimplifyLibCalls::ID = 0; char AMDGPUUseNativeCalls::ID = 0; INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", "Simplify well-known AMD library calls", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", "Simplify well-known AMD library calls", false, false) INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", "Replace builtin math calls with that native versions.", false, false) template static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, const Twine &Name = "") { CallInst *R = B.CreateCall(Callee, Arg, Name); if (Function *F = dyn_cast(Callee.getCallee())) R->setCallingConv(F->getCallingConv()); return R; } template static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, Value *Arg2, const Twine &Name = "") { CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); if (Function *F = dyn_cast(Callee.getCallee())) R->setCallingConv(F->getCallingConv()); return R; } // Data structures for table-driven optimizations. // FuncTbl works for both f32 and f64 functions with 1 input argument struct TableEntry { double result; double input; }; /* a list of {result, input} */ static const TableEntry tbl_acos[] = { {MATH_PI / 2.0, 0.0}, {MATH_PI / 2.0, -0.0}, {0.0, 1.0}, {MATH_PI, -1.0} }; static const TableEntry tbl_acosh[] = { {0.0, 1.0} }; static const TableEntry tbl_acospi[] = { {0.5, 0.0}, {0.5, -0.0}, {0.0, 1.0}, {1.0, -1.0} }; static const TableEntry tbl_asin[] = { {0.0, 0.0}, {-0.0, -0.0}, {MATH_PI / 2.0, 1.0}, {-MATH_PI / 2.0, -1.0} }; static const TableEntry tbl_asinh[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_asinpi[] = { {0.0, 0.0}, {-0.0, -0.0}, {0.5, 1.0}, {-0.5, -1.0} }; static const TableEntry tbl_atan[] = { {0.0, 0.0}, {-0.0, -0.0}, {MATH_PI / 4.0, 1.0}, {-MATH_PI / 4.0, -1.0} }; static const TableEntry tbl_atanh[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_atanpi[] = { {0.0, 0.0}, {-0.0, -0.0}, {0.25, 1.0}, {-0.25, -1.0} }; static const TableEntry tbl_cbrt[] = { {0.0, 0.0}, {-0.0, -0.0}, {1.0, 1.0}, {-1.0, -1.0}, }; static const TableEntry tbl_cos[] = { {1.0, 0.0}, {1.0, -0.0} }; static const TableEntry tbl_cosh[] = { {1.0, 0.0}, {1.0, -0.0} }; static const TableEntry tbl_cospi[] = { {1.0, 0.0}, {1.0, -0.0} }; static const TableEntry tbl_erfc[] = { {1.0, 0.0}, {1.0, -0.0} }; static const TableEntry tbl_erf[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_exp[] = { {1.0, 0.0}, {1.0, -0.0}, {MATH_E, 1.0} }; static const TableEntry tbl_exp2[] = { {1.0, 0.0}, {1.0, -0.0}, {2.0, 1.0} }; static const TableEntry tbl_exp10[] = { {1.0, 0.0}, {1.0, -0.0}, {10.0, 1.0} }; static const TableEntry tbl_expm1[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_log[] = { {0.0, 1.0}, {1.0, MATH_E} }; static const TableEntry tbl_log2[] = { {0.0, 1.0}, {1.0, 2.0} }; static const TableEntry tbl_log10[] = { {0.0, 1.0}, {1.0, 10.0} }; static const TableEntry tbl_rsqrt[] = { {1.0, 1.0}, {MATH_SQRT1_2, 2.0} }; static const TableEntry tbl_sin[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_sinh[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_sinpi[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_sqrt[] = { {0.0, 0.0}, {1.0, 1.0}, {MATH_SQRT2, 2.0} }; static const TableEntry tbl_tan[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_tanh[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_tanpi[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_tgamma[] = { {1.0, 1.0}, {1.0, 2.0}, {2.0, 3.0}, {6.0, 4.0} }; static bool HasNative(AMDGPULibFunc::EFuncId id) { switch(id) { case AMDGPULibFunc::EI_DIVIDE: case AMDGPULibFunc::EI_COS: case AMDGPULibFunc::EI_EXP: case AMDGPULibFunc::EI_EXP2: case AMDGPULibFunc::EI_EXP10: case AMDGPULibFunc::EI_LOG: case AMDGPULibFunc::EI_LOG2: case AMDGPULibFunc::EI_LOG10: case AMDGPULibFunc::EI_POWR: case AMDGPULibFunc::EI_RECIP: case AMDGPULibFunc::EI_RSQRT: case AMDGPULibFunc::EI_SIN: case AMDGPULibFunc::EI_SINCOS: case AMDGPULibFunc::EI_SQRT: case AMDGPULibFunc::EI_TAN: return true; default:; } return false; } struct TableRef { size_t size; const TableEntry *table; // variable size: from 0 to (size - 1) TableRef() : size(0), table(nullptr) {} template TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} }; static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { switch(id) { case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); case AMDGPULibFunc::EI_NCOS: case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); case AMDGPULibFunc::EI_NEXP2: case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); case AMDGPULibFunc::EI_NLOG2: case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); case AMDGPULibFunc::EI_NRSQRT: case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); case AMDGPULibFunc::EI_NSIN: case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); case AMDGPULibFunc::EI_NSQRT: case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); default:; } return TableRef(); } static inline int getVecSize(const AMDGPULibFunc& FInfo) { return FInfo.getLeads()[0].VectorSize; } static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; } FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { // If we are doing PreLinkOpt, the function is external. So it is safe to // use getOrInsertFunction() at this stage. return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) : AMDGPULibFunc::getFunction(M, fInfo); } bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName, FuncInfo *FInfo) { return AMDGPULibFunc::parse(FMangledName, *FInfo); } bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { if (auto Op = dyn_cast(CI)) if (Op->isFast()) return true; const Function *F = CI->getParent()->getParent(); Attribute Attr = F->getFnAttribute("unsafe-fp-math"); return Attr.getValueAsString() == "true"; } bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { return AllNative || llvm::is_contained(UseNative, F); } void AMDGPULibCalls::initNativeFuncs() { AllNative = useNativeFunc("all") || (UseNative.getNumOccurrences() && UseNative.size() == 1 && UseNative.begin()->empty()); } bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { bool native_sin = useNativeFunc("sin"); bool native_cos = useNativeFunc("cos"); if (native_sin && native_cos) { Module *M = aCI->getModule(); Value *opr0 = aCI->getArgOperand(0); AMDGPULibFunc nf; nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; nf.setPrefix(AMDGPULibFunc::NATIVE); nf.setId(AMDGPULibFunc::EI_SIN); FunctionCallee sinExpr = getFunction(M, nf); nf.setPrefix(AMDGPULibFunc::NATIVE); nf.setId(AMDGPULibFunc::EI_COS); FunctionCallee cosExpr = getFunction(M, nf); if (sinExpr && cosExpr) { Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); new StoreInst(cosval, aCI->getArgOperand(1), aCI); DEBUG_WITH_TYPE("usenative", dbgs() << " replace " << *aCI << " with native version of sin/cos"); replaceCall(sinval); return true; } } return false; } bool AMDGPULibCalls::useNative(CallInst *aCI) { CI = aCI; Function *Callee = aCI->getCalledFunction(); FuncInfo FInfo; if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() || FInfo.getPrefix() != AMDGPULibFunc::NOPFX || getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || !(AllNative || useNativeFunc(FInfo.getName()))) { return false; } if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) return sincosUseNative(aCI, FInfo); FInfo.setPrefix(AMDGPULibFunc::NATIVE); FunctionCallee F = getFunction(aCI->getModule(), FInfo); if (!F) return false; aCI->setCalledFunction(F); DEBUG_WITH_TYPE("usenative", dbgs() << " replace " << *aCI << " with native version"); return true; } // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe // builtin, with appended type size and alignment arguments, where 2 or 4 // indicates the original number of arguments. The library has optimized version // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo) { auto *Callee = CI->getCalledFunction(); if (!Callee->isDeclaration()) return false; assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); auto *M = Callee->getParent(); auto &Ctx = M->getContext(); std::string Name = std::string(Callee->getName()); auto NumArg = CI->getNumArgOperands(); if (NumArg != 4 && NumArg != 6) return false; auto *PacketSize = CI->getArgOperand(NumArg - 2); auto *PacketAlign = CI->getArgOperand(NumArg - 1); if (!isa(PacketSize) || !isa(PacketAlign)) return false; unsigned Size = cast(PacketSize)->getZExtValue(); Align Alignment = cast(PacketAlign)->getAlignValue(); if (Alignment != Size) return false; Type *PtrElemTy; if (Size <= 8) PtrElemTy = Type::getIntNTy(Ctx, Size * 8); else PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8); unsigned PtrArgLoc = CI->getNumArgOperands() - 3; auto PtrArg = CI->getArgOperand(PtrArgLoc); unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); SmallVector ArgTys; for (unsigned I = 0; I != PtrArgLoc; ++I) ArgTys.push_back(CI->getArgOperand(I)->getType()); ArgTys.push_back(PtrTy); Name = Name + "_" + std::to_string(Size); auto *FTy = FunctionType::get(Callee->getReturnType(), ArrayRef(ArgTys), false); AMDGPULibFunc NewLibFunc(Name, FTy); FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); if (!F) return false; auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); SmallVector Args; for (unsigned I = 0; I != PtrArgLoc; ++I) Args.push_back(CI->getArgOperand(I)); Args.push_back(BCast); auto *NCI = B.CreateCall(F, Args); NCI->setAttributes(CI->getAttributes()); CI->replaceAllUsesWith(NCI); CI->dropAllReferences(); CI->eraseFromParent(); return true; } // This function returns false if no change; return true otherwise. bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { this->CI = CI; Function *Callee = CI->getCalledFunction(); // Ignore indirect calls. if (Callee == 0) return false; BasicBlock *BB = CI->getParent(); LLVMContext &Context = CI->getParent()->getContext(); IRBuilder<> B(Context); // Set the builder to the instruction after the call. B.SetInsertPoint(BB, CI->getIterator()); // Copy fast flags from the original call. if (const FPMathOperator *FPOp = dyn_cast(CI)) B.setFastMathFlags(FPOp->getFastMathFlags()); switch (Callee->getIntrinsicID()) { default: break; case Intrinsic::amdgcn_wavefrontsize: return !EnablePreLink && fold_wavefrontsize(CI, B); } FuncInfo FInfo; if (!parseFunctionName(Callee->getName(), &FInfo)) return false; // Further check the number of arguments to see if they match. if (CI->getNumArgOperands() != FInfo.getNumArgs()) return false; if (TDOFold(CI, FInfo)) return true; // Under unsafe-math, evaluate calls if possible. // According to Brian Sumner, we can do this for all f32 function calls // using host's double function calls. if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) return true; // Specilized optimizations for each function call switch (FInfo.getId()) { case AMDGPULibFunc::EI_RECIP: // skip vector function assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || FInfo.getPrefix() == AMDGPULibFunc::HALF) && "recip must be an either native or half function"); return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); case AMDGPULibFunc::EI_DIVIDE: // skip vector function assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || FInfo.getPrefix() == AMDGPULibFunc::HALF) && "divide must be an either native or half function"); return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); case AMDGPULibFunc::EI_POW: case AMDGPULibFunc::EI_POWR: case AMDGPULibFunc::EI_POWN: return fold_pow(CI, B, FInfo); case AMDGPULibFunc::EI_ROOTN: // skip vector function return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); case AMDGPULibFunc::EI_FMA: case AMDGPULibFunc::EI_MAD: case AMDGPULibFunc::EI_NFMA: // skip vector function return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); case AMDGPULibFunc::EI_SQRT: return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); case AMDGPULibFunc::EI_COS: case AMDGPULibFunc::EI_SIN: if ((getArgType(FInfo) == AMDGPULibFunc::F32 || getArgType(FInfo) == AMDGPULibFunc::F64) && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) return fold_sincos(CI, B, AA); break; case AMDGPULibFunc::EI_READ_PIPE_2: case AMDGPULibFunc::EI_READ_PIPE_4: case AMDGPULibFunc::EI_WRITE_PIPE_2: case AMDGPULibFunc::EI_WRITE_PIPE_4: return fold_read_write_pipe(CI, B, FInfo); default: break; } return false; } bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { // Table-Driven optimization const TableRef tr = getOptTable(FInfo.getId()); if (tr.size==0) return false; int const sz = (int)tr.size; const TableEntry * const ftbl = tr.table; Value *opr0 = CI->getArgOperand(0); if (getVecSize(FInfo) > 1) { if (ConstantDataVector *CV = dyn_cast(opr0)) { SmallVector DVal; for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { ConstantFP *eltval = dyn_cast( CV->getElementAsConstant((unsigned)eltNo)); assert(eltval && "Non-FP arguments in math function!"); bool found = false; for (int i=0; i < sz; ++i) { if (eltval->isExactlyValue(ftbl[i].input)) { DVal.push_back(ftbl[i].result); found = true; break; } } if (!found) { // This vector constants not handled yet. return false; } } LLVMContext &context = CI->getParent()->getParent()->getContext(); Constant *nval; if (getArgType(FInfo) == AMDGPULibFunc::F32) { SmallVector FVal; for (unsigned i = 0; i < DVal.size(); ++i) { FVal.push_back((float)DVal[i]); } ArrayRef tmp(FVal); nval = ConstantDataVector::get(context, tmp); } else { // F64 ArrayRef tmp(DVal); nval = ConstantDataVector::get(context, tmp); } LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); replaceCall(nval); return true; } } else { // Scalar version if (ConstantFP *CF = dyn_cast(opr0)) { for (int i = 0; i < sz; ++i) { if (CF->isExactlyValue(ftbl[i].input)) { Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); replaceCall(nval); return true; } } } } return false; } bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { Module *M = CI->getModule(); if (getArgType(FInfo) != AMDGPULibFunc::F32 || FInfo.getPrefix() != AMDGPULibFunc::NOPFX || !HasNative(FInfo.getId())) return false; AMDGPULibFunc nf = FInfo; nf.setPrefix(AMDGPULibFunc::NATIVE); if (FunctionCallee FPExpr = getFunction(M, nf)) { LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); CI->setCalledFunction(FPExpr); LLVM_DEBUG(dbgs() << *CI << '\n'); return true; } return false; } // [native_]half_recip(c) ==> 1.0/c bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo) { Value *opr0 = CI->getArgOperand(0); if (ConstantFP *CF = dyn_cast(opr0)) { // Just create a normal div. Later, InstCombine will be able // to compute the divide into a constant (avoid check float infinity // or subnormal at this point). Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), opr0, "recip2div"); LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); replaceCall(nval); return true; } return false; } // [native_]half_divide(x, c) ==> x/c bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo) { Value *opr0 = CI->getArgOperand(0); Value *opr1 = CI->getArgOperand(1); ConstantFP *CF0 = dyn_cast(opr0); ConstantFP *CF1 = dyn_cast(opr1); if ((CF0 && CF1) || // both are constants (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) // CF1 is constant && f32 divide { Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), opr1, "__div2recip"); Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); replaceCall(nval); return true; } return false; } namespace llvm { static double log2(double V) { #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L return ::log2(V); #else return log(V) / numbers::ln2; #endif } } bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo) { assert((FInfo.getId() == AMDGPULibFunc::EI_POW || FInfo.getId() == AMDGPULibFunc::EI_POWR || FInfo.getId() == AMDGPULibFunc::EI_POWN) && "fold_pow: encounter a wrong function call"); Value *opr0, *opr1; ConstantFP *CF; ConstantInt *CINT; ConstantAggregateZero *CZero; Type *eltType; opr0 = CI->getArgOperand(0); opr1 = CI->getArgOperand(1); CZero = dyn_cast(opr1); if (getVecSize(FInfo) == 1) { eltType = opr0->getType(); CF = dyn_cast(opr1); CINT = dyn_cast(opr1); } else { VectorType *VTy = dyn_cast(opr0->getType()); assert(VTy && "Oprand of vector function should be of vectortype"); eltType = VTy->getElementType(); ConstantDataVector *CDV = dyn_cast(opr1); // Now, only Handle vector const whose elements have the same value. CF = CDV ? dyn_cast_or_null(CDV->getSplatValue()) : nullptr; CINT = CDV ? dyn_cast_or_null(CDV->getSplatValue()) : nullptr; } // No unsafe math , no constant argument, do nothing if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) return false; // 0x1111111 means that we don't do anything for this call. int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { // pow/powr/pown(x, 0) == 1 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); Constant *cnval = ConstantFP::get(eltType, 1.0); if (getVecSize(FInfo) > 1) { cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); } replaceCall(cnval); return true; } if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { // pow/powr/pown(x, 1.0) = x LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); replaceCall(opr0); return true; } if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { // pow/powr/pown(x, 2.0) = x*x LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 << "\n"); Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); replaceCall(nval); return true; } if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { // pow/powr/pown(x, -1.0) = 1.0/x LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); Constant *cnval = ConstantFP::get(eltType, 1.0); if (getVecSize(FInfo) > 1) { cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); } Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); replaceCall(nval); return true; } Module *M = CI->getModule(); if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { // pow[r](x, [-]0.5) = sqrt(x) bool issqrt = CF->isExactlyValue(0.5); if (FunctionCallee FPExpr = getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT : AMDGPULibFunc::EI_RSQRT, FInfo))) { LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" : "__pow2rsqrt"); replaceCall(nval); return true; } } if (!isUnsafeMath(CI)) return false; // Unsafe Math optimization // Remember that ci_opr1 is set if opr1 is integral if (CF) { double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) ? (double)CF->getValueAPF().convertToFloat() : CF->getValueAPF().convertToDouble(); int ival = (int)dval; if ((double)ival == dval) { ci_opr1 = ival; } else ci_opr1 = 0x11111111; } // pow/powr/pown(x, c) = [1/](x*x*..x); where // trunc(c) == c && the number of x == c && |c| <= 12 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; if (abs_opr1 <= 12) { Constant *cnval; Value *nval; if (abs_opr1 == 0) { cnval = ConstantFP::get(eltType, 1.0); if (getVecSize(FInfo) > 1) { cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); } nval = cnval; } else { Value *valx2 = nullptr; nval = nullptr; while (abs_opr1 > 0) { valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; if (abs_opr1 & 1) { nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; } abs_opr1 >>= 1; } } if (ci_opr1 < 0) { cnval = ConstantFP::get(eltType, 1.0); if (getVecSize(FInfo) > 1) { cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); } nval = B.CreateFDiv(cnval, nval, "__1powprod"); } LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 << ")\n"); replaceCall(nval); return true; } // powr ---> exp2(y * log2(x)) // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) FunctionCallee ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); if (!ExpExpr) return false; bool needlog = false; bool needabs = false; bool needcopysign = false; Constant *cnval = nullptr; if (getVecSize(FInfo) == 1) { CF = dyn_cast(opr0); if (CF) { double V = (getArgType(FInfo) == AMDGPULibFunc::F32) ? (double)CF->getValueAPF().convertToFloat() : CF->getValueAPF().convertToDouble(); V = log2(std::abs(V)); cnval = ConstantFP::get(eltType, V); needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && CF->isNegative(); } else { needlog = true; needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && (!CF || CF->isNegative()); } } else { ConstantDataVector *CDV = dyn_cast(opr0); if (!CDV) { needlog = true; needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; } else { assert ((int)CDV->getNumElements() == getVecSize(FInfo) && "Wrong vector size detected"); SmallVector DVal; for (int i=0; i < getVecSize(FInfo); ++i) { double V = (getArgType(FInfo) == AMDGPULibFunc::F32) ? (double)CDV->getElementAsFloat(i) : CDV->getElementAsDouble(i); if (V < 0.0) needcopysign = true; V = log2(std::abs(V)); DVal.push_back(V); } if (getArgType(FInfo) == AMDGPULibFunc::F32) { SmallVector FVal; for (unsigned i=0; i < DVal.size(); ++i) { FVal.push_back((float)DVal[i]); } ArrayRef tmp(FVal); cnval = ConstantDataVector::get(M->getContext(), tmp); } else { ArrayRef tmp(DVal); cnval = ConstantDataVector::get(M->getContext(), tmp); } } } if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { // We cannot handle corner cases for a general pow() function, give up // unless y is a constant integral value. Then proceed as if it were pown. if (getVecSize(FInfo) == 1) { if (const ConstantFP *CF = dyn_cast(opr1)) { double y = (getArgType(FInfo) == AMDGPULibFunc::F32) ? (double)CF->getValueAPF().convertToFloat() : CF->getValueAPF().convertToDouble(); if (y != (double)(int64_t)y) return false; } else return false; } else { if (const ConstantDataVector *CDV = dyn_cast(opr1)) { for (int i=0; i < getVecSize(FInfo); ++i) { double y = (getArgType(FInfo) == AMDGPULibFunc::F32) ? (double)CDV->getElementAsFloat(i) : CDV->getElementAsDouble(i); if (y != (double)(int64_t)y) return false; } } else return false; } } Value *nval; if (needabs) { FunctionCallee AbsExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo)); if (!AbsExpr) return false; nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); } else { nval = cnval ? cnval : opr0; } if (needlog) { FunctionCallee LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); if (!LogExpr) return false; nval = CreateCallEx(B,LogExpr, nval, "__log2"); } if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { // convert int(32) to fp(f32 or f64) opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); } nval = B.CreateFMul(opr1, nval, "__ylogx"); nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); if (needcopysign) { Value *opr_n; Type* rTy = opr0->getType(); Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); Type *nTy = nTyS; if (const auto *vTy = dyn_cast(rTy)) nTy = FixedVectorType::get(nTyS, vTy); unsigned size = nTy->getScalarSizeInBits(); opr_n = CI->getArgOperand(1); if (opr_n->getType()->isIntegerTy()) opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); else opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); nval = B.CreateBitCast(nval, opr0->getType()); } LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); replaceCall(nval); return true; } bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo) { Value *opr0 = CI->getArgOperand(0); Value *opr1 = CI->getArgOperand(1); ConstantInt *CINT = dyn_cast(opr1); if (!CINT) { return false; } int ci_opr1 = (int)CINT->getSExtValue(); if (ci_opr1 == 1) { // rootn(x, 1) = x LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); replaceCall(opr0); return true; } if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) Module *M = CI->getModule(); if (FunctionCallee FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); replaceCall(nval); return true; } } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) Module *M = CI->getModule(); if (FunctionCallee FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); replaceCall(nval); return true; } } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), opr0, "__rootn2div"); replaceCall(nval); return true; } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) Module *M = CI->getModule(); if (FunctionCallee FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 << ")\n"); Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); replaceCall(nval); return true; } } return false; } bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo) { Value *opr0 = CI->getArgOperand(0); Value *opr1 = CI->getArgOperand(1); Value *opr2 = CI->getArgOperand(2); ConstantFP *CF0 = dyn_cast(opr0); ConstantFP *CF1 = dyn_cast(opr1); if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { // fma/mad(a, b, c) = c if a=0 || b=0 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); replaceCall(opr2); return true; } if (CF0 && CF0->isExactlyValue(1.0f)) { // fma/mad(a, b, c) = b+c if a=1 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 << "\n"); Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); replaceCall(nval); return true; } if (CF1 && CF1->isExactlyValue(1.0f)) { // fma/mad(a, b, c) = a+c if b=1 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 << "\n"); Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); replaceCall(nval); return true; } if (ConstantFP *CF = dyn_cast(opr2)) { if (CF->isZero()) { // fma/mad(a, b, c) = a*b if c=0 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr1 << "\n"); Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); replaceCall(nval); return true; } } return false; } // Get a scalar native builtin signle argument FP function FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, const FuncInfo &FInfo) { if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) return nullptr; FuncInfo nf = FInfo; nf.setPrefix(AMDGPULibFunc::NATIVE); return getFunction(M, nf); } // fold sqrt -> native_sqrt (x) bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo) { if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { if (FunctionCallee FPExpr = getNativeFunction( CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { Value *opr0 = CI->getArgOperand(0); LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << "sqrt(" << *opr0 << ")\n"); Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); replaceCall(nval); return true; } } return false; } // fold sin, cos -> sincos. bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, AliasAnalysis *AA) { AMDGPULibFunc fInfo; if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) return false; assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || fInfo.getId() == AMDGPULibFunc::EI_COS); bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; Value *CArgVal = CI->getArgOperand(0); BasicBlock * const CBB = CI->getParent(); int const MaxScan = 30; bool Changed = false; { // fold in load value. LoadInst *LI = dyn_cast(CArgVal); if (LI && LI->getParent() == CBB) { BasicBlock::iterator BBI = LI->getIterator(); Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); if (AvailableVal) { Changed = true; CArgVal->replaceAllUsesWith(AvailableVal); if (CArgVal->getNumUses() == 0) LI->eraseFromParent(); CArgVal = CI->getArgOperand(0); } } } Module *M = CI->getModule(); fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); std::string const PairName = fInfo.mangle(); CallInst *UI = nullptr; for (User* U : CArgVal->users()) { CallInst *XI = dyn_cast_or_null(U); if (!XI || XI == CI || XI->getParent() != CBB) continue; Function *UCallee = XI->getCalledFunction(); if (!UCallee || !UCallee->getName().equals(PairName)) continue; BasicBlock::iterator BBI = CI->getIterator(); if (BBI == CI->getParent()->begin()) break; --BBI; for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { if (cast(BBI) == XI) { UI = XI; break; } } if (UI) break; } if (!UI) return Changed; // Merge the sin and cos. // for OpenCL 2.0 we have only generic implementation of sincos // function. AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); FunctionCallee Fsincos = getFunction(M, nf); if (!Fsincos) return Changed; BasicBlock::iterator ItOld = B.GetInsertPoint(); AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); B.SetInsertPoint(UI); Value *P = Alloc; Type *PTy = Fsincos.getFunctionType()->getParamType(1); // The allocaInst allocates the memory in private address space. This need // to be bitcasted to point to the address space of cos pointer type. // In OpenCL 2.0 this is generic, while in 1.2 that is private. if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) P = B.CreateAddrSpaceCast(Alloc, PTy); CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " << *Call << "\n"); if (!isSin) { // CI->cos, UI->sin B.SetInsertPoint(&*ItOld); UI->replaceAllUsesWith(&*Call); Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); CI->replaceAllUsesWith(Reload); UI->eraseFromParent(); CI->eraseFromParent(); } else { // CI->sin, UI->cos Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); UI->replaceAllUsesWith(Reload); CI->replaceAllUsesWith(Call); UI->eraseFromParent(); CI->eraseFromParent(); } return true; } bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) { if (!TM) return false; StringRef CPU = TM->getTargetCPU(); StringRef Features = TM->getTargetFeatureString(); if ((CPU.empty() || CPU.equals_lower("generic")) && (Features.empty() || Features.find_lower("wavefrontsize") == StringRef::npos)) return false; Function *F = CI->getParent()->getParent(); const GCNSubtarget &ST = TM->getSubtarget(*F); unsigned N = ST.getWavefrontSize(); LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with " << N << "\n"); CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N)); CI->eraseFromParent(); return true; } // Get insertion point at entry. BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { Function * Func = UI->getParent()->getParent(); BasicBlock * BB = &Func->getEntryBlock(); assert(BB && "Entry block not found!"); BasicBlock::iterator ItNew = BB->begin(); return ItNew; } // Insert a AllocsInst at the beginning of function entry block. AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, const char *prefix) { BasicBlock::iterator ItNew = getEntryIns(UI); Function *UCallee = UI->getCalledFunction(); Type *RetType = UCallee->getReturnType(); B.SetInsertPoint(&*ItNew); AllocaInst *Alloc = B.CreateAlloca(RetType, 0, std::string(prefix) + UI->getName()); Alloc->setAlignment( Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType))); return Alloc; } bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, double& Res1, Constant *copr0, Constant *copr1, Constant *copr2) { // By default, opr0/opr1/opr3 holds values of float/double type. // If they are not float/double, each function has to its // operand separately. double opr0=0.0, opr1=0.0, opr2=0.0; ConstantFP *fpopr0 = dyn_cast_or_null(copr0); ConstantFP *fpopr1 = dyn_cast_or_null(copr1); ConstantFP *fpopr2 = dyn_cast_or_null(copr2); if (fpopr0) { opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) ? fpopr0->getValueAPF().convertToDouble() : (double)fpopr0->getValueAPF().convertToFloat(); } if (fpopr1) { opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) ? fpopr1->getValueAPF().convertToDouble() : (double)fpopr1->getValueAPF().convertToFloat(); } if (fpopr2) { opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) ? fpopr2->getValueAPF().convertToDouble() : (double)fpopr2->getValueAPF().convertToFloat(); } switch (FInfo.getId()) { default : return false; case AMDGPULibFunc::EI_ACOS: Res0 = acos(opr0); return true; case AMDGPULibFunc::EI_ACOSH: // acosh(x) == log(x + sqrt(x*x - 1)) Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); return true; case AMDGPULibFunc::EI_ACOSPI: Res0 = acos(opr0) / MATH_PI; return true; case AMDGPULibFunc::EI_ASIN: Res0 = asin(opr0); return true; case AMDGPULibFunc::EI_ASINH: // asinh(x) == log(x + sqrt(x*x + 1)) Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); return true; case AMDGPULibFunc::EI_ASINPI: Res0 = asin(opr0) / MATH_PI; return true; case AMDGPULibFunc::EI_ATAN: Res0 = atan(opr0); return true; case AMDGPULibFunc::EI_ATANH: // atanh(x) == (log(x+1) - log(x-1))/2; Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; return true; case AMDGPULibFunc::EI_ATANPI: Res0 = atan(opr0) / MATH_PI; return true; case AMDGPULibFunc::EI_CBRT: Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); return true; case AMDGPULibFunc::EI_COS: Res0 = cos(opr0); return true; case AMDGPULibFunc::EI_COSH: Res0 = cosh(opr0); return true; case AMDGPULibFunc::EI_COSPI: Res0 = cos(MATH_PI * opr0); return true; case AMDGPULibFunc::EI_EXP: Res0 = exp(opr0); return true; case AMDGPULibFunc::EI_EXP2: Res0 = pow(2.0, opr0); return true; case AMDGPULibFunc::EI_EXP10: Res0 = pow(10.0, opr0); return true; case AMDGPULibFunc::EI_EXPM1: Res0 = exp(opr0) - 1.0; return true; case AMDGPULibFunc::EI_LOG: Res0 = log(opr0); return true; case AMDGPULibFunc::EI_LOG2: Res0 = log(opr0) / log(2.0); return true; case AMDGPULibFunc::EI_LOG10: Res0 = log(opr0) / log(10.0); return true; case AMDGPULibFunc::EI_RSQRT: Res0 = 1.0 / sqrt(opr0); return true; case AMDGPULibFunc::EI_SIN: Res0 = sin(opr0); return true; case AMDGPULibFunc::EI_SINH: Res0 = sinh(opr0); return true; case AMDGPULibFunc::EI_SINPI: Res0 = sin(MATH_PI * opr0); return true; case AMDGPULibFunc::EI_SQRT: Res0 = sqrt(opr0); return true; case AMDGPULibFunc::EI_TAN: Res0 = tan(opr0); return true; case AMDGPULibFunc::EI_TANH: Res0 = tanh(opr0); return true; case AMDGPULibFunc::EI_TANPI: Res0 = tan(MATH_PI * opr0); return true; case AMDGPULibFunc::EI_RECIP: Res0 = 1.0 / opr0; return true; // two-arg functions case AMDGPULibFunc::EI_DIVIDE: Res0 = opr0 / opr1; return true; case AMDGPULibFunc::EI_POW: case AMDGPULibFunc::EI_POWR: Res0 = pow(opr0, opr1); return true; case AMDGPULibFunc::EI_POWN: { if (ConstantInt *iopr1 = dyn_cast_or_null(copr1)) { double val = (double)iopr1->getSExtValue(); Res0 = pow(opr0, val); return true; } return false; } case AMDGPULibFunc::EI_ROOTN: { if (ConstantInt *iopr1 = dyn_cast_or_null(copr1)) { double val = (double)iopr1->getSExtValue(); Res0 = pow(opr0, 1.0 / val); return true; } return false; } // with ptr arg case AMDGPULibFunc::EI_SINCOS: Res0 = sin(opr0); Res1 = cos(opr0); return true; // three-arg functions case AMDGPULibFunc::EI_FMA: case AMDGPULibFunc::EI_MAD: Res0 = opr0 * opr1 + opr2; return true; } return false; } bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) { int numArgs = (int)aCI->getNumArgOperands(); if (numArgs > 3) return false; Constant *copr0 = nullptr; Constant *copr1 = nullptr; Constant *copr2 = nullptr; if (numArgs > 0) { if ((copr0 = dyn_cast(aCI->getArgOperand(0))) == nullptr) return false; } if (numArgs > 1) { if ((copr1 = dyn_cast(aCI->getArgOperand(1))) == nullptr) { if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) return false; } } if (numArgs > 2) { if ((copr2 = dyn_cast(aCI->getArgOperand(2))) == nullptr) return false; } // At this point, all arguments to aCI are constants. // max vector size is 16, and sincos will generate two results. double DVal0[16], DVal1[16]; bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); if (getVecSize(FInfo) == 1) { if (!evaluateScalarMathFunc(FInfo, DVal0[0], DVal1[0], copr0, copr1, copr2)) { return false; } } else { ConstantDataVector *CDV0 = dyn_cast_or_null(copr0); ConstantDataVector *CDV1 = dyn_cast_or_null(copr1); ConstantDataVector *CDV2 = dyn_cast_or_null(copr2); for (int i=0; i < getVecSize(FInfo); ++i) { Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; if (!evaluateScalarMathFunc(FInfo, DVal0[i], DVal1[i], celt0, celt1, celt2)) { return false; } } } LLVMContext &context = CI->getParent()->getParent()->getContext(); Constant *nval0, *nval1; if (getVecSize(FInfo) == 1) { nval0 = ConstantFP::get(CI->getType(), DVal0[0]); if (hasTwoResults) nval1 = ConstantFP::get(CI->getType(), DVal1[0]); } else { if (getArgType(FInfo) == AMDGPULibFunc::F32) { SmallVector FVal0, FVal1; for (int i=0; i < getVecSize(FInfo); ++i) FVal0.push_back((float)DVal0[i]); ArrayRef tmp0(FVal0); nval0 = ConstantDataVector::get(context, tmp0); if (hasTwoResults) { for (int i=0; i < getVecSize(FInfo); ++i) FVal1.push_back((float)DVal1[i]); ArrayRef tmp1(FVal1); nval1 = ConstantDataVector::get(context, tmp1); } } else { ArrayRef tmp0(DVal0); nval0 = ConstantDataVector::get(context, tmp0); if (hasTwoResults) { ArrayRef tmp1(DVal1); nval1 = ConstantDataVector::get(context, tmp1); } } } if (hasTwoResults) { // sincos assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && "math function with ptr arg not supported yet"); new StoreInst(nval1, aCI->getArgOperand(1), aCI); } replaceCall(nval0); return true; } // Public interface to the Simplify LibCalls pass. FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) { return new AMDGPUSimplifyLibCalls(TM); } FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { return new AMDGPUUseNativeCalls(); } bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { if (skipFunction(F)) return false; bool Changed = false; auto AA = &getAnalysis().getAAResults(); LLVM_DEBUG(dbgs() << "AMDIC: process function "; F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); for (auto &BB : F) { for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { // Ignore non-calls. CallInst *CI = dyn_cast(I); ++I; // Ignore intrinsics that do not become real instructions. if (!CI || isa(CI) || CI->isLifetimeStartOrEnd()) continue; // Ignore indirect calls. Function *Callee = CI->getCalledFunction(); if (Callee == 0) continue; LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; dbgs().flush()); if(Simplifier.fold(CI, AA)) Changed = true; } } return Changed; } PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F, FunctionAnalysisManager &AM) { AMDGPULibCalls Simplifier(&TM); Simplifier.initNativeFuncs(); bool Changed = false; auto AA = &AM.getResult(F); LLVM_DEBUG(dbgs() << "AMDIC: process function "; F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); for (auto &BB : F) { for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { // Ignore non-calls. CallInst *CI = dyn_cast(I); ++I; // Ignore intrinsics that do not become real instructions. if (!CI || isa(CI) || CI->isLifetimeStartOrEnd()) continue; // Ignore indirect calls. Function *Callee = CI->getCalledFunction(); if (Callee == 0) continue; LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; dbgs().flush()); if (Simplifier.fold(CI, AA)) Changed = true; } } return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); } bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { if (skipFunction(F) || UseNative.empty()) return false; bool Changed = false; for (auto &BB : F) { for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { // Ignore non-calls. CallInst *CI = dyn_cast(I); ++I; if (!CI) continue; // Ignore indirect calls. Function *Callee = CI->getCalledFunction(); if (Callee == 0) continue; if(Simplifier.useNative(CI)) Changed = true; } } return Changed; } PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F, FunctionAnalysisManager &AM) { if (UseNative.empty()) return PreservedAnalyses::all(); AMDGPULibCalls Simplifier; Simplifier.initNativeFuncs(); bool Changed = false; for (auto &BB : F) { for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { // Ignore non-calls. CallInst *CI = dyn_cast(I); ++I; if (!CI) continue; // Ignore indirect calls. Function *Callee = CI->getCalledFunction(); if (Callee == 0) continue; if (Simplifier.useNative(CI)) Changed = true; } } return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); }