//===- AMDGPUInstructionSelector.cpp ----------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the InstructionSelector class for /// AMDGPU. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "AMDGPUInstructionSelector.h" #include "AMDGPU.h" #include "AMDGPUGlobalISelUtils.h" #include "AMDGPUInstrInfo.h" #include "AMDGPURegisterBankInfo.h" #include "AMDGPUTargetMachine.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/IR/DiagnosticInfo.h" #define DEBUG_TYPE "amdgpu-isel" using namespace llvm; using namespace MIPatternMatch; static cl::opt AllowRiskySelect( "amdgpu-global-isel-risky-select", cl::desc("Allow GlobalISel to select cases that are likely to not work yet"), cl::init(false), cl::ReallyHidden); #define GET_GLOBALISEL_IMPL #define AMDGPUSubtarget GCNSubtarget #include "AMDGPUGenGlobalISel.inc" #undef GET_GLOBALISEL_IMPL #undef AMDGPUSubtarget AMDGPUInstructionSelector::AMDGPUInstructionSelector( const GCNSubtarget &STI, const AMDGPURegisterBankInfo &RBI, const AMDGPUTargetMachine &TM) : InstructionSelector(), TII(*STI.getInstrInfo()), TRI(*STI.getRegisterInfo()), RBI(RBI), TM(TM), STI(STI), EnableLateStructurizeCFG(AMDGPUTargetMachine::EnableLateStructurizeCFG), #define GET_GLOBALISEL_PREDICATES_INIT #include "AMDGPUGenGlobalISel.inc" #undef GET_GLOBALISEL_PREDICATES_INIT #define GET_GLOBALISEL_TEMPORARIES_INIT #include "AMDGPUGenGlobalISel.inc" #undef GET_GLOBALISEL_TEMPORARIES_INIT { } const char *AMDGPUInstructionSelector::getName() { return DEBUG_TYPE; } void AMDGPUInstructionSelector::setupMF(MachineFunction &MF, GISelKnownBits &KB, CodeGenCoverage &CoverageInfo) { MRI = &MF.getRegInfo(); Subtarget = &MF.getSubtarget(); InstructionSelector::setupMF(MF, KB, CoverageInfo); } bool AMDGPUInstructionSelector::isVCC(Register Reg, const MachineRegisterInfo &MRI) const { // The verifier is oblivious to s1 being a valid value for wavesize registers. if (Reg.isPhysical()) return false; auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg); const TargetRegisterClass *RC = RegClassOrBank.dyn_cast(); if (RC) { const LLT Ty = MRI.getType(Reg); return RC->hasSuperClassEq(TRI.getBoolRC()) && Ty.isValid() && Ty.getSizeInBits() == 1; } const RegisterBank *RB = RegClassOrBank.get(); return RB->getID() == AMDGPU::VCCRegBankID; } bool AMDGPUInstructionSelector::constrainCopyLikeIntrin(MachineInstr &MI, unsigned NewOpc) const { MI.setDesc(TII.get(NewOpc)); MI.RemoveOperand(1); // Remove intrinsic ID. MI.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true)); MachineOperand &Dst = MI.getOperand(0); MachineOperand &Src = MI.getOperand(1); // TODO: This should be legalized to s32 if needed if (MRI->getType(Dst.getReg()) == LLT::scalar(1)) return false; const TargetRegisterClass *DstRC = TRI.getConstrainedRegClassForOperand(Dst, *MRI); const TargetRegisterClass *SrcRC = TRI.getConstrainedRegClassForOperand(Src, *MRI); if (!DstRC || DstRC != SrcRC) return false; return RBI.constrainGenericRegister(Dst.getReg(), *DstRC, *MRI) && RBI.constrainGenericRegister(Src.getReg(), *SrcRC, *MRI); } bool AMDGPUInstructionSelector::selectCOPY(MachineInstr &I) const { const DebugLoc &DL = I.getDebugLoc(); MachineBasicBlock *BB = I.getParent(); I.setDesc(TII.get(TargetOpcode::COPY)); const MachineOperand &Src = I.getOperand(1); MachineOperand &Dst = I.getOperand(0); Register DstReg = Dst.getReg(); Register SrcReg = Src.getReg(); if (isVCC(DstReg, *MRI)) { if (SrcReg == AMDGPU::SCC) { const TargetRegisterClass *RC = TRI.getConstrainedRegClassForOperand(Dst, *MRI); if (!RC) return true; return RBI.constrainGenericRegister(DstReg, *RC, *MRI); } if (!isVCC(SrcReg, *MRI)) { // TODO: Should probably leave the copy and let copyPhysReg expand it. if (!RBI.constrainGenericRegister(DstReg, *TRI.getBoolRC(), *MRI)) return false; const TargetRegisterClass *SrcRC = TRI.getConstrainedRegClassForOperand(Src, *MRI); Register MaskedReg = MRI->createVirtualRegister(SrcRC); // We can't trust the high bits at this point, so clear them. // TODO: Skip masking high bits if def is known boolean. unsigned AndOpc = TRI.isSGPRClass(SrcRC) ? AMDGPU::S_AND_B32 : AMDGPU::V_AND_B32_e32; BuildMI(*BB, &I, DL, TII.get(AndOpc), MaskedReg) .addImm(1) .addReg(SrcReg); BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_CMP_NE_U32_e64), DstReg) .addImm(0) .addReg(MaskedReg); if (!MRI->getRegClassOrNull(SrcReg)) MRI->setRegClass(SrcReg, SrcRC); I.eraseFromParent(); return true; } const TargetRegisterClass *RC = TRI.getConstrainedRegClassForOperand(Dst, *MRI); if (RC && !RBI.constrainGenericRegister(DstReg, *RC, *MRI)) return false; return true; } for (const MachineOperand &MO : I.operands()) { if (MO.getReg().isPhysical()) continue; const TargetRegisterClass *RC = TRI.getConstrainedRegClassForOperand(MO, *MRI); if (!RC) continue; RBI.constrainGenericRegister(MO.getReg(), *RC, *MRI); } return true; } bool AMDGPUInstructionSelector::selectPHI(MachineInstr &I) const { const Register DefReg = I.getOperand(0).getReg(); const LLT DefTy = MRI->getType(DefReg); if (DefTy == LLT::scalar(1)) { if (!AllowRiskySelect) { LLVM_DEBUG(dbgs() << "Skipping risky boolean phi\n"); return false; } LLVM_DEBUG(dbgs() << "Selecting risky boolean phi\n"); } // TODO: Verify this doesn't have insane operands (i.e. VGPR to SGPR copy) const RegClassOrRegBank &RegClassOrBank = MRI->getRegClassOrRegBank(DefReg); const TargetRegisterClass *DefRC = RegClassOrBank.dyn_cast(); if (!DefRC) { if (!DefTy.isValid()) { LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n"); return false; } const RegisterBank &RB = *RegClassOrBank.get(); DefRC = TRI.getRegClassForTypeOnBank(DefTy, RB, *MRI); if (!DefRC) { LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n"); return false; } } // TODO: Verify that all registers have the same bank I.setDesc(TII.get(TargetOpcode::PHI)); return RBI.constrainGenericRegister(DefReg, *DefRC, *MRI); } MachineOperand AMDGPUInstructionSelector::getSubOperand64(MachineOperand &MO, const TargetRegisterClass &SubRC, unsigned SubIdx) const { MachineInstr *MI = MO.getParent(); MachineBasicBlock *BB = MO.getParent()->getParent(); Register DstReg = MRI->createVirtualRegister(&SubRC); if (MO.isReg()) { unsigned ComposedSubIdx = TRI.composeSubRegIndices(MO.getSubReg(), SubIdx); Register Reg = MO.getReg(); BuildMI(*BB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), DstReg) .addReg(Reg, 0, ComposedSubIdx); return MachineOperand::CreateReg(DstReg, MO.isDef(), MO.isImplicit(), MO.isKill(), MO.isDead(), MO.isUndef(), MO.isEarlyClobber(), 0, MO.isDebug(), MO.isInternalRead()); } assert(MO.isImm()); APInt Imm(64, MO.getImm()); switch (SubIdx) { default: llvm_unreachable("do not know to split immediate with this sub index."); case AMDGPU::sub0: return MachineOperand::CreateImm(Imm.getLoBits(32).getSExtValue()); case AMDGPU::sub1: return MachineOperand::CreateImm(Imm.getHiBits(32).getSExtValue()); } } static unsigned getLogicalBitOpcode(unsigned Opc, bool Is64) { switch (Opc) { case AMDGPU::G_AND: return Is64 ? AMDGPU::S_AND_B64 : AMDGPU::S_AND_B32; case AMDGPU::G_OR: return Is64 ? AMDGPU::S_OR_B64 : AMDGPU::S_OR_B32; case AMDGPU::G_XOR: return Is64 ? AMDGPU::S_XOR_B64 : AMDGPU::S_XOR_B32; default: llvm_unreachable("not a bit op"); } } bool AMDGPUInstructionSelector::selectG_AND_OR_XOR(MachineInstr &I) const { Register DstReg = I.getOperand(0).getReg(); unsigned Size = RBI.getSizeInBits(DstReg, *MRI, TRI); const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI); if (DstRB->getID() != AMDGPU::SGPRRegBankID && DstRB->getID() != AMDGPU::VCCRegBankID) return false; bool Is64 = Size > 32 || (DstRB->getID() == AMDGPU::VCCRegBankID && STI.isWave64()); I.setDesc(TII.get(getLogicalBitOpcode(I.getOpcode(), Is64))); // Dead implicit-def of scc I.addOperand(MachineOperand::CreateReg(AMDGPU::SCC, true, // isDef true, // isImp false, // isKill true)); // isDead return constrainSelectedInstRegOperands(I, TII, TRI, RBI); } bool AMDGPUInstructionSelector::selectG_ADD_SUB(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); Register DstReg = I.getOperand(0).getReg(); const DebugLoc &DL = I.getDebugLoc(); LLT Ty = MRI->getType(DstReg); if (Ty.isVector()) return false; unsigned Size = Ty.getSizeInBits(); const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI); const bool IsSALU = DstRB->getID() == AMDGPU::SGPRRegBankID; const bool Sub = I.getOpcode() == TargetOpcode::G_SUB; if (Size == 32) { if (IsSALU) { const unsigned Opc = Sub ? AMDGPU::S_SUB_U32 : AMDGPU::S_ADD_U32; MachineInstr *Add = BuildMI(*BB, &I, DL, TII.get(Opc), DstReg) .add(I.getOperand(1)) .add(I.getOperand(2)); I.eraseFromParent(); return constrainSelectedInstRegOperands(*Add, TII, TRI, RBI); } if (STI.hasAddNoCarry()) { const unsigned Opc = Sub ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_ADD_U32_e64; I.setDesc(TII.get(Opc)); I.addOperand(*MF, MachineOperand::CreateImm(0)); I.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true)); return constrainSelectedInstRegOperands(I, TII, TRI, RBI); } const unsigned Opc = Sub ? AMDGPU::V_SUB_CO_U32_e64 : AMDGPU::V_ADD_CO_U32_e64; Register UnusedCarry = MRI->createVirtualRegister(TRI.getWaveMaskRegClass()); MachineInstr *Add = BuildMI(*BB, &I, DL, TII.get(Opc), DstReg) .addDef(UnusedCarry, RegState::Dead) .add(I.getOperand(1)) .add(I.getOperand(2)) .addImm(0); I.eraseFromParent(); return constrainSelectedInstRegOperands(*Add, TII, TRI, RBI); } assert(!Sub && "illegal sub should not reach here"); const TargetRegisterClass &RC = IsSALU ? AMDGPU::SReg_64_XEXECRegClass : AMDGPU::VReg_64RegClass; const TargetRegisterClass &HalfRC = IsSALU ? AMDGPU::SReg_32RegClass : AMDGPU::VGPR_32RegClass; MachineOperand Lo1(getSubOperand64(I.getOperand(1), HalfRC, AMDGPU::sub0)); MachineOperand Lo2(getSubOperand64(I.getOperand(2), HalfRC, AMDGPU::sub0)); MachineOperand Hi1(getSubOperand64(I.getOperand(1), HalfRC, AMDGPU::sub1)); MachineOperand Hi2(getSubOperand64(I.getOperand(2), HalfRC, AMDGPU::sub1)); Register DstLo = MRI->createVirtualRegister(&HalfRC); Register DstHi = MRI->createVirtualRegister(&HalfRC); if (IsSALU) { BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADD_U32), DstLo) .add(Lo1) .add(Lo2); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADDC_U32), DstHi) .add(Hi1) .add(Hi2); } else { const TargetRegisterClass *CarryRC = TRI.getWaveMaskRegClass(); Register CarryReg = MRI->createVirtualRegister(CarryRC); BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_ADD_CO_U32_e64), DstLo) .addDef(CarryReg) .add(Lo1) .add(Lo2) .addImm(0); MachineInstr *Addc = BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_ADDC_U32_e64), DstHi) .addDef(MRI->createVirtualRegister(CarryRC), RegState::Dead) .add(Hi1) .add(Hi2) .addReg(CarryReg, RegState::Kill) .addImm(0); if (!constrainSelectedInstRegOperands(*Addc, TII, TRI, RBI)) return false; } BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg) .addReg(DstLo) .addImm(AMDGPU::sub0) .addReg(DstHi) .addImm(AMDGPU::sub1); if (!RBI.constrainGenericRegister(DstReg, RC, *MRI)) return false; I.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectG_UADDO_USUBO_UADDE_USUBE( MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); const DebugLoc &DL = I.getDebugLoc(); Register Dst0Reg = I.getOperand(0).getReg(); Register Dst1Reg = I.getOperand(1).getReg(); const bool IsAdd = I.getOpcode() == AMDGPU::G_UADDO || I.getOpcode() == AMDGPU::G_UADDE; const bool HasCarryIn = I.getOpcode() == AMDGPU::G_UADDE || I.getOpcode() == AMDGPU::G_USUBE; if (isVCC(Dst1Reg, *MRI)) { unsigned NoCarryOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; unsigned CarryOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; I.setDesc(TII.get(HasCarryIn ? CarryOpc : NoCarryOpc)); I.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true)); I.addOperand(*MF, MachineOperand::CreateImm(0)); return constrainSelectedInstRegOperands(I, TII, TRI, RBI); } Register Src0Reg = I.getOperand(2).getReg(); Register Src1Reg = I.getOperand(3).getReg(); if (HasCarryIn) { BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), AMDGPU::SCC) .addReg(I.getOperand(4).getReg()); } unsigned NoCarryOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; BuildMI(*BB, &I, DL, TII.get(HasCarryIn ? CarryOpc : NoCarryOpc), Dst0Reg) .add(I.getOperand(2)) .add(I.getOperand(3)); BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), Dst1Reg) .addReg(AMDGPU::SCC); if (!MRI->getRegClassOrNull(Dst1Reg)) MRI->setRegClass(Dst1Reg, &AMDGPU::SReg_32RegClass); if (!RBI.constrainGenericRegister(Dst0Reg, AMDGPU::SReg_32RegClass, *MRI) || !RBI.constrainGenericRegister(Src0Reg, AMDGPU::SReg_32RegClass, *MRI) || !RBI.constrainGenericRegister(Src1Reg, AMDGPU::SReg_32RegClass, *MRI)) return false; if (HasCarryIn && !RBI.constrainGenericRegister(I.getOperand(4).getReg(), AMDGPU::SReg_32RegClass, *MRI)) return false; I.eraseFromParent(); return true; } // TODO: We should probably legalize these to only using 32-bit results. bool AMDGPUInstructionSelector::selectG_EXTRACT(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); Register DstReg = I.getOperand(0).getReg(); Register SrcReg = I.getOperand(1).getReg(); LLT DstTy = MRI->getType(DstReg); LLT SrcTy = MRI->getType(SrcReg); const unsigned SrcSize = SrcTy.getSizeInBits(); unsigned DstSize = DstTy.getSizeInBits(); // TODO: Should handle any multiple of 32 offset. unsigned Offset = I.getOperand(2).getImm(); if (Offset % 32 != 0 || DstSize > 128) return false; // 16-bit operations really use 32-bit registers. // FIXME: Probably should not allow 16-bit G_EXTRACT results. if (DstSize == 16) DstSize = 32; const TargetRegisterClass *DstRC = TRI.getConstrainedRegClassForOperand(I.getOperand(0), *MRI); if (!DstRC || !RBI.constrainGenericRegister(DstReg, *DstRC, *MRI)) return false; const RegisterBank *SrcBank = RBI.getRegBank(SrcReg, *MRI, TRI); const TargetRegisterClass *SrcRC = TRI.getRegClassForSizeOnBank(SrcSize, *SrcBank, *MRI); if (!SrcRC) return false; unsigned SubReg = SIRegisterInfo::getSubRegFromChannel(Offset / 32, DstSize / 32); SrcRC = TRI.getSubClassWithSubReg(SrcRC, SubReg); if (!SrcRC) return false; SrcReg = constrainOperandRegClass(*MF, TRI, *MRI, TII, RBI, I, *SrcRC, I.getOperand(1)); const DebugLoc &DL = I.getDebugLoc(); BuildMI(*BB, &I, DL, TII.get(TargetOpcode::COPY), DstReg) .addReg(SrcReg, 0, SubReg); I.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectG_MERGE_VALUES(MachineInstr &MI) const { MachineBasicBlock *BB = MI.getParent(); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI->getType(DstReg); LLT SrcTy = MRI->getType(MI.getOperand(1).getReg()); const unsigned SrcSize = SrcTy.getSizeInBits(); if (SrcSize < 32) return selectImpl(MI, *CoverageInfo); const DebugLoc &DL = MI.getDebugLoc(); const RegisterBank *DstBank = RBI.getRegBank(DstReg, *MRI, TRI); const unsigned DstSize = DstTy.getSizeInBits(); const TargetRegisterClass *DstRC = TRI.getRegClassForSizeOnBank(DstSize, *DstBank, *MRI); if (!DstRC) return false; ArrayRef SubRegs = TRI.getRegSplitParts(DstRC, SrcSize / 8); MachineInstrBuilder MIB = BuildMI(*BB, &MI, DL, TII.get(TargetOpcode::REG_SEQUENCE), DstReg); for (int I = 0, E = MI.getNumOperands() - 1; I != E; ++I) { MachineOperand &Src = MI.getOperand(I + 1); MIB.addReg(Src.getReg(), getUndefRegState(Src.isUndef())); MIB.addImm(SubRegs[I]); const TargetRegisterClass *SrcRC = TRI.getConstrainedRegClassForOperand(Src, *MRI); if (SrcRC && !RBI.constrainGenericRegister(Src.getReg(), *SrcRC, *MRI)) return false; } if (!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI)) return false; MI.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectG_UNMERGE_VALUES(MachineInstr &MI) const { MachineBasicBlock *BB = MI.getParent(); const int NumDst = MI.getNumOperands() - 1; MachineOperand &Src = MI.getOperand(NumDst); Register SrcReg = Src.getReg(); Register DstReg0 = MI.getOperand(0).getReg(); LLT DstTy = MRI->getType(DstReg0); LLT SrcTy = MRI->getType(SrcReg); const unsigned DstSize = DstTy.getSizeInBits(); const unsigned SrcSize = SrcTy.getSizeInBits(); const DebugLoc &DL = MI.getDebugLoc(); const RegisterBank *SrcBank = RBI.getRegBank(SrcReg, *MRI, TRI); const TargetRegisterClass *SrcRC = TRI.getRegClassForSizeOnBank(SrcSize, *SrcBank, *MRI); if (!SrcRC || !RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI)) return false; // Note we could have mixed SGPR and VGPR destination banks for an SGPR // source, and this relies on the fact that the same subregister indices are // used for both. ArrayRef SubRegs = TRI.getRegSplitParts(SrcRC, DstSize / 8); for (int I = 0, E = NumDst; I != E; ++I) { MachineOperand &Dst = MI.getOperand(I); BuildMI(*BB, &MI, DL, TII.get(TargetOpcode::COPY), Dst.getReg()) .addReg(SrcReg, 0, SubRegs[I]); // Make sure the subregister index is valid for the source register. SrcRC = TRI.getSubClassWithSubReg(SrcRC, SubRegs[I]); if (!SrcRC || !RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI)) return false; const TargetRegisterClass *DstRC = TRI.getConstrainedRegClassForOperand(Dst, *MRI); if (DstRC && !RBI.constrainGenericRegister(Dst.getReg(), *DstRC, *MRI)) return false; } MI.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectG_BUILD_VECTOR_TRUNC( MachineInstr &MI) const { if (selectImpl(MI, *CoverageInfo)) return true; const LLT S32 = LLT::scalar(32); const LLT V2S16 = LLT::vector(2, 16); Register Dst = MI.getOperand(0).getReg(); if (MRI->getType(Dst) != V2S16) return false; const RegisterBank *DstBank = RBI.getRegBank(Dst, *MRI, TRI); if (DstBank->getID() != AMDGPU::SGPRRegBankID) return false; Register Src0 = MI.getOperand(1).getReg(); Register Src1 = MI.getOperand(2).getReg(); if (MRI->getType(Src0) != S32) return false; const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock *BB = MI.getParent(); auto ConstSrc1 = getConstantVRegValWithLookThrough(Src1, *MRI, true, true, true); if (ConstSrc1) { auto ConstSrc0 = getConstantVRegValWithLookThrough(Src0, *MRI, true, true, true); if (ConstSrc0) { const int64_t K0 = ConstSrc0->Value.getSExtValue(); const int64_t K1 = ConstSrc1->Value.getSExtValue(); uint32_t Lo16 = static_cast(K0) & 0xffff; uint32_t Hi16 = static_cast(K1) & 0xffff; BuildMI(*BB, &MI, DL, TII.get(AMDGPU::S_MOV_B32), Dst) .addImm(Lo16 | (Hi16 << 16)); MI.eraseFromParent(); return RBI.constrainGenericRegister(Dst, AMDGPU::SReg_32RegClass, *MRI); } } // TODO: This should probably be a combine somewhere // (build_vector_trunc $src0, undef -> copy $src0 MachineInstr *Src1Def = getDefIgnoringCopies(Src1, *MRI); if (Src1Def && Src1Def->getOpcode() == AMDGPU::G_IMPLICIT_DEF) { MI.setDesc(TII.get(AMDGPU::COPY)); MI.RemoveOperand(2); return RBI.constrainGenericRegister(Dst, AMDGPU::SReg_32RegClass, *MRI) && RBI.constrainGenericRegister(Src0, AMDGPU::SReg_32RegClass, *MRI); } Register ShiftSrc0; Register ShiftSrc1; // With multiple uses of the shift, this will duplicate the shift and // increase register pressure. // // (build_vector_trunc (lshr_oneuse $src0, 16), (lshr_oneuse $src1, 16) // => (S_PACK_HH_B32_B16 $src0, $src1) // (build_vector_trunc $src0, (lshr_oneuse SReg_32:$src1, 16)) // => (S_PACK_LH_B32_B16 $src0, $src1) // (build_vector_trunc $src0, $src1) // => (S_PACK_LL_B32_B16 $src0, $src1) bool Shift0 = mi_match( Src0, *MRI, m_OneUse(m_GLShr(m_Reg(ShiftSrc0), m_SpecificICst(16)))); bool Shift1 = mi_match( Src1, *MRI, m_OneUse(m_GLShr(m_Reg(ShiftSrc1), m_SpecificICst(16)))); unsigned Opc = AMDGPU::S_PACK_LL_B32_B16; if (Shift0 && Shift1) { Opc = AMDGPU::S_PACK_HH_B32_B16; MI.getOperand(1).setReg(ShiftSrc0); MI.getOperand(2).setReg(ShiftSrc1); } else if (Shift1) { Opc = AMDGPU::S_PACK_LH_B32_B16; MI.getOperand(2).setReg(ShiftSrc1); } else if (Shift0 && ConstSrc1 && ConstSrc1->Value == 0) { // build_vector_trunc (lshr $src0, 16), 0 -> s_lshr_b32 $src0, 16 auto MIB = BuildMI(*BB, &MI, DL, TII.get(AMDGPU::S_LSHR_B32), Dst) .addReg(ShiftSrc0) .addImm(16); MI.eraseFromParent(); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } MI.setDesc(TII.get(Opc)); return constrainSelectedInstRegOperands(MI, TII, TRI, RBI); } bool AMDGPUInstructionSelector::selectG_PTR_ADD(MachineInstr &I) const { return selectG_ADD_SUB(I); } bool AMDGPUInstructionSelector::selectG_IMPLICIT_DEF(MachineInstr &I) const { const MachineOperand &MO = I.getOperand(0); // FIXME: Interface for getConstrainedRegClassForOperand needs work. The // regbank check here is to know why getConstrainedRegClassForOperand failed. const TargetRegisterClass *RC = TRI.getConstrainedRegClassForOperand(MO, *MRI); if ((!RC && !MRI->getRegBankOrNull(MO.getReg())) || (RC && RBI.constrainGenericRegister(MO.getReg(), *RC, *MRI))) { I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF)); return true; } return false; } bool AMDGPUInstructionSelector::selectG_INSERT(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); Register DstReg = I.getOperand(0).getReg(); Register Src0Reg = I.getOperand(1).getReg(); Register Src1Reg = I.getOperand(2).getReg(); LLT Src1Ty = MRI->getType(Src1Reg); unsigned DstSize = MRI->getType(DstReg).getSizeInBits(); unsigned InsSize = Src1Ty.getSizeInBits(); int64_t Offset = I.getOperand(3).getImm(); // FIXME: These cases should have been illegal and unnecessary to check here. if (Offset % 32 != 0 || InsSize % 32 != 0) return false; // Currently not handled by getSubRegFromChannel. if (InsSize > 128) return false; unsigned SubReg = TRI.getSubRegFromChannel(Offset / 32, InsSize / 32); if (SubReg == AMDGPU::NoSubRegister) return false; const RegisterBank *DstBank = RBI.getRegBank(DstReg, *MRI, TRI); const TargetRegisterClass *DstRC = TRI.getRegClassForSizeOnBank(DstSize, *DstBank, *MRI); if (!DstRC) return false; const RegisterBank *Src0Bank = RBI.getRegBank(Src0Reg, *MRI, TRI); const RegisterBank *Src1Bank = RBI.getRegBank(Src1Reg, *MRI, TRI); const TargetRegisterClass *Src0RC = TRI.getRegClassForSizeOnBank(DstSize, *Src0Bank, *MRI); const TargetRegisterClass *Src1RC = TRI.getRegClassForSizeOnBank(InsSize, *Src1Bank, *MRI); // Deal with weird cases where the class only partially supports the subreg // index. Src0RC = TRI.getSubClassWithSubReg(Src0RC, SubReg); if (!Src0RC || !Src1RC) return false; if (!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI) || !RBI.constrainGenericRegister(Src0Reg, *Src0RC, *MRI) || !RBI.constrainGenericRegister(Src1Reg, *Src1RC, *MRI)) return false; const DebugLoc &DL = I.getDebugLoc(); BuildMI(*BB, &I, DL, TII.get(TargetOpcode::INSERT_SUBREG), DstReg) .addReg(Src0Reg) .addReg(Src1Reg) .addImm(SubReg); I.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectInterpP1F16(MachineInstr &MI) const { if (STI.getLDSBankCount() != 16) return selectImpl(MI, *CoverageInfo); Register Dst = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(2).getReg(); Register M0Val = MI.getOperand(6).getReg(); if (!RBI.constrainGenericRegister(M0Val, AMDGPU::SReg_32RegClass, *MRI) || !RBI.constrainGenericRegister(Dst, AMDGPU::VGPR_32RegClass, *MRI) || !RBI.constrainGenericRegister(Src0, AMDGPU::VGPR_32RegClass, *MRI)) return false; // This requires 2 instructions. It is possible to write a pattern to support // this, but the generated isel emitter doesn't correctly deal with multiple // output instructions using the same physical register input. The copy to m0 // is incorrectly placed before the second instruction. // // TODO: Match source modifiers. Register InterpMov = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock *MBB = MI.getParent(); BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0) .addReg(M0Val); BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::V_INTERP_MOV_F32), InterpMov) .addImm(2) .addImm(MI.getOperand(4).getImm()) // $attr .addImm(MI.getOperand(3).getImm()); // $attrchan BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::V_INTERP_P1LV_F16), Dst) .addImm(0) // $src0_modifiers .addReg(Src0) // $src0 .addImm(MI.getOperand(4).getImm()) // $attr .addImm(MI.getOperand(3).getImm()) // $attrchan .addImm(0) // $src2_modifiers .addReg(InterpMov) // $src2 - 2 f16 values selected by high .addImm(MI.getOperand(5).getImm()) // $high .addImm(0) // $clamp .addImm(0); // $omod MI.eraseFromParent(); return true; } // Writelane is special in that it can use SGPR and M0 (which would normally // count as using the constant bus twice - but in this case it is allowed since // the lane selector doesn't count as a use of the constant bus). However, it is // still required to abide by the 1 SGPR rule. Fix this up if we might have // multiple SGPRs. bool AMDGPUInstructionSelector::selectWritelane(MachineInstr &MI) const { // With a constant bus limit of at least 2, there's no issue. if (STI.getConstantBusLimit(AMDGPU::V_WRITELANE_B32) > 1) return selectImpl(MI, *CoverageInfo); MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); Register VDst = MI.getOperand(0).getReg(); Register Val = MI.getOperand(2).getReg(); Register LaneSelect = MI.getOperand(3).getReg(); Register VDstIn = MI.getOperand(4).getReg(); auto MIB = BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::V_WRITELANE_B32), VDst); Optional ConstSelect = getConstantVRegValWithLookThrough(LaneSelect, *MRI, true, true); if (ConstSelect) { // The selector has to be an inline immediate, so we can use whatever for // the other operands. MIB.addReg(Val); MIB.addImm(ConstSelect->Value.getSExtValue() & maskTrailingOnes(STI.getWavefrontSizeLog2())); } else { Optional ConstVal = getConstantVRegValWithLookThrough(Val, *MRI, true, true); // If the value written is an inline immediate, we can get away without a // copy to m0. if (ConstVal && AMDGPU::isInlinableLiteral32(ConstVal->Value.getSExtValue(), STI.hasInv2PiInlineImm())) { MIB.addImm(ConstVal->Value.getSExtValue()); MIB.addReg(LaneSelect); } else { MIB.addReg(Val); // If the lane selector was originally in a VGPR and copied with // readfirstlane, there's a hazard to read the same SGPR from the // VALU. Constrain to a different SGPR to help avoid needing a nop later. RBI.constrainGenericRegister(LaneSelect, AMDGPU::SReg_32_XM0RegClass, *MRI); BuildMI(*MBB, *MIB, DL, TII.get(AMDGPU::COPY), AMDGPU::M0) .addReg(LaneSelect); MIB.addReg(AMDGPU::M0); } } MIB.addReg(VDstIn); MI.eraseFromParent(); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } // We need to handle this here because tablegen doesn't support matching // instructions with multiple outputs. bool AMDGPUInstructionSelector::selectDivScale(MachineInstr &MI) const { Register Dst0 = MI.getOperand(0).getReg(); Register Dst1 = MI.getOperand(1).getReg(); LLT Ty = MRI->getType(Dst0); unsigned Opc; if (Ty == LLT::scalar(32)) Opc = AMDGPU::V_DIV_SCALE_F32_e64; else if (Ty == LLT::scalar(64)) Opc = AMDGPU::V_DIV_SCALE_F64_e64; else return false; // TODO: Match source modifiers. const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock *MBB = MI.getParent(); Register Numer = MI.getOperand(3).getReg(); Register Denom = MI.getOperand(4).getReg(); unsigned ChooseDenom = MI.getOperand(5).getImm(); Register Src0 = ChooseDenom != 0 ? Numer : Denom; auto MIB = BuildMI(*MBB, &MI, DL, TII.get(Opc), Dst0) .addDef(Dst1) .addImm(0) // $src0_modifiers .addUse(Src0) // $src0 .addImm(0) // $src1_modifiers .addUse(Denom) // $src1 .addImm(0) // $src2_modifiers .addUse(Numer) // $src2 .addImm(0) // $clamp .addImm(0); // $omod MI.eraseFromParent(); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } bool AMDGPUInstructionSelector::selectG_INTRINSIC(MachineInstr &I) const { unsigned IntrinsicID = I.getIntrinsicID(); switch (IntrinsicID) { case Intrinsic::amdgcn_if_break: { MachineBasicBlock *BB = I.getParent(); // FIXME: Manually selecting to avoid dealiing with the SReg_1 trick // SelectionDAG uses for wave32 vs wave64. BuildMI(*BB, &I, I.getDebugLoc(), TII.get(AMDGPU::SI_IF_BREAK)) .add(I.getOperand(0)) .add(I.getOperand(2)) .add(I.getOperand(3)); Register DstReg = I.getOperand(0).getReg(); Register Src0Reg = I.getOperand(2).getReg(); Register Src1Reg = I.getOperand(3).getReg(); I.eraseFromParent(); for (Register Reg : { DstReg, Src0Reg, Src1Reg }) MRI->setRegClass(Reg, TRI.getWaveMaskRegClass()); return true; } case Intrinsic::amdgcn_interp_p1_f16: return selectInterpP1F16(I); case Intrinsic::amdgcn_wqm: return constrainCopyLikeIntrin(I, AMDGPU::WQM); case Intrinsic::amdgcn_softwqm: return constrainCopyLikeIntrin(I, AMDGPU::SOFT_WQM); case Intrinsic::amdgcn_wwm: return constrainCopyLikeIntrin(I, AMDGPU::WWM); case Intrinsic::amdgcn_writelane: return selectWritelane(I); case Intrinsic::amdgcn_div_scale: return selectDivScale(I); case Intrinsic::amdgcn_icmp: return selectIntrinsicIcmp(I); case Intrinsic::amdgcn_ballot: return selectBallot(I); case Intrinsic::amdgcn_reloc_constant: return selectRelocConstant(I); case Intrinsic::amdgcn_groupstaticsize: return selectGroupStaticSize(I); case Intrinsic::returnaddress: return selectReturnAddress(I); default: return selectImpl(I, *CoverageInfo); } } static int getV_CMPOpcode(CmpInst::Predicate P, unsigned Size) { if (Size != 32 && Size != 64) return -1; switch (P) { default: llvm_unreachable("Unknown condition code!"); case CmpInst::ICMP_NE: return Size == 32 ? AMDGPU::V_CMP_NE_U32_e64 : AMDGPU::V_CMP_NE_U64_e64; case CmpInst::ICMP_EQ: return Size == 32 ? AMDGPU::V_CMP_EQ_U32_e64 : AMDGPU::V_CMP_EQ_U64_e64; case CmpInst::ICMP_SGT: return Size == 32 ? AMDGPU::V_CMP_GT_I32_e64 : AMDGPU::V_CMP_GT_I64_e64; case CmpInst::ICMP_SGE: return Size == 32 ? AMDGPU::V_CMP_GE_I32_e64 : AMDGPU::V_CMP_GE_I64_e64; case CmpInst::ICMP_SLT: return Size == 32 ? AMDGPU::V_CMP_LT_I32_e64 : AMDGPU::V_CMP_LT_I64_e64; case CmpInst::ICMP_SLE: return Size == 32 ? AMDGPU::V_CMP_LE_I32_e64 : AMDGPU::V_CMP_LE_I64_e64; case CmpInst::ICMP_UGT: return Size == 32 ? AMDGPU::V_CMP_GT_U32_e64 : AMDGPU::V_CMP_GT_U64_e64; case CmpInst::ICMP_UGE: return Size == 32 ? AMDGPU::V_CMP_GE_U32_e64 : AMDGPU::V_CMP_GE_U64_e64; case CmpInst::ICMP_ULT: return Size == 32 ? AMDGPU::V_CMP_LT_U32_e64 : AMDGPU::V_CMP_LT_U64_e64; case CmpInst::ICMP_ULE: return Size == 32 ? AMDGPU::V_CMP_LE_U32_e64 : AMDGPU::V_CMP_LE_U64_e64; } } int AMDGPUInstructionSelector::getS_CMPOpcode(CmpInst::Predicate P, unsigned Size) const { if (Size == 64) { if (!STI.hasScalarCompareEq64()) return -1; switch (P) { case CmpInst::ICMP_NE: return AMDGPU::S_CMP_LG_U64; case CmpInst::ICMP_EQ: return AMDGPU::S_CMP_EQ_U64; default: return -1; } } if (Size != 32) return -1; switch (P) { case CmpInst::ICMP_NE: return AMDGPU::S_CMP_LG_U32; case CmpInst::ICMP_EQ: return AMDGPU::S_CMP_EQ_U32; case CmpInst::ICMP_SGT: return AMDGPU::S_CMP_GT_I32; case CmpInst::ICMP_SGE: return AMDGPU::S_CMP_GE_I32; case CmpInst::ICMP_SLT: return AMDGPU::S_CMP_LT_I32; case CmpInst::ICMP_SLE: return AMDGPU::S_CMP_LE_I32; case CmpInst::ICMP_UGT: return AMDGPU::S_CMP_GT_U32; case CmpInst::ICMP_UGE: return AMDGPU::S_CMP_GE_U32; case CmpInst::ICMP_ULT: return AMDGPU::S_CMP_LT_U32; case CmpInst::ICMP_ULE: return AMDGPU::S_CMP_LE_U32; default: llvm_unreachable("Unknown condition code!"); } } bool AMDGPUInstructionSelector::selectG_ICMP(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); const DebugLoc &DL = I.getDebugLoc(); Register SrcReg = I.getOperand(2).getReg(); unsigned Size = RBI.getSizeInBits(SrcReg, *MRI, TRI); auto Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate(); Register CCReg = I.getOperand(0).getReg(); if (!isVCC(CCReg, *MRI)) { int Opcode = getS_CMPOpcode(Pred, Size); if (Opcode == -1) return false; MachineInstr *ICmp = BuildMI(*BB, &I, DL, TII.get(Opcode)) .add(I.getOperand(2)) .add(I.getOperand(3)); BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), CCReg) .addReg(AMDGPU::SCC); bool Ret = constrainSelectedInstRegOperands(*ICmp, TII, TRI, RBI) && RBI.constrainGenericRegister(CCReg, AMDGPU::SReg_32RegClass, *MRI); I.eraseFromParent(); return Ret; } int Opcode = getV_CMPOpcode(Pred, Size); if (Opcode == -1) return false; MachineInstr *ICmp = BuildMI(*BB, &I, DL, TII.get(Opcode), I.getOperand(0).getReg()) .add(I.getOperand(2)) .add(I.getOperand(3)); RBI.constrainGenericRegister(ICmp->getOperand(0).getReg(), *TRI.getBoolRC(), *MRI); bool Ret = constrainSelectedInstRegOperands(*ICmp, TII, TRI, RBI); I.eraseFromParent(); return Ret; } bool AMDGPUInstructionSelector::selectIntrinsicIcmp(MachineInstr &I) const { Register Dst = I.getOperand(0).getReg(); if (isVCC(Dst, *MRI)) return false; if (MRI->getType(Dst).getSizeInBits() != STI.getWavefrontSize()) return false; MachineBasicBlock *BB = I.getParent(); const DebugLoc &DL = I.getDebugLoc(); Register SrcReg = I.getOperand(2).getReg(); unsigned Size = RBI.getSizeInBits(SrcReg, *MRI, TRI); auto Pred = static_cast(I.getOperand(4).getImm()); int Opcode = getV_CMPOpcode(Pred, Size); if (Opcode == -1) return false; MachineInstr *ICmp = BuildMI(*BB, &I, DL, TII.get(Opcode), Dst) .add(I.getOperand(2)) .add(I.getOperand(3)); RBI.constrainGenericRegister(ICmp->getOperand(0).getReg(), *TRI.getBoolRC(), *MRI); bool Ret = constrainSelectedInstRegOperands(*ICmp, TII, TRI, RBI); I.eraseFromParent(); return Ret; } bool AMDGPUInstructionSelector::selectBallot(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); const DebugLoc &DL = I.getDebugLoc(); Register DstReg = I.getOperand(0).getReg(); const unsigned Size = MRI->getType(DstReg).getSizeInBits(); const bool Is64 = Size == 64; if (Size != STI.getWavefrontSize()) return false; Optional Arg = getConstantVRegValWithLookThrough(I.getOperand(2).getReg(), *MRI, true); if (Arg.hasValue()) { const int64_t Value = Arg.getValue().Value.getSExtValue(); if (Value == 0) { unsigned Opcode = Is64 ? AMDGPU::S_MOV_B64 : AMDGPU::S_MOV_B32; BuildMI(*BB, &I, DL, TII.get(Opcode), DstReg).addImm(0); } else if (Value == -1) { // all ones Register SrcReg = Is64 ? AMDGPU::EXEC : AMDGPU::EXEC_LO; BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), DstReg).addReg(SrcReg); } else return false; } else { Register SrcReg = I.getOperand(2).getReg(); BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), DstReg).addReg(SrcReg); } I.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectRelocConstant(MachineInstr &I) const { Register DstReg = I.getOperand(0).getReg(); const RegisterBank *DstBank = RBI.getRegBank(DstReg, *MRI, TRI); const TargetRegisterClass *DstRC = TRI.getRegClassForSizeOnBank(32, *DstBank, *MRI); if (!DstRC || !RBI.constrainGenericRegister(DstReg, *DstRC, *MRI)) return false; const bool IsVALU = DstBank->getID() == AMDGPU::VGPRRegBankID; Module *M = MF->getFunction().getParent(); const MDNode *Metadata = I.getOperand(2).getMetadata(); auto SymbolName = cast(Metadata->getOperand(0))->getString(); auto RelocSymbol = cast( M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); MachineBasicBlock *BB = I.getParent(); BuildMI(*BB, &I, I.getDebugLoc(), TII.get(IsVALU ? AMDGPU::V_MOV_B32_e32 : AMDGPU::S_MOV_B32), DstReg) .addGlobalAddress(RelocSymbol, 0, SIInstrInfo::MO_ABS32_LO); I.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectGroupStaticSize(MachineInstr &I) const { Triple::OSType OS = MF->getTarget().getTargetTriple().getOS(); Register DstReg = I.getOperand(0).getReg(); const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI); unsigned Mov = DstRB->getID() == AMDGPU::SGPRRegBankID ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; MachineBasicBlock *MBB = I.getParent(); const DebugLoc &DL = I.getDebugLoc(); auto MIB = BuildMI(*MBB, &I, DL, TII.get(Mov), DstReg); if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) { const SIMachineFunctionInfo *MFI = MF->getInfo(); MIB.addImm(MFI->getLDSSize()); } else { Module *M = MF->getFunction().getParent(); const GlobalValue *GV = Intrinsic::getDeclaration(M, Intrinsic::amdgcn_groupstaticsize); MIB.addGlobalAddress(GV, 0, SIInstrInfo::MO_ABS32_LO); } I.eraseFromParent(); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } bool AMDGPUInstructionSelector::selectReturnAddress(MachineInstr &I) const { MachineBasicBlock *MBB = I.getParent(); MachineFunction &MF = *MBB->getParent(); const DebugLoc &DL = I.getDebugLoc(); MachineOperand &Dst = I.getOperand(0); Register DstReg = Dst.getReg(); unsigned Depth = I.getOperand(2).getImm(); const TargetRegisterClass *RC = TRI.getConstrainedRegClassForOperand(Dst, *MRI); if (!RC->hasSubClassEq(&AMDGPU::SGPR_64RegClass) || !RBI.constrainGenericRegister(DstReg, *RC, *MRI)) return false; // Check for kernel and shader functions if (Depth != 0 || MF.getInfo()->isEntryFunction()) { BuildMI(*MBB, &I, DL, TII.get(AMDGPU::S_MOV_B64), DstReg) .addImm(0); I.eraseFromParent(); return true; } MachineFrameInfo &MFI = MF.getFrameInfo(); // There is a call to @llvm.returnaddress in this function MFI.setReturnAddressIsTaken(true); // Get the return address reg and mark it as an implicit live-in Register ReturnAddrReg = TRI.getReturnAddressReg(MF); Register LiveIn = getFunctionLiveInPhysReg(MF, TII, ReturnAddrReg, AMDGPU::SReg_64RegClass); BuildMI(*MBB, &I, DL, TII.get(AMDGPU::COPY), DstReg) .addReg(LiveIn); I.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectEndCfIntrinsic(MachineInstr &MI) const { // FIXME: Manually selecting to avoid dealiing with the SReg_1 trick // SelectionDAG uses for wave32 vs wave64. MachineBasicBlock *BB = MI.getParent(); BuildMI(*BB, &MI, MI.getDebugLoc(), TII.get(AMDGPU::SI_END_CF)) .add(MI.getOperand(1)); Register Reg = MI.getOperand(1).getReg(); MI.eraseFromParent(); if (!MRI->getRegClassOrNull(Reg)) MRI->setRegClass(Reg, TRI.getWaveMaskRegClass()); return true; } bool AMDGPUInstructionSelector::selectDSOrderedIntrinsic( MachineInstr &MI, Intrinsic::ID IntrID) const { MachineBasicBlock *MBB = MI.getParent(); MachineFunction *MF = MBB->getParent(); const DebugLoc &DL = MI.getDebugLoc(); unsigned IndexOperand = MI.getOperand(7).getImm(); bool WaveRelease = MI.getOperand(8).getImm() != 0; bool WaveDone = MI.getOperand(9).getImm() != 0; if (WaveDone && !WaveRelease) report_fatal_error("ds_ordered_count: wave_done requires wave_release"); unsigned OrderedCountIndex = IndexOperand & 0x3f; IndexOperand &= ~0x3f; unsigned CountDw = 0; if (STI.getGeneration() >= AMDGPUSubtarget::GFX10) { CountDw = (IndexOperand >> 24) & 0xf; IndexOperand &= ~(0xf << 24); if (CountDw < 1 || CountDw > 4) { report_fatal_error( "ds_ordered_count: dword count must be between 1 and 4"); } } if (IndexOperand) report_fatal_error("ds_ordered_count: bad index operand"); unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; unsigned ShaderType = SIInstrInfo::getDSShaderTypeValue(*MF); unsigned Offset0 = OrderedCountIndex << 2; unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) | (Instruction << 4); if (STI.getGeneration() >= AMDGPUSubtarget::GFX10) Offset1 |= (CountDw - 1) << 6; unsigned Offset = Offset0 | (Offset1 << 8); Register M0Val = MI.getOperand(2).getReg(); BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0) .addReg(M0Val); Register DstReg = MI.getOperand(0).getReg(); Register ValReg = MI.getOperand(3).getReg(); MachineInstrBuilder DS = BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::DS_ORDERED_COUNT), DstReg) .addReg(ValReg) .addImm(Offset) .cloneMemRefs(MI); if (!RBI.constrainGenericRegister(M0Val, AMDGPU::SReg_32RegClass, *MRI)) return false; bool Ret = constrainSelectedInstRegOperands(*DS, TII, TRI, RBI); MI.eraseFromParent(); return Ret; } static unsigned gwsIntrinToOpcode(unsigned IntrID) { switch (IntrID) { case Intrinsic::amdgcn_ds_gws_init: return AMDGPU::DS_GWS_INIT; case Intrinsic::amdgcn_ds_gws_barrier: return AMDGPU::DS_GWS_BARRIER; case Intrinsic::amdgcn_ds_gws_sema_v: return AMDGPU::DS_GWS_SEMA_V; case Intrinsic::amdgcn_ds_gws_sema_br: return AMDGPU::DS_GWS_SEMA_BR; case Intrinsic::amdgcn_ds_gws_sema_p: return AMDGPU::DS_GWS_SEMA_P; case Intrinsic::amdgcn_ds_gws_sema_release_all: return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; default: llvm_unreachable("not a gws intrinsic"); } } bool AMDGPUInstructionSelector::selectDSGWSIntrinsic(MachineInstr &MI, Intrinsic::ID IID) const { if (IID == Intrinsic::amdgcn_ds_gws_sema_release_all && !STI.hasGWSSemaReleaseAll()) return false; // intrinsic ID, vsrc, offset const bool HasVSrc = MI.getNumOperands() == 3; assert(HasVSrc || MI.getNumOperands() == 2); Register BaseOffset = MI.getOperand(HasVSrc ? 2 : 1).getReg(); const RegisterBank *OffsetRB = RBI.getRegBank(BaseOffset, *MRI, TRI); if (OffsetRB->getID() != AMDGPU::SGPRRegBankID) return false; MachineInstr *OffsetDef = getDefIgnoringCopies(BaseOffset, *MRI); assert(OffsetDef); unsigned ImmOffset; MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineInstr *Readfirstlane = nullptr; // If we legalized the VGPR input, strip out the readfirstlane to analyze the // incoming offset, in case there's an add of a constant. We'll have to put it // back later. if (OffsetDef->getOpcode() == AMDGPU::V_READFIRSTLANE_B32) { Readfirstlane = OffsetDef; BaseOffset = OffsetDef->getOperand(1).getReg(); OffsetDef = getDefIgnoringCopies(BaseOffset, *MRI); } if (OffsetDef->getOpcode() == AMDGPU::G_CONSTANT) { // If we have a constant offset, try to use the 0 in m0 as the base. // TODO: Look into changing the default m0 initialization value. If the // default -1 only set the low 16-bits, we could leave it as-is and add 1 to // the immediate offset. ImmOffset = OffsetDef->getOperand(1).getCImm()->getZExtValue(); BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::S_MOV_B32), AMDGPU::M0) .addImm(0); } else { std::tie(BaseOffset, ImmOffset) = AMDGPU::getBaseWithConstantOffset(*MRI, BaseOffset); if (Readfirstlane) { // We have the constant offset now, so put the readfirstlane back on the // variable component. if (!RBI.constrainGenericRegister(BaseOffset, AMDGPU::VGPR_32RegClass, *MRI)) return false; Readfirstlane->getOperand(1).setReg(BaseOffset); BaseOffset = Readfirstlane->getOperand(0).getReg(); } else { if (!RBI.constrainGenericRegister(BaseOffset, AMDGPU::SReg_32RegClass, *MRI)) return false; } Register M0Base = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::S_LSHL_B32), M0Base) .addReg(BaseOffset) .addImm(16); BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0) .addReg(M0Base); } // The resource id offset is computed as ( + M0[21:16] + // offset field) % 64. Some versions of the programming guide omit the m0 // part, or claim it's from offset 0. auto MIB = BuildMI(*MBB, &MI, DL, TII.get(gwsIntrinToOpcode(IID))); if (HasVSrc) { Register VSrc = MI.getOperand(1).getReg(); MIB.addReg(VSrc); if (!RBI.constrainGenericRegister(VSrc, AMDGPU::VGPR_32RegClass, *MRI)) return false; } MIB.addImm(ImmOffset) .cloneMemRefs(MI); MI.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectDSAppendConsume(MachineInstr &MI, bool IsAppend) const { Register PtrBase = MI.getOperand(2).getReg(); LLT PtrTy = MRI->getType(PtrBase); bool IsGDS = PtrTy.getAddressSpace() == AMDGPUAS::REGION_ADDRESS; unsigned Offset; std::tie(PtrBase, Offset) = selectDS1Addr1OffsetImpl(MI.getOperand(2)); // TODO: Should this try to look through readfirstlane like GWS? if (!isDSOffsetLegal(PtrBase, Offset)) { PtrBase = MI.getOperand(2).getReg(); Offset = 0; } MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); const unsigned Opc = IsAppend ? AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0) .addReg(PtrBase); if (!RBI.constrainGenericRegister(PtrBase, AMDGPU::SReg_32RegClass, *MRI)) return false; auto MIB = BuildMI(*MBB, &MI, DL, TII.get(Opc), MI.getOperand(0).getReg()) .addImm(Offset) .addImm(IsGDS ? -1 : 0) .cloneMemRefs(MI); MI.eraseFromParent(); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } bool AMDGPUInstructionSelector::selectSBarrier(MachineInstr &MI) const { if (TM.getOptLevel() > CodeGenOpt::None) { unsigned WGSize = STI.getFlatWorkGroupSizes(MF->getFunction()).second; if (WGSize <= STI.getWavefrontSize()) { MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::WAVE_BARRIER)); MI.eraseFromParent(); return true; } } return selectImpl(MI, *CoverageInfo); } static bool parseTexFail(uint64_t TexFailCtrl, bool &TFE, bool &LWE, bool &IsTexFail) { if (TexFailCtrl) IsTexFail = true; TFE = (TexFailCtrl & 0x1) ? 1 : 0; TexFailCtrl &= ~(uint64_t)0x1; LWE = (TexFailCtrl & 0x2) ? 1 : 0; TexFailCtrl &= ~(uint64_t)0x2; return TexFailCtrl == 0; } static bool parseCachePolicy(uint64_t Value, bool *GLC, bool *SLC, bool *DLC) { if (GLC) { *GLC = (Value & 0x1) ? 1 : 0; Value &= ~(uint64_t)0x1; } if (SLC) { *SLC = (Value & 0x2) ? 1 : 0; Value &= ~(uint64_t)0x2; } if (DLC) { *DLC = (Value & 0x4) ? 1 : 0; Value &= ~(uint64_t)0x4; } return Value == 0; } bool AMDGPUInstructionSelector::selectImageIntrinsic( MachineInstr &MI, const AMDGPU::ImageDimIntrinsicInfo *Intr) const { MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); const AMDGPU::MIMGLZMappingInfo *LZMappingInfo = AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode); const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo = AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode); unsigned IntrOpcode = Intr->BaseOpcode; const bool IsGFX10Plus = AMDGPU::isGFX10Plus(STI); const unsigned ArgOffset = MI.getNumExplicitDefs() + 1; Register VDataIn, VDataOut; LLT VDataTy; int NumVDataDwords = -1; bool IsD16 = false; bool Unorm; if (!BaseOpcode->Sampler) Unorm = true; else Unorm = MI.getOperand(ArgOffset + Intr->UnormIndex).getImm() != 0; bool TFE; bool LWE; bool IsTexFail = false; if (!parseTexFail(MI.getOperand(ArgOffset + Intr->TexFailCtrlIndex).getImm(), TFE, LWE, IsTexFail)) return false; const int Flags = MI.getOperand(ArgOffset + Intr->NumArgs).getImm(); const bool IsA16 = (Flags & 1) != 0; const bool IsG16 = (Flags & 2) != 0; // A16 implies 16 bit gradients if (IsA16 && !IsG16) return false; unsigned DMask = 0; unsigned DMaskLanes = 0; if (BaseOpcode->Atomic) { VDataOut = MI.getOperand(0).getReg(); VDataIn = MI.getOperand(2).getReg(); LLT Ty = MRI->getType(VDataIn); // Be careful to allow atomic swap on 16-bit element vectors. const bool Is64Bit = BaseOpcode->AtomicX2 ? Ty.getSizeInBits() == 128 : Ty.getSizeInBits() == 64; if (BaseOpcode->AtomicX2) { assert(MI.getOperand(3).getReg() == AMDGPU::NoRegister); DMask = Is64Bit ? 0xf : 0x3; NumVDataDwords = Is64Bit ? 4 : 2; } else { DMask = Is64Bit ? 0x3 : 0x1; NumVDataDwords = Is64Bit ? 2 : 1; } } else { DMask = MI.getOperand(ArgOffset + Intr->DMaskIndex).getImm(); DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask); // One memoperand is mandatory, except for getresinfo. // FIXME: Check this in verifier. if (!MI.memoperands_empty()) { const MachineMemOperand *MMO = *MI.memoperands_begin(); // Infer d16 from the memory size, as the register type will be mangled by // unpacked subtargets, or by TFE. IsD16 = ((8 * MMO->getSize()) / DMaskLanes) < 32; } if (BaseOpcode->Store) { VDataIn = MI.getOperand(1).getReg(); VDataTy = MRI->getType(VDataIn); NumVDataDwords = (VDataTy.getSizeInBits() + 31) / 32; } else { VDataOut = MI.getOperand(0).getReg(); VDataTy = MRI->getType(VDataOut); NumVDataDwords = DMaskLanes; if (IsD16 && !STI.hasUnpackedD16VMem()) NumVDataDwords = (DMaskLanes + 1) / 2; } } // Optimize _L to _LZ when _L is zero if (LZMappingInfo) { // The legalizer replaced the register with an immediate 0 if we need to // change the opcode. const MachineOperand &Lod = MI.getOperand(ArgOffset + Intr->LodIndex); if (Lod.isImm()) { assert(Lod.getImm() == 0); IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l } } // Optimize _mip away, when 'lod' is zero if (MIPMappingInfo) { const MachineOperand &Lod = MI.getOperand(ArgOffset + Intr->MipIndex); if (Lod.isImm()) { assert(Lod.getImm() == 0); IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip } } // Set G16 opcode if (IsG16 && !IsA16) { const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); assert(G16MappingInfo); IntrOpcode = G16MappingInfo->G16; // set opcode to variant with _g16 } // TODO: Check this in verifier. assert((!IsTexFail || DMaskLanes >= 1) && "should have legalized this"); bool GLC = false; bool SLC = false; bool DLC = false; if (BaseOpcode->Atomic) { GLC = true; // TODO no-return optimization if (!parseCachePolicy( MI.getOperand(ArgOffset + Intr->CachePolicyIndex).getImm(), nullptr, &SLC, IsGFX10Plus ? &DLC : nullptr)) return false; } else { if (!parseCachePolicy( MI.getOperand(ArgOffset + Intr->CachePolicyIndex).getImm(), &GLC, &SLC, IsGFX10Plus ? &DLC : nullptr)) return false; } int NumVAddrRegs = 0; int NumVAddrDwords = 0; for (unsigned I = Intr->VAddrStart; I < Intr->VAddrEnd; I++) { // Skip the $noregs and 0s inserted during legalization. MachineOperand &AddrOp = MI.getOperand(ArgOffset + I); if (!AddrOp.isReg()) continue; // XXX - Break? Register Addr = AddrOp.getReg(); if (!Addr) break; ++NumVAddrRegs; NumVAddrDwords += (MRI->getType(Addr).getSizeInBits() + 31) / 32; } // The legalizer preprocessed the intrinsic arguments. If we aren't using // NSA, these should have beeen packed into a single value in the first // address register const bool UseNSA = NumVAddrRegs != 1 && NumVAddrDwords == NumVAddrRegs; if (UseNSA && !STI.hasFeature(AMDGPU::FeatureNSAEncoding)) { LLVM_DEBUG(dbgs() << "Trying to use NSA on non-NSA target\n"); return false; } if (IsTexFail) ++NumVDataDwords; int Opcode = -1; if (IsGFX10Plus) { Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, UseNSA ? AMDGPU::MIMGEncGfx10NSA : AMDGPU::MIMGEncGfx10Default, NumVDataDwords, NumVAddrDwords); } else { if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, NumVDataDwords, NumVAddrDwords); if (Opcode == -1) Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, NumVDataDwords, NumVAddrDwords); } assert(Opcode != -1); auto MIB = BuildMI(*MBB, &MI, DL, TII.get(Opcode)) .cloneMemRefs(MI); if (VDataOut) { if (BaseOpcode->AtomicX2) { const bool Is64 = MRI->getType(VDataOut).getSizeInBits() == 64; Register TmpReg = MRI->createVirtualRegister( Is64 ? &AMDGPU::VReg_128RegClass : &AMDGPU::VReg_64RegClass); unsigned SubReg = Is64 ? AMDGPU::sub0_sub1 : AMDGPU::sub0; MIB.addDef(TmpReg); BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), VDataOut) .addReg(TmpReg, RegState::Kill, SubReg); } else { MIB.addDef(VDataOut); // vdata output } } if (VDataIn) MIB.addReg(VDataIn); // vdata input for (int I = 0; I != NumVAddrRegs; ++I) { MachineOperand &SrcOp = MI.getOperand(ArgOffset + Intr->VAddrStart + I); if (SrcOp.isReg()) { assert(SrcOp.getReg() != 0); MIB.addReg(SrcOp.getReg()); } } MIB.addReg(MI.getOperand(ArgOffset + Intr->RsrcIndex).getReg()); if (BaseOpcode->Sampler) MIB.addReg(MI.getOperand(ArgOffset + Intr->SampIndex).getReg()); MIB.addImm(DMask); // dmask if (IsGFX10Plus) MIB.addImm(DimInfo->Encoding); MIB.addImm(Unorm); if (IsGFX10Plus) MIB.addImm(DLC); MIB.addImm(GLC); MIB.addImm(SLC); MIB.addImm(IsA16 && // a16 or r128 STI.hasFeature(AMDGPU::FeatureR128A16) ? -1 : 0); if (IsGFX10Plus) MIB.addImm(IsA16 ? -1 : 0); MIB.addImm(TFE); // tfe MIB.addImm(LWE); // lwe if (!IsGFX10Plus) MIB.addImm(DimInfo->DA ? -1 : 0); if (BaseOpcode->HasD16) MIB.addImm(IsD16 ? -1 : 0); MI.eraseFromParent(); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } bool AMDGPUInstructionSelector::selectG_INTRINSIC_W_SIDE_EFFECTS( MachineInstr &I) const { unsigned IntrinsicID = I.getIntrinsicID(); switch (IntrinsicID) { case Intrinsic::amdgcn_end_cf: return selectEndCfIntrinsic(I); case Intrinsic::amdgcn_ds_ordered_add: case Intrinsic::amdgcn_ds_ordered_swap: return selectDSOrderedIntrinsic(I, IntrinsicID); case Intrinsic::amdgcn_ds_gws_init: case Intrinsic::amdgcn_ds_gws_barrier: case Intrinsic::amdgcn_ds_gws_sema_v: case Intrinsic::amdgcn_ds_gws_sema_br: case Intrinsic::amdgcn_ds_gws_sema_p: case Intrinsic::amdgcn_ds_gws_sema_release_all: return selectDSGWSIntrinsic(I, IntrinsicID); case Intrinsic::amdgcn_ds_append: return selectDSAppendConsume(I, true); case Intrinsic::amdgcn_ds_consume: return selectDSAppendConsume(I, false); case Intrinsic::amdgcn_s_barrier: return selectSBarrier(I); case Intrinsic::amdgcn_global_atomic_fadd: return selectGlobalAtomicFaddIntrinsic(I); default: { return selectImpl(I, *CoverageInfo); } } } bool AMDGPUInstructionSelector::selectG_SELECT(MachineInstr &I) const { if (selectImpl(I, *CoverageInfo)) return true; MachineBasicBlock *BB = I.getParent(); const DebugLoc &DL = I.getDebugLoc(); Register DstReg = I.getOperand(0).getReg(); unsigned Size = RBI.getSizeInBits(DstReg, *MRI, TRI); assert(Size <= 32 || Size == 64); const MachineOperand &CCOp = I.getOperand(1); Register CCReg = CCOp.getReg(); if (!isVCC(CCReg, *MRI)) { unsigned SelectOpcode = Size == 64 ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; MachineInstr *CopySCC = BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), AMDGPU::SCC) .addReg(CCReg); // The generic constrainSelectedInstRegOperands doesn't work for the scc register // bank, because it does not cover the register class that we used to represent // for it. So we need to manually set the register class here. if (!MRI->getRegClassOrNull(CCReg)) MRI->setRegClass(CCReg, TRI.getConstrainedRegClassForOperand(CCOp, *MRI)); MachineInstr *Select = BuildMI(*BB, &I, DL, TII.get(SelectOpcode), DstReg) .add(I.getOperand(2)) .add(I.getOperand(3)); bool Ret = constrainSelectedInstRegOperands(*Select, TII, TRI, RBI) | constrainSelectedInstRegOperands(*CopySCC, TII, TRI, RBI); I.eraseFromParent(); return Ret; } // Wide VGPR select should have been split in RegBankSelect. if (Size > 32) return false; MachineInstr *Select = BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_CNDMASK_B32_e64), DstReg) .addImm(0) .add(I.getOperand(3)) .addImm(0) .add(I.getOperand(2)) .add(I.getOperand(1)); bool Ret = constrainSelectedInstRegOperands(*Select, TII, TRI, RBI); I.eraseFromParent(); return Ret; } static int sizeToSubRegIndex(unsigned Size) { switch (Size) { case 32: return AMDGPU::sub0; case 64: return AMDGPU::sub0_sub1; case 96: return AMDGPU::sub0_sub1_sub2; case 128: return AMDGPU::sub0_sub1_sub2_sub3; case 256: return AMDGPU::sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7; default: if (Size < 32) return AMDGPU::sub0; if (Size > 256) return -1; return sizeToSubRegIndex(PowerOf2Ceil(Size)); } } bool AMDGPUInstructionSelector::selectG_TRUNC(MachineInstr &I) const { Register DstReg = I.getOperand(0).getReg(); Register SrcReg = I.getOperand(1).getReg(); const LLT DstTy = MRI->getType(DstReg); const LLT SrcTy = MRI->getType(SrcReg); const LLT S1 = LLT::scalar(1); const RegisterBank *SrcRB = RBI.getRegBank(SrcReg, *MRI, TRI); const RegisterBank *DstRB; if (DstTy == S1) { // This is a special case. We don't treat s1 for legalization artifacts as // vcc booleans. DstRB = SrcRB; } else { DstRB = RBI.getRegBank(DstReg, *MRI, TRI); if (SrcRB != DstRB) return false; } const bool IsVALU = DstRB->getID() == AMDGPU::VGPRRegBankID; unsigned DstSize = DstTy.getSizeInBits(); unsigned SrcSize = SrcTy.getSizeInBits(); const TargetRegisterClass *SrcRC = TRI.getRegClassForSizeOnBank(SrcSize, *SrcRB, *MRI); const TargetRegisterClass *DstRC = TRI.getRegClassForSizeOnBank(DstSize, *DstRB, *MRI); if (!SrcRC || !DstRC) return false; if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI) || !RBI.constrainGenericRegister(DstReg, *DstRC, *MRI)) { LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC\n"); return false; } if (DstTy == LLT::vector(2, 16) && SrcTy == LLT::vector(2, 32)) { MachineBasicBlock *MBB = I.getParent(); const DebugLoc &DL = I.getDebugLoc(); Register LoReg = MRI->createVirtualRegister(DstRC); Register HiReg = MRI->createVirtualRegister(DstRC); BuildMI(*MBB, I, DL, TII.get(AMDGPU::COPY), LoReg) .addReg(SrcReg, 0, AMDGPU::sub0); BuildMI(*MBB, I, DL, TII.get(AMDGPU::COPY), HiReg) .addReg(SrcReg, 0, AMDGPU::sub1); if (IsVALU && STI.hasSDWA()) { // Write the low 16-bits of the high element into the high 16-bits of the // low element. MachineInstr *MovSDWA = BuildMI(*MBB, I, DL, TII.get(AMDGPU::V_MOV_B32_sdwa), DstReg) .addImm(0) // $src0_modifiers .addReg(HiReg) // $src0 .addImm(0) // $clamp .addImm(AMDGPU::SDWA::WORD_1) // $dst_sel .addImm(AMDGPU::SDWA::UNUSED_PRESERVE) // $dst_unused .addImm(AMDGPU::SDWA::WORD_0) // $src0_sel .addReg(LoReg, RegState::Implicit); MovSDWA->tieOperands(0, MovSDWA->getNumOperands() - 1); } else { Register TmpReg0 = MRI->createVirtualRegister(DstRC); Register TmpReg1 = MRI->createVirtualRegister(DstRC); Register ImmReg = MRI->createVirtualRegister(DstRC); if (IsVALU) { BuildMI(*MBB, I, DL, TII.get(AMDGPU::V_LSHLREV_B32_e64), TmpReg0) .addImm(16) .addReg(HiReg); } else { BuildMI(*MBB, I, DL, TII.get(AMDGPU::S_LSHL_B32), TmpReg0) .addReg(HiReg) .addImm(16); } unsigned MovOpc = IsVALU ? AMDGPU::V_MOV_B32_e32 : AMDGPU::S_MOV_B32; unsigned AndOpc = IsVALU ? AMDGPU::V_AND_B32_e64 : AMDGPU::S_AND_B32; unsigned OrOpc = IsVALU ? AMDGPU::V_OR_B32_e64 : AMDGPU::S_OR_B32; BuildMI(*MBB, I, DL, TII.get(MovOpc), ImmReg) .addImm(0xffff); BuildMI(*MBB, I, DL, TII.get(AndOpc), TmpReg1) .addReg(LoReg) .addReg(ImmReg); BuildMI(*MBB, I, DL, TII.get(OrOpc), DstReg) .addReg(TmpReg0) .addReg(TmpReg1); } I.eraseFromParent(); return true; } if (!DstTy.isScalar()) return false; if (SrcSize > 32) { int SubRegIdx = sizeToSubRegIndex(DstSize); if (SubRegIdx == -1) return false; // Deal with weird cases where the class only partially supports the subreg // index. const TargetRegisterClass *SrcWithSubRC = TRI.getSubClassWithSubReg(SrcRC, SubRegIdx); if (!SrcWithSubRC) return false; if (SrcWithSubRC != SrcRC) { if (!RBI.constrainGenericRegister(SrcReg, *SrcWithSubRC, *MRI)) return false; } I.getOperand(1).setSubReg(SubRegIdx); } I.setDesc(TII.get(TargetOpcode::COPY)); return true; } /// \returns true if a bitmask for \p Size bits will be an inline immediate. static bool shouldUseAndMask(unsigned Size, unsigned &Mask) { Mask = maskTrailingOnes(Size); int SignedMask = static_cast(Mask); return SignedMask >= -16 && SignedMask <= 64; } // Like RegisterBankInfo::getRegBank, but don't assume vcc for s1. const RegisterBank *AMDGPUInstructionSelector::getArtifactRegBank( Register Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) const { const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg); if (auto *RB = RegClassOrBank.dyn_cast()) return RB; // Ignore the type, since we don't use vcc in artifacts. if (auto *RC = RegClassOrBank.dyn_cast()) return &RBI.getRegBankFromRegClass(*RC, LLT()); return nullptr; } bool AMDGPUInstructionSelector::selectG_SZA_EXT(MachineInstr &I) const { bool InReg = I.getOpcode() == AMDGPU::G_SEXT_INREG; bool Signed = I.getOpcode() == AMDGPU::G_SEXT || InReg; const DebugLoc &DL = I.getDebugLoc(); MachineBasicBlock &MBB = *I.getParent(); const Register DstReg = I.getOperand(0).getReg(); const Register SrcReg = I.getOperand(1).getReg(); const LLT DstTy = MRI->getType(DstReg); const LLT SrcTy = MRI->getType(SrcReg); const unsigned SrcSize = I.getOpcode() == AMDGPU::G_SEXT_INREG ? I.getOperand(2).getImm() : SrcTy.getSizeInBits(); const unsigned DstSize = DstTy.getSizeInBits(); if (!DstTy.isScalar()) return false; // Artifact casts should never use vcc. const RegisterBank *SrcBank = getArtifactRegBank(SrcReg, *MRI, TRI); // FIXME: This should probably be illegal and split earlier. if (I.getOpcode() == AMDGPU::G_ANYEXT) { if (DstSize <= 32) return selectCOPY(I); const TargetRegisterClass *SrcRC = TRI.getRegClassForTypeOnBank(SrcTy, *SrcBank, *MRI); const RegisterBank *DstBank = RBI.getRegBank(DstReg, *MRI, TRI); const TargetRegisterClass *DstRC = TRI.getRegClassForSizeOnBank(DstSize, *DstBank, *MRI); Register UndefReg = MRI->createVirtualRegister(SrcRC); BuildMI(MBB, I, DL, TII.get(AMDGPU::IMPLICIT_DEF), UndefReg); BuildMI(MBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg) .addReg(SrcReg) .addImm(AMDGPU::sub0) .addReg(UndefReg) .addImm(AMDGPU::sub1); I.eraseFromParent(); return RBI.constrainGenericRegister(DstReg, *DstRC, *MRI) && RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI); } if (SrcBank->getID() == AMDGPU::VGPRRegBankID && DstSize <= 32) { // 64-bit should have been split up in RegBankSelect // Try to use an and with a mask if it will save code size. unsigned Mask; if (!Signed && shouldUseAndMask(SrcSize, Mask)) { MachineInstr *ExtI = BuildMI(MBB, I, DL, TII.get(AMDGPU::V_AND_B32_e32), DstReg) .addImm(Mask) .addReg(SrcReg); I.eraseFromParent(); return constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI); } const unsigned BFE = Signed ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; MachineInstr *ExtI = BuildMI(MBB, I, DL, TII.get(BFE), DstReg) .addReg(SrcReg) .addImm(0) // Offset .addImm(SrcSize); // Width I.eraseFromParent(); return constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI); } if (SrcBank->getID() == AMDGPU::SGPRRegBankID && DstSize <= 64) { const TargetRegisterClass &SrcRC = InReg && DstSize > 32 ? AMDGPU::SReg_64RegClass : AMDGPU::SReg_32RegClass; if (!RBI.constrainGenericRegister(SrcReg, SrcRC, *MRI)) return false; if (Signed && DstSize == 32 && (SrcSize == 8 || SrcSize == 16)) { const unsigned SextOpc = SrcSize == 8 ? AMDGPU::S_SEXT_I32_I8 : AMDGPU::S_SEXT_I32_I16; BuildMI(MBB, I, DL, TII.get(SextOpc), DstReg) .addReg(SrcReg); I.eraseFromParent(); return RBI.constrainGenericRegister(DstReg, AMDGPU::SReg_32RegClass, *MRI); } const unsigned BFE64 = Signed ? AMDGPU::S_BFE_I64 : AMDGPU::S_BFE_U64; const unsigned BFE32 = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; // Scalar BFE is encoded as S1[5:0] = offset, S1[22:16]= width. if (DstSize > 32 && (SrcSize <= 32 || InReg)) { // We need a 64-bit register source, but the high bits don't matter. Register ExtReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); Register UndefReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); unsigned SubReg = InReg ? AMDGPU::sub0 : 0; BuildMI(MBB, I, DL, TII.get(AMDGPU::IMPLICIT_DEF), UndefReg); BuildMI(MBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), ExtReg) .addReg(SrcReg, 0, SubReg) .addImm(AMDGPU::sub0) .addReg(UndefReg) .addImm(AMDGPU::sub1); BuildMI(MBB, I, DL, TII.get(BFE64), DstReg) .addReg(ExtReg) .addImm(SrcSize << 16); I.eraseFromParent(); return RBI.constrainGenericRegister(DstReg, AMDGPU::SReg_64RegClass, *MRI); } unsigned Mask; if (!Signed && shouldUseAndMask(SrcSize, Mask)) { BuildMI(MBB, I, DL, TII.get(AMDGPU::S_AND_B32), DstReg) .addReg(SrcReg) .addImm(Mask); } else { BuildMI(MBB, I, DL, TII.get(BFE32), DstReg) .addReg(SrcReg) .addImm(SrcSize << 16); } I.eraseFromParent(); return RBI.constrainGenericRegister(DstReg, AMDGPU::SReg_32RegClass, *MRI); } return false; } bool AMDGPUInstructionSelector::selectG_CONSTANT(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineOperand &ImmOp = I.getOperand(1); Register DstReg = I.getOperand(0).getReg(); unsigned Size = MRI->getType(DstReg).getSizeInBits(); // The AMDGPU backend only supports Imm operands and not CImm or FPImm. if (ImmOp.isFPImm()) { const APInt &Imm = ImmOp.getFPImm()->getValueAPF().bitcastToAPInt(); ImmOp.ChangeToImmediate(Imm.getZExtValue()); } else if (ImmOp.isCImm()) { ImmOp.ChangeToImmediate(ImmOp.getCImm()->getSExtValue()); } else { llvm_unreachable("Not supported by g_constants"); } const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI); const bool IsSgpr = DstRB->getID() == AMDGPU::SGPRRegBankID; unsigned Opcode; if (DstRB->getID() == AMDGPU::VCCRegBankID) { Opcode = STI.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; } else { Opcode = IsSgpr ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; // We should never produce s1 values on banks other than VCC. If the user of // this already constrained the register, we may incorrectly think it's VCC // if it wasn't originally. if (Size == 1) return false; } if (Size != 64) { I.setDesc(TII.get(Opcode)); I.addImplicitDefUseOperands(*MF); return constrainSelectedInstRegOperands(I, TII, TRI, RBI); } const DebugLoc &DL = I.getDebugLoc(); APInt Imm(Size, I.getOperand(1).getImm()); MachineInstr *ResInst; if (IsSgpr && TII.isInlineConstant(Imm)) { ResInst = BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_MOV_B64), DstReg) .addImm(I.getOperand(1).getImm()); } else { const TargetRegisterClass *RC = IsSgpr ? &AMDGPU::SReg_32RegClass : &AMDGPU::VGPR_32RegClass; Register LoReg = MRI->createVirtualRegister(RC); Register HiReg = MRI->createVirtualRegister(RC); BuildMI(*BB, &I, DL, TII.get(Opcode), LoReg) .addImm(Imm.trunc(32).getZExtValue()); BuildMI(*BB, &I, DL, TII.get(Opcode), HiReg) .addImm(Imm.ashr(32).getZExtValue()); ResInst = BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg) .addReg(LoReg) .addImm(AMDGPU::sub0) .addReg(HiReg) .addImm(AMDGPU::sub1); } // We can't call constrainSelectedInstRegOperands here, because it doesn't // work for target independent opcodes I.eraseFromParent(); const TargetRegisterClass *DstRC = TRI.getConstrainedRegClassForOperand(ResInst->getOperand(0), *MRI); if (!DstRC) return true; return RBI.constrainGenericRegister(DstReg, *DstRC, *MRI); } bool AMDGPUInstructionSelector::selectG_FNEG(MachineInstr &MI) const { // Only manually handle the f64 SGPR case. // // FIXME: This is a workaround for 2.5 different tablegen problems. Because // the bit ops theoretically have a second result due to the implicit def of // SCC, the GlobalISelEmitter is overly conservative and rejects it. Fixing // that is easy by disabling the check. The result works, but uses a // nonsensical sreg32orlds_and_sreg_1 regclass. // // The DAG emitter is more problematic, and incorrectly adds both S_XOR_B32 to // the variadic REG_SEQUENCE operands. Register Dst = MI.getOperand(0).getReg(); const RegisterBank *DstRB = RBI.getRegBank(Dst, *MRI, TRI); if (DstRB->getID() != AMDGPU::SGPRRegBankID || MRI->getType(Dst) != LLT::scalar(64)) return false; Register Src = MI.getOperand(1).getReg(); MachineInstr *Fabs = getOpcodeDef(TargetOpcode::G_FABS, Src, *MRI); if (Fabs) Src = Fabs->getOperand(1).getReg(); if (!RBI.constrainGenericRegister(Src, AMDGPU::SReg_64RegClass, *MRI) || !RBI.constrainGenericRegister(Dst, AMDGPU::SReg_64RegClass, *MRI)) return false; MachineBasicBlock *BB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); Register LoReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); Register HiReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); Register ConstReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); Register OpReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), LoReg) .addReg(Src, 0, AMDGPU::sub0); BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), HiReg) .addReg(Src, 0, AMDGPU::sub1); BuildMI(*BB, &MI, DL, TII.get(AMDGPU::S_MOV_B32), ConstReg) .addImm(0x80000000); // Set or toggle sign bit. unsigned Opc = Fabs ? AMDGPU::S_OR_B32 : AMDGPU::S_XOR_B32; BuildMI(*BB, &MI, DL, TII.get(Opc), OpReg) .addReg(HiReg) .addReg(ConstReg); BuildMI(*BB, &MI, DL, TII.get(AMDGPU::REG_SEQUENCE), Dst) .addReg(LoReg) .addImm(AMDGPU::sub0) .addReg(OpReg) .addImm(AMDGPU::sub1); MI.eraseFromParent(); return true; } // FIXME: This is a workaround for the same tablegen problems as G_FNEG bool AMDGPUInstructionSelector::selectG_FABS(MachineInstr &MI) const { Register Dst = MI.getOperand(0).getReg(); const RegisterBank *DstRB = RBI.getRegBank(Dst, *MRI, TRI); if (DstRB->getID() != AMDGPU::SGPRRegBankID || MRI->getType(Dst) != LLT::scalar(64)) return false; Register Src = MI.getOperand(1).getReg(); MachineBasicBlock *BB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); Register LoReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); Register HiReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); Register ConstReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); Register OpReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); if (!RBI.constrainGenericRegister(Src, AMDGPU::SReg_64RegClass, *MRI) || !RBI.constrainGenericRegister(Dst, AMDGPU::SReg_64RegClass, *MRI)) return false; BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), LoReg) .addReg(Src, 0, AMDGPU::sub0); BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), HiReg) .addReg(Src, 0, AMDGPU::sub1); BuildMI(*BB, &MI, DL, TII.get(AMDGPU::S_MOV_B32), ConstReg) .addImm(0x7fffffff); // Clear sign bit. // TODO: Should this used S_BITSET0_*? BuildMI(*BB, &MI, DL, TII.get(AMDGPU::S_AND_B32), OpReg) .addReg(HiReg) .addReg(ConstReg); BuildMI(*BB, &MI, DL, TII.get(AMDGPU::REG_SEQUENCE), Dst) .addReg(LoReg) .addImm(AMDGPU::sub0) .addReg(OpReg) .addImm(AMDGPU::sub1); MI.eraseFromParent(); return true; } static bool isConstant(const MachineInstr &MI) { return MI.getOpcode() == TargetOpcode::G_CONSTANT; } void AMDGPUInstructionSelector::getAddrModeInfo(const MachineInstr &Load, const MachineRegisterInfo &MRI, SmallVectorImpl &AddrInfo) const { const MachineInstr *PtrMI = MRI.getUniqueVRegDef(Load.getOperand(1).getReg()); assert(PtrMI); if (PtrMI->getOpcode() != TargetOpcode::G_PTR_ADD) return; GEPInfo GEPInfo(*PtrMI); for (unsigned i = 1; i != 3; ++i) { const MachineOperand &GEPOp = PtrMI->getOperand(i); const MachineInstr *OpDef = MRI.getUniqueVRegDef(GEPOp.getReg()); assert(OpDef); if (i == 2 && isConstant(*OpDef)) { // TODO: Could handle constant base + variable offset, but a combine // probably should have commuted it. assert(GEPInfo.Imm == 0); GEPInfo.Imm = OpDef->getOperand(1).getCImm()->getSExtValue(); continue; } const RegisterBank *OpBank = RBI.getRegBank(GEPOp.getReg(), MRI, TRI); if (OpBank->getID() == AMDGPU::SGPRRegBankID) GEPInfo.SgprParts.push_back(GEPOp.getReg()); else GEPInfo.VgprParts.push_back(GEPOp.getReg()); } AddrInfo.push_back(GEPInfo); getAddrModeInfo(*PtrMI, MRI, AddrInfo); } bool AMDGPUInstructionSelector::isSGPR(Register Reg) const { return RBI.getRegBank(Reg, *MRI, TRI)->getID() == AMDGPU::SGPRRegBankID; } bool AMDGPUInstructionSelector::isInstrUniform(const MachineInstr &MI) const { if (!MI.hasOneMemOperand()) return false; const MachineMemOperand *MMO = *MI.memoperands_begin(); const Value *Ptr = MMO->getValue(); // UndefValue means this is a load of a kernel input. These are uniform. // Sometimes LDS instructions have constant pointers. // If Ptr is null, then that means this mem operand contains a // PseudoSourceValue like GOT. if (!Ptr || isa(Ptr) || isa(Ptr) || isa(Ptr) || isa(Ptr)) return true; if (MMO->getAddrSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) return true; const Instruction *I = dyn_cast(Ptr); return I && I->getMetadata("amdgpu.uniform"); } bool AMDGPUInstructionSelector::hasVgprParts(ArrayRef AddrInfo) const { for (const GEPInfo &GEPInfo : AddrInfo) { if (!GEPInfo.VgprParts.empty()) return true; } return false; } void AMDGPUInstructionSelector::initM0(MachineInstr &I) const { const LLT PtrTy = MRI->getType(I.getOperand(1).getReg()); unsigned AS = PtrTy.getAddressSpace(); if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) && STI.ldsRequiresM0Init()) { MachineBasicBlock *BB = I.getParent(); // If DS instructions require M0 initializtion, insert it before selecting. BuildMI(*BB, &I, I.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), AMDGPU::M0) .addImm(-1); } } bool AMDGPUInstructionSelector::selectG_LOAD_STORE_ATOMICRMW( MachineInstr &I) const { initM0(I); return selectImpl(I, *CoverageInfo); } // TODO: No rtn optimization. bool AMDGPUInstructionSelector::selectG_AMDGPU_ATOMIC_CMPXCHG( MachineInstr &MI) const { Register PtrReg = MI.getOperand(1).getReg(); const LLT PtrTy = MRI->getType(PtrReg); if (PtrTy.getAddressSpace() == AMDGPUAS::FLAT_ADDRESS || STI.useFlatForGlobal()) return selectImpl(MI, *CoverageInfo); Register DstReg = MI.getOperand(0).getReg(); const LLT Ty = MRI->getType(DstReg); const bool Is64 = Ty.getSizeInBits() == 64; const unsigned SubReg = Is64 ? AMDGPU::sub0_sub1 : AMDGPU::sub0; Register TmpReg = MRI->createVirtualRegister( Is64 ? &AMDGPU::VReg_128RegClass : &AMDGPU::VReg_64RegClass); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock *BB = MI.getParent(); Register VAddr, RSrcReg, SOffset; int64_t Offset = 0; unsigned Opcode; if (selectMUBUFOffsetImpl(MI.getOperand(1), RSrcReg, SOffset, Offset)) { Opcode = Is64 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN : AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN; } else if (selectMUBUFAddr64Impl(MI.getOperand(1), VAddr, RSrcReg, SOffset, Offset)) { Opcode = Is64 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN : AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN; } else return selectImpl(MI, *CoverageInfo); auto MIB = BuildMI(*BB, &MI, DL, TII.get(Opcode), TmpReg) .addReg(MI.getOperand(2).getReg()); if (VAddr) MIB.addReg(VAddr); MIB.addReg(RSrcReg); if (SOffset) MIB.addReg(SOffset); else MIB.addImm(0); MIB.addImm(Offset); MIB.addImm(1); // glc MIB.addImm(0); // slc MIB.cloneMemRefs(MI); BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), DstReg) .addReg(TmpReg, RegState::Kill, SubReg); MI.eraseFromParent(); MRI->setRegClass( DstReg, Is64 ? &AMDGPU::VReg_64RegClass : &AMDGPU::VGPR_32RegClass); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } bool AMDGPUInstructionSelector::selectG_BRCOND(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineOperand &CondOp = I.getOperand(0); Register CondReg = CondOp.getReg(); const DebugLoc &DL = I.getDebugLoc(); unsigned BrOpcode; Register CondPhysReg; const TargetRegisterClass *ConstrainRC; // In SelectionDAG, we inspect the IR block for uniformity metadata to decide // whether the branch is uniform when selecting the instruction. In // GlobalISel, we should push that decision into RegBankSelect. Assume for now // RegBankSelect knows what it's doing if the branch condition is scc, even // though it currently does not. if (!isVCC(CondReg, *MRI)) { if (MRI->getType(CondReg) != LLT::scalar(32)) return false; CondPhysReg = AMDGPU::SCC; BrOpcode = AMDGPU::S_CBRANCH_SCC1; ConstrainRC = &AMDGPU::SReg_32RegClass; } else { // FIXME: Do we have to insert an and with exec here, like in SelectionDAG? // We sort of know that a VCC producer based on the register bank, that ands // inactive lanes with 0. What if there was a logical operation with vcc // producers in different blocks/with different exec masks? // FIXME: Should scc->vcc copies and with exec? CondPhysReg = TRI.getVCC(); BrOpcode = AMDGPU::S_CBRANCH_VCCNZ; ConstrainRC = TRI.getBoolRC(); } if (!MRI->getRegClassOrNull(CondReg)) MRI->setRegClass(CondReg, ConstrainRC); BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), CondPhysReg) .addReg(CondReg); BuildMI(*BB, &I, DL, TII.get(BrOpcode)) .addMBB(I.getOperand(1).getMBB()); I.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectG_GLOBAL_VALUE( MachineInstr &I) const { Register DstReg = I.getOperand(0).getReg(); const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI); const bool IsVGPR = DstRB->getID() == AMDGPU::VGPRRegBankID; I.setDesc(TII.get(IsVGPR ? AMDGPU::V_MOV_B32_e32 : AMDGPU::S_MOV_B32)); if (IsVGPR) I.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true)); return RBI.constrainGenericRegister( DstReg, IsVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::SReg_32RegClass, *MRI); } bool AMDGPUInstructionSelector::selectG_PTRMASK(MachineInstr &I) const { Register DstReg = I.getOperand(0).getReg(); Register SrcReg = I.getOperand(1).getReg(); Register MaskReg = I.getOperand(2).getReg(); LLT Ty = MRI->getType(DstReg); LLT MaskTy = MRI->getType(MaskReg); const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI); const RegisterBank *SrcRB = RBI.getRegBank(SrcReg, *MRI, TRI); const RegisterBank *MaskRB = RBI.getRegBank(MaskReg, *MRI, TRI); const bool IsVGPR = DstRB->getID() == AMDGPU::VGPRRegBankID; if (DstRB != SrcRB) // Should only happen for hand written MIR. return false; unsigned NewOpc = IsVGPR ? AMDGPU::V_AND_B32_e64 : AMDGPU::S_AND_B32; const TargetRegisterClass &RegRC = IsVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::SReg_32RegClass; const TargetRegisterClass *DstRC = TRI.getRegClassForTypeOnBank(Ty, *DstRB, *MRI); const TargetRegisterClass *SrcRC = TRI.getRegClassForTypeOnBank(Ty, *SrcRB, *MRI); const TargetRegisterClass *MaskRC = TRI.getRegClassForTypeOnBank(MaskTy, *MaskRB, *MRI); if (!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI) || !RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI) || !RBI.constrainGenericRegister(MaskReg, *MaskRC, *MRI)) return false; MachineBasicBlock *BB = I.getParent(); const DebugLoc &DL = I.getDebugLoc(); if (Ty.getSizeInBits() == 32) { assert(MaskTy.getSizeInBits() == 32 && "ptrmask should have been narrowed during legalize"); BuildMI(*BB, &I, DL, TII.get(NewOpc), DstReg) .addReg(SrcReg) .addReg(MaskReg); I.eraseFromParent(); return true; } Register HiReg = MRI->createVirtualRegister(&RegRC); Register LoReg = MRI->createVirtualRegister(&RegRC); // Extract the subregisters from the source pointer. BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), LoReg) .addReg(SrcReg, 0, AMDGPU::sub0); BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), HiReg) .addReg(SrcReg, 0, AMDGPU::sub1); Register MaskedLo, MaskedHi; // Try to avoid emitting a bit operation when we only need to touch half of // the 64-bit pointer. APInt MaskOnes = KnownBits->getKnownOnes(MaskReg).zextOrSelf(64); const APInt MaskHi32 = APInt::getHighBitsSet(64, 32); const APInt MaskLo32 = APInt::getLowBitsSet(64, 32); if ((MaskOnes & MaskLo32) == MaskLo32) { // If all the bits in the low half are 1, we only need a copy for it. MaskedLo = LoReg; } else { // Extract the mask subregister and apply the and. Register MaskLo = MRI->createVirtualRegister(&RegRC); MaskedLo = MRI->createVirtualRegister(&RegRC); BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), MaskLo) .addReg(MaskReg, 0, AMDGPU::sub0); BuildMI(*BB, &I, DL, TII.get(NewOpc), MaskedLo) .addReg(LoReg) .addReg(MaskLo); } if ((MaskOnes & MaskHi32) == MaskHi32) { // If all the bits in the high half are 1, we only need a copy for it. MaskedHi = HiReg; } else { Register MaskHi = MRI->createVirtualRegister(&RegRC); MaskedHi = MRI->createVirtualRegister(&RegRC); BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), MaskHi) .addReg(MaskReg, 0, AMDGPU::sub1); BuildMI(*BB, &I, DL, TII.get(NewOpc), MaskedHi) .addReg(HiReg) .addReg(MaskHi); } BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg) .addReg(MaskedLo) .addImm(AMDGPU::sub0) .addReg(MaskedHi) .addImm(AMDGPU::sub1); I.eraseFromParent(); return true; } /// Return the register to use for the index value, and the subregister to use /// for the indirectly accessed register. static std::pair computeIndirectRegIndex(MachineRegisterInfo &MRI, const SIRegisterInfo &TRI, const TargetRegisterClass *SuperRC, Register IdxReg, unsigned EltSize) { Register IdxBaseReg; int Offset; std::tie(IdxBaseReg, Offset) = AMDGPU::getBaseWithConstantOffset(MRI, IdxReg); if (IdxBaseReg == AMDGPU::NoRegister) { // This will happen if the index is a known constant. This should ordinarily // be legalized out, but handle it as a register just in case. assert(Offset == 0); IdxBaseReg = IdxReg; } ArrayRef SubRegs = TRI.getRegSplitParts(SuperRC, EltSize); // Skip out of bounds offsets, or else we would end up using an undefined // register. if (static_cast(Offset) >= SubRegs.size()) return std::make_pair(IdxReg, SubRegs[0]); return std::make_pair(IdxBaseReg, SubRegs[Offset]); } bool AMDGPUInstructionSelector::selectG_EXTRACT_VECTOR_ELT( MachineInstr &MI) const { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); Register IdxReg = MI.getOperand(2).getReg(); LLT DstTy = MRI->getType(DstReg); LLT SrcTy = MRI->getType(SrcReg); const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI); const RegisterBank *SrcRB = RBI.getRegBank(SrcReg, *MRI, TRI); const RegisterBank *IdxRB = RBI.getRegBank(IdxReg, *MRI, TRI); // The index must be scalar. If it wasn't RegBankSelect should have moved this // into a waterfall loop. if (IdxRB->getID() != AMDGPU::SGPRRegBankID) return false; const TargetRegisterClass *SrcRC = TRI.getRegClassForTypeOnBank(SrcTy, *SrcRB, *MRI); const TargetRegisterClass *DstRC = TRI.getRegClassForTypeOnBank(DstTy, *DstRB, *MRI); if (!SrcRC || !DstRC) return false; if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI) || !RBI.constrainGenericRegister(DstReg, *DstRC, *MRI) || !RBI.constrainGenericRegister(IdxReg, AMDGPU::SReg_32RegClass, *MRI)) return false; MachineBasicBlock *BB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); const bool Is64 = DstTy.getSizeInBits() == 64; unsigned SubReg; std::tie(IdxReg, SubReg) = computeIndirectRegIndex(*MRI, TRI, SrcRC, IdxReg, DstTy.getSizeInBits() / 8); if (SrcRB->getID() == AMDGPU::SGPRRegBankID) { if (DstTy.getSizeInBits() != 32 && !Is64) return false; BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0) .addReg(IdxReg); unsigned Opc = Is64 ? AMDGPU::S_MOVRELS_B64 : AMDGPU::S_MOVRELS_B32; BuildMI(*BB, &MI, DL, TII.get(Opc), DstReg) .addReg(SrcReg, 0, SubReg) .addReg(SrcReg, RegState::Implicit); MI.eraseFromParent(); return true; } if (SrcRB->getID() != AMDGPU::VGPRRegBankID || DstTy.getSizeInBits() != 32) return false; if (!STI.useVGPRIndexMode()) { BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0) .addReg(IdxReg); BuildMI(*BB, &MI, DL, TII.get(AMDGPU::V_MOVRELS_B32_e32), DstReg) .addReg(SrcReg, 0, SubReg) .addReg(SrcReg, RegState::Implicit); MI.eraseFromParent(); return true; } const MCInstrDesc &GPRIDXDesc = TII.getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*SrcRC), true); BuildMI(*BB, MI, DL, GPRIDXDesc, DstReg) .addReg(SrcReg) .addReg(IdxReg) .addImm(SubReg); MI.eraseFromParent(); return true; } // TODO: Fold insert_vector_elt (extract_vector_elt) into movrelsd bool AMDGPUInstructionSelector::selectG_INSERT_VECTOR_ELT( MachineInstr &MI) const { Register DstReg = MI.getOperand(0).getReg(); Register VecReg = MI.getOperand(1).getReg(); Register ValReg = MI.getOperand(2).getReg(); Register IdxReg = MI.getOperand(3).getReg(); LLT VecTy = MRI->getType(DstReg); LLT ValTy = MRI->getType(ValReg); unsigned VecSize = VecTy.getSizeInBits(); unsigned ValSize = ValTy.getSizeInBits(); const RegisterBank *VecRB = RBI.getRegBank(VecReg, *MRI, TRI); const RegisterBank *ValRB = RBI.getRegBank(ValReg, *MRI, TRI); const RegisterBank *IdxRB = RBI.getRegBank(IdxReg, *MRI, TRI); assert(VecTy.getElementType() == ValTy); // The index must be scalar. If it wasn't RegBankSelect should have moved this // into a waterfall loop. if (IdxRB->getID() != AMDGPU::SGPRRegBankID) return false; const TargetRegisterClass *VecRC = TRI.getRegClassForTypeOnBank(VecTy, *VecRB, *MRI); const TargetRegisterClass *ValRC = TRI.getRegClassForTypeOnBank(ValTy, *ValRB, *MRI); if (!RBI.constrainGenericRegister(VecReg, *VecRC, *MRI) || !RBI.constrainGenericRegister(DstReg, *VecRC, *MRI) || !RBI.constrainGenericRegister(ValReg, *ValRC, *MRI) || !RBI.constrainGenericRegister(IdxReg, AMDGPU::SReg_32RegClass, *MRI)) return false; if (VecRB->getID() == AMDGPU::VGPRRegBankID && ValSize != 32) return false; unsigned SubReg; std::tie(IdxReg, SubReg) = computeIndirectRegIndex(*MRI, TRI, VecRC, IdxReg, ValSize / 8); const bool IndexMode = VecRB->getID() == AMDGPU::VGPRRegBankID && STI.useVGPRIndexMode(); MachineBasicBlock *BB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); if (!IndexMode) { BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0) .addReg(IdxReg); const MCInstrDesc &RegWriteOp = TII.getIndirectRegWriteMovRelPseudo( VecSize, ValSize, VecRB->getID() == AMDGPU::SGPRRegBankID); BuildMI(*BB, MI, DL, RegWriteOp, DstReg) .addReg(VecReg) .addReg(ValReg) .addImm(SubReg); MI.eraseFromParent(); return true; } const MCInstrDesc &GPRIDXDesc = TII.getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); BuildMI(*BB, MI, DL, GPRIDXDesc, DstReg) .addReg(VecReg) .addReg(ValReg) .addReg(IdxReg) .addImm(SubReg); MI.eraseFromParent(); return true; } static bool isZeroOrUndef(int X) { return X == 0 || X == -1; } static bool isOneOrUndef(int X) { return X == 1 || X == -1; } static bool isZeroOrOneOrUndef(int X) { return X == 0 || X == 1 || X == -1; } // Normalize a VOP3P shuffle mask to refer to the low/high half of a single // 32-bit register. static Register normalizeVOP3PMask(int NewMask[2], Register Src0, Register Src1, ArrayRef Mask) { NewMask[0] = Mask[0]; NewMask[1] = Mask[1]; if (isZeroOrOneOrUndef(Mask[0]) && isZeroOrOneOrUndef(Mask[1])) return Src0; assert(NewMask[0] == 2 || NewMask[0] == 3 || NewMask[0] == -1); assert(NewMask[1] == 2 || NewMask[1] == 3 || NewMask[1] == -1); // Shift the mask inputs to be 0/1; NewMask[0] = NewMask[0] == -1 ? -1 : NewMask[0] - 2; NewMask[1] = NewMask[1] == -1 ? -1 : NewMask[1] - 2; return Src1; } // This is only legal with VOP3P instructions as an aid to op_sel matching. bool AMDGPUInstructionSelector::selectG_SHUFFLE_VECTOR( MachineInstr &MI) const { Register DstReg = MI.getOperand(0).getReg(); Register Src0Reg = MI.getOperand(1).getReg(); Register Src1Reg = MI.getOperand(2).getReg(); ArrayRef ShufMask = MI.getOperand(3).getShuffleMask(); const LLT V2S16 = LLT::vector(2, 16); if (MRI->getType(DstReg) != V2S16 || MRI->getType(Src0Reg) != V2S16) return false; if (!AMDGPU::isLegalVOP3PShuffleMask(ShufMask)) return false; assert(ShufMask.size() == 2); assert(STI.hasSDWA() && "no target has VOP3P but not SDWA"); MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI); const bool IsVALU = DstRB->getID() == AMDGPU::VGPRRegBankID; const TargetRegisterClass &RC = IsVALU ? AMDGPU::VGPR_32RegClass : AMDGPU::SReg_32RegClass; // Handle the degenerate case which should have folded out. if (ShufMask[0] == -1 && ShufMask[1] == -1) { BuildMI(*MBB, MI, DL, TII.get(AMDGPU::IMPLICIT_DEF), DstReg); MI.eraseFromParent(); return RBI.constrainGenericRegister(DstReg, RC, *MRI); } // A legal VOP3P mask only reads one of the sources. int Mask[2]; Register SrcVec = normalizeVOP3PMask(Mask, Src0Reg, Src1Reg, ShufMask); if (!RBI.constrainGenericRegister(DstReg, RC, *MRI) || !RBI.constrainGenericRegister(SrcVec, RC, *MRI)) return false; // TODO: This also should have been folded out if (isZeroOrUndef(Mask[0]) && isOneOrUndef(Mask[1])) { BuildMI(*MBB, MI, DL, TII.get(AMDGPU::COPY), DstReg) .addReg(SrcVec); MI.eraseFromParent(); return true; } if (Mask[0] == 1 && Mask[1] == -1) { if (IsVALU) { BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_LSHRREV_B32_e64), DstReg) .addImm(16) .addReg(SrcVec); } else { BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_LSHR_B32), DstReg) .addReg(SrcVec) .addImm(16); } } else if (Mask[0] == -1 && Mask[1] == 0) { if (IsVALU) { BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_LSHLREV_B32_e64), DstReg) .addImm(16) .addReg(SrcVec); } else { BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_LSHL_B32), DstReg) .addReg(SrcVec) .addImm(16); } } else if (Mask[0] == 0 && Mask[1] == 0) { if (IsVALU) { // Write low half of the register into the high half. MachineInstr *MovSDWA = BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_MOV_B32_sdwa), DstReg) .addImm(0) // $src0_modifiers .addReg(SrcVec) // $src0 .addImm(0) // $clamp .addImm(AMDGPU::SDWA::WORD_1) // $dst_sel .addImm(AMDGPU::SDWA::UNUSED_PRESERVE) // $dst_unused .addImm(AMDGPU::SDWA::WORD_0) // $src0_sel .addReg(SrcVec, RegState::Implicit); MovSDWA->tieOperands(0, MovSDWA->getNumOperands() - 1); } else { BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_PACK_LL_B32_B16), DstReg) .addReg(SrcVec) .addReg(SrcVec); } } else if (Mask[0] == 1 && Mask[1] == 1) { if (IsVALU) { // Write high half of the register into the low half. MachineInstr *MovSDWA = BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_MOV_B32_sdwa), DstReg) .addImm(0) // $src0_modifiers .addReg(SrcVec) // $src0 .addImm(0) // $clamp .addImm(AMDGPU::SDWA::WORD_0) // $dst_sel .addImm(AMDGPU::SDWA::UNUSED_PRESERVE) // $dst_unused .addImm(AMDGPU::SDWA::WORD_1) // $src0_sel .addReg(SrcVec, RegState::Implicit); MovSDWA->tieOperands(0, MovSDWA->getNumOperands() - 1); } else { BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_PACK_HH_B32_B16), DstReg) .addReg(SrcVec) .addReg(SrcVec); } } else if (Mask[0] == 1 && Mask[1] == 0) { if (IsVALU) { BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_ALIGNBIT_B32_e64), DstReg) .addReg(SrcVec) .addReg(SrcVec) .addImm(16); } else { Register TmpReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_LSHR_B32), TmpReg) .addReg(SrcVec) .addImm(16); BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_PACK_LL_B32_B16), DstReg) .addReg(TmpReg) .addReg(SrcVec); } } else llvm_unreachable("all shuffle masks should be handled"); MI.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectAMDGPU_BUFFER_ATOMIC_FADD( MachineInstr &MI) const { MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); if (!MRI->use_nodbg_empty(MI.getOperand(0).getReg())) { Function &F = MBB->getParent()->getFunction(); DiagnosticInfoUnsupported NoFpRet(F, "return versions of fp atomics not supported", MI.getDebugLoc(), DS_Error); F.getContext().diagnose(NoFpRet); return false; } // FIXME: This is only needed because tablegen requires number of dst operands // in match and replace pattern to be the same. Otherwise patterns can be // exported from SDag path. MachineOperand &VDataIn = MI.getOperand(1); MachineOperand &VIndex = MI.getOperand(3); MachineOperand &VOffset = MI.getOperand(4); MachineOperand &SOffset = MI.getOperand(5); int16_t Offset = MI.getOperand(6).getImm(); bool HasVOffset = !isOperandImmEqual(VOffset, 0, *MRI); bool HasVIndex = !isOperandImmEqual(VIndex, 0, *MRI); unsigned Opcode; if (HasVOffset) { Opcode = HasVIndex ? AMDGPU::BUFFER_ATOMIC_ADD_F32_BOTHEN : AMDGPU::BUFFER_ATOMIC_ADD_F32_OFFEN; } else { Opcode = HasVIndex ? AMDGPU::BUFFER_ATOMIC_ADD_F32_IDXEN : AMDGPU::BUFFER_ATOMIC_ADD_F32_OFFSET; } if (MRI->getType(VDataIn.getReg()).isVector()) { switch (Opcode) { case AMDGPU::BUFFER_ATOMIC_ADD_F32_BOTHEN: Opcode = AMDGPU::BUFFER_ATOMIC_PK_ADD_F16_BOTHEN; break; case AMDGPU::BUFFER_ATOMIC_ADD_F32_OFFEN: Opcode = AMDGPU::BUFFER_ATOMIC_PK_ADD_F16_OFFEN; break; case AMDGPU::BUFFER_ATOMIC_ADD_F32_IDXEN: Opcode = AMDGPU::BUFFER_ATOMIC_PK_ADD_F16_IDXEN; break; case AMDGPU::BUFFER_ATOMIC_ADD_F32_OFFSET: Opcode = AMDGPU::BUFFER_ATOMIC_PK_ADD_F16_OFFSET; break; } } auto I = BuildMI(*MBB, MI, DL, TII.get(Opcode)); I.add(VDataIn); if (Opcode == AMDGPU::BUFFER_ATOMIC_ADD_F32_BOTHEN || Opcode == AMDGPU::BUFFER_ATOMIC_PK_ADD_F16_BOTHEN) { Register IdxReg = MRI->createVirtualRegister(&AMDGPU::VReg_64RegClass); BuildMI(*MBB, &*I, DL, TII.get(AMDGPU::REG_SEQUENCE), IdxReg) .addReg(VIndex.getReg()) .addImm(AMDGPU::sub0) .addReg(VOffset.getReg()) .addImm(AMDGPU::sub1); I.addReg(IdxReg); } else if (HasVIndex) { I.add(VIndex); } else if (HasVOffset) { I.add(VOffset); } I.add(MI.getOperand(2)); // rsrc I.add(SOffset); I.addImm(Offset); renderExtractSLC(I, MI, 7); I.cloneMemRefs(MI); MI.eraseFromParent(); return true; } bool AMDGPUInstructionSelector::selectGlobalAtomicFaddIntrinsic( MachineInstr &MI) const{ MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); if (!MRI->use_nodbg_empty(MI.getOperand(0).getReg())) { Function &F = MBB->getParent()->getFunction(); DiagnosticInfoUnsupported NoFpRet(F, "return versions of fp atomics not supported", MI.getDebugLoc(), DS_Error); F.getContext().diagnose(NoFpRet); return false; } // FIXME: This is only needed because tablegen requires number of dst operands // in match and replace pattern to be the same. Otherwise patterns can be // exported from SDag path. auto Addr = selectFlatOffsetImpl(MI.getOperand(2)); Register Data = MI.getOperand(3).getReg(); const unsigned Opc = MRI->getType(Data).isVector() ? AMDGPU::GLOBAL_ATOMIC_PK_ADD_F16 : AMDGPU::GLOBAL_ATOMIC_ADD_F32; auto MIB = BuildMI(*MBB, &MI, DL, TII.get(Opc)) .addReg(Addr.first) .addReg(Data) .addImm(Addr.second) .addImm(0) // SLC .cloneMemRefs(MI); MI.eraseFromParent(); return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); } bool AMDGPUInstructionSelector::selectBVHIntrinsic(MachineInstr &MI) const{ MI.setDesc(TII.get(MI.getOperand(1).getImm())); MI.RemoveOperand(1); MI.addImplicitDefUseOperands(*MI.getParent()->getParent()); return true; } bool AMDGPUInstructionSelector::select(MachineInstr &I) { if (I.isPHI()) return selectPHI(I); if (!I.isPreISelOpcode()) { if (I.isCopy()) return selectCOPY(I); return true; } switch (I.getOpcode()) { case TargetOpcode::G_AND: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: if (selectImpl(I, *CoverageInfo)) return true; return selectG_AND_OR_XOR(I); case TargetOpcode::G_ADD: case TargetOpcode::G_SUB: if (selectImpl(I, *CoverageInfo)) return true; return selectG_ADD_SUB(I); case TargetOpcode::G_UADDO: case TargetOpcode::G_USUBO: case TargetOpcode::G_UADDE: case TargetOpcode::G_USUBE: return selectG_UADDO_USUBO_UADDE_USUBE(I); case TargetOpcode::G_INTTOPTR: case TargetOpcode::G_BITCAST: case TargetOpcode::G_PTRTOINT: return selectCOPY(I); case TargetOpcode::G_CONSTANT: case TargetOpcode::G_FCONSTANT: return selectG_CONSTANT(I); case TargetOpcode::G_FNEG: if (selectImpl(I, *CoverageInfo)) return true; return selectG_FNEG(I); case TargetOpcode::G_FABS: if (selectImpl(I, *CoverageInfo)) return true; return selectG_FABS(I); case TargetOpcode::G_EXTRACT: return selectG_EXTRACT(I); case TargetOpcode::G_MERGE_VALUES: case TargetOpcode::G_BUILD_VECTOR: case TargetOpcode::G_CONCAT_VECTORS: return selectG_MERGE_VALUES(I); case TargetOpcode::G_UNMERGE_VALUES: return selectG_UNMERGE_VALUES(I); case TargetOpcode::G_BUILD_VECTOR_TRUNC: return selectG_BUILD_VECTOR_TRUNC(I); case TargetOpcode::G_PTR_ADD: return selectG_PTR_ADD(I); case TargetOpcode::G_IMPLICIT_DEF: return selectG_IMPLICIT_DEF(I); case TargetOpcode::G_FREEZE: return selectCOPY(I); case TargetOpcode::G_INSERT: return selectG_INSERT(I); case TargetOpcode::G_INTRINSIC: return selectG_INTRINSIC(I); case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: return selectG_INTRINSIC_W_SIDE_EFFECTS(I); case TargetOpcode::G_ICMP: if (selectG_ICMP(I)) return true; return selectImpl(I, *CoverageInfo); case TargetOpcode::G_LOAD: case TargetOpcode::G_STORE: case TargetOpcode::G_ATOMIC_CMPXCHG: case TargetOpcode::G_ATOMICRMW_XCHG: case TargetOpcode::G_ATOMICRMW_ADD: case TargetOpcode::G_ATOMICRMW_SUB: case TargetOpcode::G_ATOMICRMW_AND: case TargetOpcode::G_ATOMICRMW_OR: case TargetOpcode::G_ATOMICRMW_XOR: case TargetOpcode::G_ATOMICRMW_MIN: case TargetOpcode::G_ATOMICRMW_MAX: case TargetOpcode::G_ATOMICRMW_UMIN: case TargetOpcode::G_ATOMICRMW_UMAX: case TargetOpcode::G_ATOMICRMW_FADD: case AMDGPU::G_AMDGPU_ATOMIC_INC: case AMDGPU::G_AMDGPU_ATOMIC_DEC: case AMDGPU::G_AMDGPU_ATOMIC_FMIN: case AMDGPU::G_AMDGPU_ATOMIC_FMAX: return selectG_LOAD_STORE_ATOMICRMW(I); case AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG: return selectG_AMDGPU_ATOMIC_CMPXCHG(I); case TargetOpcode::G_SELECT: return selectG_SELECT(I); case TargetOpcode::G_TRUNC: return selectG_TRUNC(I); case TargetOpcode::G_SEXT: case TargetOpcode::G_ZEXT: case TargetOpcode::G_ANYEXT: case TargetOpcode::G_SEXT_INREG: if (selectImpl(I, *CoverageInfo)) return true; return selectG_SZA_EXT(I); case TargetOpcode::G_BRCOND: return selectG_BRCOND(I); case TargetOpcode::G_GLOBAL_VALUE: return selectG_GLOBAL_VALUE(I); case TargetOpcode::G_PTRMASK: return selectG_PTRMASK(I); case TargetOpcode::G_EXTRACT_VECTOR_ELT: return selectG_EXTRACT_VECTOR_ELT(I); case TargetOpcode::G_INSERT_VECTOR_ELT: return selectG_INSERT_VECTOR_ELT(I); case TargetOpcode::G_SHUFFLE_VECTOR: return selectG_SHUFFLE_VECTOR(I); case AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD: case AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE: { const AMDGPU::ImageDimIntrinsicInfo *Intr = AMDGPU::getImageDimIntrinsicInfo(I.getIntrinsicID()); assert(Intr && "not an image intrinsic with image pseudo"); return selectImageIntrinsic(I, Intr); } case AMDGPU::G_AMDGPU_INTRIN_BVH_INTERSECT_RAY: return selectBVHIntrinsic(I); case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD: return selectAMDGPU_BUFFER_ATOMIC_FADD(I); default: return selectImpl(I, *CoverageInfo); } return false; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVCSRC(MachineOperand &Root) const { return {{ [=](MachineInstrBuilder &MIB) { MIB.add(Root); } }}; } std::pair AMDGPUInstructionSelector::selectVOP3ModsImpl(MachineOperand &Root, bool AllowAbs) const { Register Src = Root.getReg(); Register OrigSrc = Src; unsigned Mods = 0; MachineInstr *MI = getDefIgnoringCopies(Src, *MRI); if (MI && MI->getOpcode() == AMDGPU::G_FNEG) { Src = MI->getOperand(1).getReg(); Mods |= SISrcMods::NEG; MI = getDefIgnoringCopies(Src, *MRI); } if (AllowAbs && MI && MI->getOpcode() == AMDGPU::G_FABS) { Src = MI->getOperand(1).getReg(); Mods |= SISrcMods::ABS; } if (Mods != 0 && RBI.getRegBank(Src, *MRI, TRI)->getID() != AMDGPU::VGPRRegBankID) { MachineInstr *UseMI = Root.getParent(); // If we looked through copies to find source modifiers on an SGPR operand, // we now have an SGPR register source. To avoid potentially violating the // constant bus restriction, we need to insert a copy to a VGPR. Register VGPRSrc = MRI->cloneVirtualRegister(OrigSrc); BuildMI(*UseMI->getParent(), UseMI, UseMI->getDebugLoc(), TII.get(AMDGPU::COPY), VGPRSrc) .addReg(Src); Src = VGPRSrc; } return std::make_pair(Src, Mods); } /// /// This will select either an SGPR or VGPR operand and will save us from /// having to write an extra tablegen pattern. InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVSRC0(MachineOperand &Root) const { return {{ [=](MachineInstrBuilder &MIB) { MIB.add(Root); } }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3Mods0(MachineOperand &Root) const { Register Src; unsigned Mods; std::tie(Src, Mods) = selectVOP3ModsImpl(Root); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(Src); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); }, // src0_mods [=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // clamp [=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // omod }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3BMods0(MachineOperand &Root) const { Register Src; unsigned Mods; std::tie(Src, Mods) = selectVOP3ModsImpl(Root, /* AllowAbs */ false); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(Src); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); }, // src0_mods [=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // clamp [=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // omod }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3OMods(MachineOperand &Root) const { return {{ [=](MachineInstrBuilder &MIB) { MIB.add(Root); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // clamp [=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // omod }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3Mods(MachineOperand &Root) const { Register Src; unsigned Mods; std::tie(Src, Mods) = selectVOP3ModsImpl(Root); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(Src); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); } // src_mods }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3BMods(MachineOperand &Root) const { Register Src; unsigned Mods; std::tie(Src, Mods) = selectVOP3ModsImpl(Root, /* AllowAbs */ false); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(Src); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); } // src_mods }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3NoMods(MachineOperand &Root) const { Register Reg = Root.getReg(); const MachineInstr *Def = getDefIgnoringCopies(Reg, *MRI); if (Def && (Def->getOpcode() == AMDGPU::G_FNEG || Def->getOpcode() == AMDGPU::G_FABS)) return {}; return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(Reg); }, }}; } std::pair AMDGPUInstructionSelector::selectVOP3PModsImpl( Register Src, const MachineRegisterInfo &MRI) const { unsigned Mods = 0; MachineInstr *MI = MRI.getVRegDef(Src); if (MI && MI->getOpcode() == AMDGPU::G_FNEG && // It's possible to see an f32 fneg here, but unlikely. // TODO: Treat f32 fneg as only high bit. MRI.getType(Src) == LLT::vector(2, 16)) { Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); Src = MI->getOperand(1).getReg(); MI = MRI.getVRegDef(Src); } // TODO: Match op_sel through g_build_vector_trunc and g_shuffle_vector. // Packed instructions do not have abs modifiers. Mods |= SISrcMods::OP_SEL_1; return std::make_pair(Src, Mods); } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3PMods(MachineOperand &Root) const { MachineRegisterInfo &MRI = Root.getParent()->getParent()->getParent()->getRegInfo(); Register Src; unsigned Mods; std::tie(Src, Mods) = selectVOP3PModsImpl(Root.getReg(), MRI); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(Src); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); } // src_mods }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3Mods_nnan(MachineOperand &Root) const { Register Src; unsigned Mods; std::tie(Src, Mods) = selectVOP3ModsImpl(Root); if (!isKnownNeverNaN(Src, *MRI)) return None; return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(Src); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); } // src_mods }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectVOP3OpSelMods(MachineOperand &Root) const { // FIXME: Handle op_sel return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(Root.getReg()); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // src_mods }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectSmrdImm(MachineOperand &Root) const { SmallVector AddrInfo; getAddrModeInfo(*Root.getParent(), *MRI, AddrInfo); if (AddrInfo.empty() || AddrInfo[0].SgprParts.size() != 1) return None; const GEPInfo &GEPInfo = AddrInfo[0]; Optional EncodedImm = AMDGPU::getSMRDEncodedOffset(STI, GEPInfo.Imm, false); if (!EncodedImm) return None; unsigned PtrReg = GEPInfo.SgprParts[0]; return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(PtrReg); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(*EncodedImm); } }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectSmrdImm32(MachineOperand &Root) const { SmallVector AddrInfo; getAddrModeInfo(*Root.getParent(), *MRI, AddrInfo); if (AddrInfo.empty() || AddrInfo[0].SgprParts.size() != 1) return None; const GEPInfo &GEPInfo = AddrInfo[0]; Register PtrReg = GEPInfo.SgprParts[0]; Optional EncodedImm = AMDGPU::getSMRDEncodedLiteralOffset32(STI, GEPInfo.Imm); if (!EncodedImm) return None; return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(PtrReg); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(*EncodedImm); } }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectSmrdSgpr(MachineOperand &Root) const { MachineInstr *MI = Root.getParent(); MachineBasicBlock *MBB = MI->getParent(); SmallVector AddrInfo; getAddrModeInfo(*MI, *MRI, AddrInfo); // FIXME: We should shrink the GEP if the offset is known to be <= 32-bits, // then we can select all ptr + 32-bit offsets not just immediate offsets. if (AddrInfo.empty() || AddrInfo[0].SgprParts.size() != 1) return None; const GEPInfo &GEPInfo = AddrInfo[0]; // SGPR offset is unsigned. if (!GEPInfo.Imm || GEPInfo.Imm < 0 || !isUInt<32>(GEPInfo.Imm)) return None; // If we make it this far we have a load with an 32-bit immediate offset. // It is OK to select this using a sgpr offset, because we have already // failed trying to select this load into one of the _IMM variants since // the _IMM Patterns are considered before the _SGPR patterns. Register PtrReg = GEPInfo.SgprParts[0]; Register OffsetReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), OffsetReg) .addImm(GEPInfo.Imm); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(PtrReg); }, [=](MachineInstrBuilder &MIB) { MIB.addReg(OffsetReg); } }}; } template std::pair AMDGPUInstructionSelector::selectFlatOffsetImpl(MachineOperand &Root) const { MachineInstr *MI = Root.getParent(); auto Default = std::make_pair(Root.getReg(), 0); if (!STI.hasFlatInstOffsets()) return Default; Register PtrBase; int64_t ConstOffset; std::tie(PtrBase, ConstOffset) = getPtrBaseWithConstantOffset(Root.getReg(), *MRI); if (ConstOffset == 0) return Default; unsigned AddrSpace = (*MI->memoperands_begin())->getAddrSpace(); if (!TII.isLegalFLATOffset(ConstOffset, AddrSpace, Signed)) return Default; return std::make_pair(PtrBase, ConstOffset); } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectFlatOffset(MachineOperand &Root) const { auto PtrWithOffset = selectFlatOffsetImpl(Root); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(PtrWithOffset.first); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(PtrWithOffset.second); }, }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectFlatOffsetSigned(MachineOperand &Root) const { auto PtrWithOffset = selectFlatOffsetImpl(Root); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(PtrWithOffset.first); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(PtrWithOffset.second); }, }}; } /// Match a zero extend from a 32-bit value to 64-bits. static Register matchZeroExtendFromS32(MachineRegisterInfo &MRI, Register Reg) { Register ZExtSrc; if (mi_match(Reg, MRI, m_GZExt(m_Reg(ZExtSrc)))) return MRI.getType(ZExtSrc) == LLT::scalar(32) ? ZExtSrc : Register(); // Match legalized form %zext = G_MERGE_VALUES (s32 %x), (s32 0) const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); if (Def->getOpcode() != AMDGPU::G_MERGE_VALUES) return false; if (mi_match(Def->getOperand(2).getReg(), MRI, m_ZeroInt())) { return Def->getOperand(1).getReg(); } return Register(); } // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectGlobalSAddr(MachineOperand &Root) const { Register Addr = Root.getReg(); Register PtrBase; int64_t ConstOffset; int64_t ImmOffset = 0; // Match the immediate offset first, which canonically is moved as low as // possible. std::tie(PtrBase, ConstOffset) = getPtrBaseWithConstantOffset(Addr, *MRI); if (ConstOffset != 0) { if (TII.isLegalFLATOffset(ConstOffset, AMDGPUAS::GLOBAL_ADDRESS, true)) { Addr = PtrBase; ImmOffset = ConstOffset; } else if (ConstOffset > 0) { auto PtrBaseDef = getDefSrcRegIgnoringCopies(PtrBase, *MRI); if (!PtrBaseDef) return None; if (isSGPR(PtrBaseDef->Reg)) { // Offset is too large. // // saddr + large_offset -> saddr + (voffset = large_offset & ~MaxOffset) // + (large_offset & MaxOffset); int64_t SplitImmOffset, RemainderOffset; std::tie(SplitImmOffset, RemainderOffset) = TII.splitFlatOffset(ConstOffset, AMDGPUAS::GLOBAL_ADDRESS, true); if (isUInt<32>(RemainderOffset)) { MachineInstr *MI = Root.getParent(); MachineBasicBlock *MBB = MI->getParent(); Register HighBits = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::V_MOV_B32_e32), HighBits) .addImm(RemainderOffset); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(PtrBase); }, // saddr [=](MachineInstrBuilder &MIB) { MIB.addReg(HighBits); }, // voffset [=](MachineInstrBuilder &MIB) { MIB.addImm(SplitImmOffset); }, }}; } } } } auto AddrDef = getDefSrcRegIgnoringCopies(Addr, *MRI); if (!AddrDef) return None; // Match the variable offset. if (AddrDef->MI->getOpcode() != AMDGPU::G_PTR_ADD) { // FIXME: We should probably have folded COPY (G_IMPLICIT_DEF) earlier, and // drop this. if (AddrDef->MI->getOpcode() == AMDGPU::G_IMPLICIT_DEF || AddrDef->MI->getOpcode() == AMDGPU::G_CONSTANT) return None; // It's cheaper to materialize a single 32-bit zero for vaddr than the two // moves required to copy a 64-bit SGPR to VGPR. const Register SAddr = AddrDef->Reg; if (!isSGPR(SAddr)) return None; MachineInstr *MI = Root.getParent(); MachineBasicBlock *MBB = MI->getParent(); Register VOffset = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::V_MOV_B32_e32), VOffset) .addImm(0); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(SAddr); }, // saddr [=](MachineInstrBuilder &MIB) { MIB.addReg(VOffset); }, // voffset [=](MachineInstrBuilder &MIB) { MIB.addImm(ImmOffset); } // offset }}; } // Look through the SGPR->VGPR copy. Register SAddr = getSrcRegIgnoringCopies(AddrDef->MI->getOperand(1).getReg(), *MRI); if (!SAddr || !isSGPR(SAddr)) return None; Register PtrBaseOffset = AddrDef->MI->getOperand(2).getReg(); // It's possible voffset is an SGPR here, but the copy to VGPR will be // inserted later. Register VOffset = matchZeroExtendFromS32(*MRI, PtrBaseOffset); if (!VOffset) return None; return {{[=](MachineInstrBuilder &MIB) { // saddr MIB.addReg(SAddr); }, [=](MachineInstrBuilder &MIB) { // voffset MIB.addReg(VOffset); }, [=](MachineInstrBuilder &MIB) { // offset MIB.addImm(ImmOffset); }}}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectScratchSAddr(MachineOperand &Root) const { Register Addr = Root.getReg(); Register PtrBase; int64_t ConstOffset; int64_t ImmOffset = 0; // Match the immediate offset first, which canonically is moved as low as // possible. std::tie(PtrBase, ConstOffset) = getPtrBaseWithConstantOffset(Addr, *MRI); if (ConstOffset != 0 && TII.isLegalFLATOffset(ConstOffset, AMDGPUAS::PRIVATE_ADDRESS, true)) { Addr = PtrBase; ImmOffset = ConstOffset; } auto AddrDef = getDefSrcRegIgnoringCopies(Addr, *MRI); if (!AddrDef) return None; if (AddrDef->MI->getOpcode() == AMDGPU::G_FRAME_INDEX) { int FI = AddrDef->MI->getOperand(1).getIndex(); return {{ [=](MachineInstrBuilder &MIB) { MIB.addFrameIndex(FI); }, // saddr [=](MachineInstrBuilder &MIB) { MIB.addImm(ImmOffset); } // offset }}; } Register SAddr = AddrDef->Reg; if (AddrDef->MI->getOpcode() == AMDGPU::G_PTR_ADD) { Register LHS = AddrDef->MI->getOperand(1).getReg(); Register RHS = AddrDef->MI->getOperand(2).getReg(); auto LHSDef = getDefSrcRegIgnoringCopies(LHS, *MRI); auto RHSDef = getDefSrcRegIgnoringCopies(RHS, *MRI); if (LHSDef && RHSDef && LHSDef->MI->getOpcode() == AMDGPU::G_FRAME_INDEX && isSGPR(RHSDef->Reg)) { int FI = LHSDef->MI->getOperand(1).getIndex(); MachineInstr &I = *Root.getParent(); MachineBasicBlock *BB = I.getParent(); const DebugLoc &DL = I.getDebugLoc(); SAddr = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADD_U32), SAddr) .addFrameIndex(FI) .addReg(RHSDef->Reg); } } if (!isSGPR(SAddr)) return None; return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(SAddr); }, // saddr [=](MachineInstrBuilder &MIB) { MIB.addImm(ImmOffset); } // offset }}; } static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) { auto PSV = PtrInfo.V.dyn_cast(); return PSV && PSV->isStack(); } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectMUBUFScratchOffen(MachineOperand &Root) const { MachineInstr *MI = Root.getParent(); MachineBasicBlock *MBB = MI->getParent(); MachineFunction *MF = MBB->getParent(); const SIMachineFunctionInfo *Info = MF->getInfo(); int64_t Offset = 0; if (mi_match(Root.getReg(), *MRI, m_ICst(Offset)) && Offset != TM.getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS)) { Register HighBits = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); // TODO: Should this be inside the render function? The iterator seems to // move. BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::V_MOV_B32_e32), HighBits) .addImm(Offset & ~4095); return {{[=](MachineInstrBuilder &MIB) { // rsrc MIB.addReg(Info->getScratchRSrcReg()); }, [=](MachineInstrBuilder &MIB) { // vaddr MIB.addReg(HighBits); }, [=](MachineInstrBuilder &MIB) { // soffset // Use constant zero for soffset and rely on eliminateFrameIndex // to choose the appropriate frame register if need be. MIB.addImm(0); }, [=](MachineInstrBuilder &MIB) { // offset MIB.addImm(Offset & 4095); }}}; } assert(Offset == 0 || Offset == -1); // Try to fold a frame index directly into the MUBUF vaddr field, and any // offsets. Optional FI; Register VAddr = Root.getReg(); if (const MachineInstr *RootDef = MRI->getVRegDef(Root.getReg())) { if (isBaseWithConstantOffset(Root, *MRI)) { const MachineOperand &LHS = RootDef->getOperand(1); const MachineOperand &RHS = RootDef->getOperand(2); const MachineInstr *LHSDef = MRI->getVRegDef(LHS.getReg()); const MachineInstr *RHSDef = MRI->getVRegDef(RHS.getReg()); if (LHSDef && RHSDef) { int64_t PossibleOffset = RHSDef->getOperand(1).getCImm()->getSExtValue(); if (SIInstrInfo::isLegalMUBUFImmOffset(PossibleOffset) && (!STI.privateMemoryResourceIsRangeChecked() || KnownBits->signBitIsZero(LHS.getReg()))) { if (LHSDef->getOpcode() == AMDGPU::G_FRAME_INDEX) FI = LHSDef->getOperand(1).getIndex(); else VAddr = LHS.getReg(); Offset = PossibleOffset; } } } else if (RootDef->getOpcode() == AMDGPU::G_FRAME_INDEX) { FI = RootDef->getOperand(1).getIndex(); } } return {{[=](MachineInstrBuilder &MIB) { // rsrc MIB.addReg(Info->getScratchRSrcReg()); }, [=](MachineInstrBuilder &MIB) { // vaddr if (FI.hasValue()) MIB.addFrameIndex(FI.getValue()); else MIB.addReg(VAddr); }, [=](MachineInstrBuilder &MIB) { // soffset // Use constant zero for soffset and rely on eliminateFrameIndex // to choose the appropriate frame register if need be. MIB.addImm(0); }, [=](MachineInstrBuilder &MIB) { // offset MIB.addImm(Offset); }}}; } bool AMDGPUInstructionSelector::isDSOffsetLegal(Register Base, int64_t Offset) const { if (!isUInt<16>(Offset)) return false; if (STI.hasUsableDSOffset() || STI.unsafeDSOffsetFoldingEnabled()) return true; // On Southern Islands instruction with a negative base value and an offset // don't seem to work. return KnownBits->signBitIsZero(Base); } bool AMDGPUInstructionSelector::isDSOffset2Legal(Register Base, int64_t Offset0, int64_t Offset1, unsigned Size) const { if (Offset0 % Size != 0 || Offset1 % Size != 0) return false; if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) return false; if (STI.hasUsableDSOffset() || STI.unsafeDSOffsetFoldingEnabled()) return true; // On Southern Islands instruction with a negative base value and an offset // don't seem to work. return KnownBits->signBitIsZero(Base); } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectMUBUFScratchOffset( MachineOperand &Root) const { MachineInstr *MI = Root.getParent(); MachineBasicBlock *MBB = MI->getParent(); int64_t Offset = 0; if (!mi_match(Root.getReg(), *MRI, m_ICst(Offset)) || !SIInstrInfo::isLegalMUBUFImmOffset(Offset)) return {}; const MachineFunction *MF = MBB->getParent(); const SIMachineFunctionInfo *Info = MF->getInfo(); const MachineMemOperand *MMO = *MI->memoperands_begin(); const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); return {{ [=](MachineInstrBuilder &MIB) { // rsrc MIB.addReg(Info->getScratchRSrcReg()); }, [=](MachineInstrBuilder &MIB) { // soffset if (isStackPtrRelative(PtrInfo)) MIB.addReg(Info->getStackPtrOffsetReg()); else MIB.addImm(0); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); } // offset }}; } std::pair AMDGPUInstructionSelector::selectDS1Addr1OffsetImpl(MachineOperand &Root) const { const MachineInstr *RootDef = MRI->getVRegDef(Root.getReg()); if (!RootDef) return std::make_pair(Root.getReg(), 0); int64_t ConstAddr = 0; Register PtrBase; int64_t Offset; std::tie(PtrBase, Offset) = getPtrBaseWithConstantOffset(Root.getReg(), *MRI); if (Offset) { if (isDSOffsetLegal(PtrBase, Offset)) { // (add n0, c0) return std::make_pair(PtrBase, Offset); } } else if (RootDef->getOpcode() == AMDGPU::G_SUB) { // TODO } else if (mi_match(Root.getReg(), *MRI, m_ICst(ConstAddr))) { // TODO } return std::make_pair(Root.getReg(), 0); } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectDS1Addr1Offset(MachineOperand &Root) const { Register Reg; unsigned Offset; std::tie(Reg, Offset) = selectDS1Addr1OffsetImpl(Root); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(Reg); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); } }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectDS64Bit4ByteAligned(MachineOperand &Root) const { return selectDSReadWrite2(Root, 4); } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectDS128Bit8ByteAligned(MachineOperand &Root) const { return selectDSReadWrite2(Root, 8); } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectDSReadWrite2(MachineOperand &Root, unsigned Size) const { Register Reg; unsigned Offset; std::tie(Reg, Offset) = selectDSReadWrite2Impl(Root, Size); return {{ [=](MachineInstrBuilder &MIB) { MIB.addReg(Reg); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Offset+1); } }}; } std::pair AMDGPUInstructionSelector::selectDSReadWrite2Impl(MachineOperand &Root, unsigned Size) const { const MachineInstr *RootDef = MRI->getVRegDef(Root.getReg()); if (!RootDef) return std::make_pair(Root.getReg(), 0); int64_t ConstAddr = 0; Register PtrBase; int64_t Offset; std::tie(PtrBase, Offset) = getPtrBaseWithConstantOffset(Root.getReg(), *MRI); if (Offset) { int64_t OffsetValue0 = Offset; int64_t OffsetValue1 = Offset + Size; if (isDSOffset2Legal(PtrBase, OffsetValue0, OffsetValue1, Size)) { // (add n0, c0) return std::make_pair(PtrBase, OffsetValue0 / Size); } } else if (RootDef->getOpcode() == AMDGPU::G_SUB) { // TODO } else if (mi_match(Root.getReg(), *MRI, m_ICst(ConstAddr))) { // TODO } return std::make_pair(Root.getReg(), 0); } /// If \p Root is a G_PTR_ADD with a G_CONSTANT on the right hand side, return /// the base value with the constant offset. There may be intervening copies /// between \p Root and the identified constant. Returns \p Root, 0 if this does /// not match the pattern. std::pair AMDGPUInstructionSelector::getPtrBaseWithConstantOffset( Register Root, const MachineRegisterInfo &MRI) const { MachineInstr *RootI = getDefIgnoringCopies(Root, MRI); if (RootI->getOpcode() != TargetOpcode::G_PTR_ADD) return {Root, 0}; MachineOperand &RHS = RootI->getOperand(2); Optional MaybeOffset = getConstantVRegValWithLookThrough(RHS.getReg(), MRI, true); if (!MaybeOffset) return {Root, 0}; return {RootI->getOperand(1).getReg(), MaybeOffset->Value.getSExtValue()}; } static void addZeroImm(MachineInstrBuilder &MIB) { MIB.addImm(0); } /// Return a resource descriptor for use with an arbitrary 64-bit pointer. If \p /// BasePtr is not valid, a null base pointer will be used. static Register buildRSRC(MachineIRBuilder &B, MachineRegisterInfo &MRI, uint32_t FormatLo, uint32_t FormatHi, Register BasePtr) { Register RSrc2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); Register RSrc3 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); Register RSrcHi = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); Register RSrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass); B.buildInstr(AMDGPU::S_MOV_B32) .addDef(RSrc2) .addImm(FormatLo); B.buildInstr(AMDGPU::S_MOV_B32) .addDef(RSrc3) .addImm(FormatHi); // Build the half of the subregister with the constants before building the // full 128-bit register. If we are building multiple resource descriptors, // this will allow CSEing of the 2-component register. B.buildInstr(AMDGPU::REG_SEQUENCE) .addDef(RSrcHi) .addReg(RSrc2) .addImm(AMDGPU::sub0) .addReg(RSrc3) .addImm(AMDGPU::sub1); Register RSrcLo = BasePtr; if (!BasePtr) { RSrcLo = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); B.buildInstr(AMDGPU::S_MOV_B64) .addDef(RSrcLo) .addImm(0); } B.buildInstr(AMDGPU::REG_SEQUENCE) .addDef(RSrc) .addReg(RSrcLo) .addImm(AMDGPU::sub0_sub1) .addReg(RSrcHi) .addImm(AMDGPU::sub2_sub3); return RSrc; } static Register buildAddr64RSrc(MachineIRBuilder &B, MachineRegisterInfo &MRI, const SIInstrInfo &TII, Register BasePtr) { uint64_t DefaultFormat = TII.getDefaultRsrcDataFormat(); // FIXME: Why are half the "default" bits ignored based on the addressing // mode? return buildRSRC(B, MRI, 0, Hi_32(DefaultFormat), BasePtr); } static Register buildOffsetSrc(MachineIRBuilder &B, MachineRegisterInfo &MRI, const SIInstrInfo &TII, Register BasePtr) { uint64_t DefaultFormat = TII.getDefaultRsrcDataFormat(); // FIXME: Why are half the "default" bits ignored based on the addressing // mode? return buildRSRC(B, MRI, -1, Hi_32(DefaultFormat), BasePtr); } AMDGPUInstructionSelector::MUBUFAddressData AMDGPUInstructionSelector::parseMUBUFAddress(Register Src) const { MUBUFAddressData Data; Data.N0 = Src; Register PtrBase; int64_t Offset; std::tie(PtrBase, Offset) = getPtrBaseWithConstantOffset(Src, *MRI); if (isUInt<32>(Offset)) { Data.N0 = PtrBase; Data.Offset = Offset; } if (MachineInstr *InputAdd = getOpcodeDef(TargetOpcode::G_PTR_ADD, Data.N0, *MRI)) { Data.N2 = InputAdd->getOperand(1).getReg(); Data.N3 = InputAdd->getOperand(2).getReg(); // FIXME: Need to fix extra SGPR->VGPRcopies inserted // FIXME: Don't know this was defined by operand 0 // // TODO: Remove this when we have copy folding optimizations after // RegBankSelect. Data.N2 = getDefIgnoringCopies(Data.N2, *MRI)->getOperand(0).getReg(); Data.N3 = getDefIgnoringCopies(Data.N3, *MRI)->getOperand(0).getReg(); } return Data; } /// Return if the addr64 mubuf mode should be used for the given address. bool AMDGPUInstructionSelector::shouldUseAddr64(MUBUFAddressData Addr) const { // (ptr_add N2, N3) -> addr64, or // (ptr_add (ptr_add N2, N3), C1) -> addr64 if (Addr.N2) return true; const RegisterBank *N0Bank = RBI.getRegBank(Addr.N0, *MRI, TRI); return N0Bank->getID() == AMDGPU::VGPRRegBankID; } /// Split an immediate offset \p ImmOffset depending on whether it fits in the /// immediate field. Modifies \p ImmOffset and sets \p SOffset to the variable /// component. void AMDGPUInstructionSelector::splitIllegalMUBUFOffset( MachineIRBuilder &B, Register &SOffset, int64_t &ImmOffset) const { if (SIInstrInfo::isLegalMUBUFImmOffset(ImmOffset)) return; // Illegal offset, store it in soffset. SOffset = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass); B.buildInstr(AMDGPU::S_MOV_B32) .addDef(SOffset) .addImm(ImmOffset); ImmOffset = 0; } bool AMDGPUInstructionSelector::selectMUBUFAddr64Impl( MachineOperand &Root, Register &VAddr, Register &RSrcReg, Register &SOffset, int64_t &Offset) const { // FIXME: Predicates should stop this from reaching here. // addr64 bit was removed for volcanic islands. if (!STI.hasAddr64() || STI.useFlatForGlobal()) return false; MUBUFAddressData AddrData = parseMUBUFAddress(Root.getReg()); if (!shouldUseAddr64(AddrData)) return false; Register N0 = AddrData.N0; Register N2 = AddrData.N2; Register N3 = AddrData.N3; Offset = AddrData.Offset; // Base pointer for the SRD. Register SRDPtr; if (N2) { if (RBI.getRegBank(N2, *MRI, TRI)->getID() == AMDGPU::VGPRRegBankID) { assert(N3); if (RBI.getRegBank(N3, *MRI, TRI)->getID() == AMDGPU::VGPRRegBankID) { // Both N2 and N3 are divergent. Use N0 (the result of the add) as the // addr64, and construct the default resource from a 0 address. VAddr = N0; } else { SRDPtr = N3; VAddr = N2; } } else { // N2 is not divergent. SRDPtr = N2; VAddr = N3; } } else if (RBI.getRegBank(N0, *MRI, TRI)->getID() == AMDGPU::VGPRRegBankID) { // Use the default null pointer in the resource VAddr = N0; } else { // N0 -> offset, or // (N0 + C1) -> offset SRDPtr = N0; } MachineIRBuilder B(*Root.getParent()); RSrcReg = buildAddr64RSrc(B, *MRI, TII, SRDPtr); splitIllegalMUBUFOffset(B, SOffset, Offset); return true; } bool AMDGPUInstructionSelector::selectMUBUFOffsetImpl( MachineOperand &Root, Register &RSrcReg, Register &SOffset, int64_t &Offset) const { // FIXME: Pattern should not reach here. if (STI.useFlatForGlobal()) return false; MUBUFAddressData AddrData = parseMUBUFAddress(Root.getReg()); if (shouldUseAddr64(AddrData)) return false; // N0 -> offset, or // (N0 + C1) -> offset Register SRDPtr = AddrData.N0; Offset = AddrData.Offset; // TODO: Look through extensions for 32-bit soffset. MachineIRBuilder B(*Root.getParent()); RSrcReg = buildOffsetSrc(B, *MRI, TII, SRDPtr); splitIllegalMUBUFOffset(B, SOffset, Offset); return true; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectMUBUFAddr64(MachineOperand &Root) const { Register VAddr; Register RSrcReg; Register SOffset; int64_t Offset = 0; if (!selectMUBUFAddr64Impl(Root, VAddr, RSrcReg, SOffset, Offset)) return {}; // FIXME: Use defaulted operands for trailing 0s and remove from the complex // pattern. return {{ [=](MachineInstrBuilder &MIB) { // rsrc MIB.addReg(RSrcReg); }, [=](MachineInstrBuilder &MIB) { // vaddr MIB.addReg(VAddr); }, [=](MachineInstrBuilder &MIB) { // soffset if (SOffset) MIB.addReg(SOffset); else MIB.addImm(0); }, [=](MachineInstrBuilder &MIB) { // offset MIB.addImm(Offset); }, addZeroImm, // glc addZeroImm, // slc addZeroImm, // tfe addZeroImm, // dlc addZeroImm // swz }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectMUBUFOffset(MachineOperand &Root) const { Register RSrcReg; Register SOffset; int64_t Offset = 0; if (!selectMUBUFOffsetImpl(Root, RSrcReg, SOffset, Offset)) return {}; return {{ [=](MachineInstrBuilder &MIB) { // rsrc MIB.addReg(RSrcReg); }, [=](MachineInstrBuilder &MIB) { // soffset if (SOffset) MIB.addReg(SOffset); else MIB.addImm(0); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); }, // offset addZeroImm, // glc addZeroImm, // slc addZeroImm, // tfe addZeroImm, // dlc addZeroImm // swz }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectMUBUFAddr64Atomic(MachineOperand &Root) const { Register VAddr; Register RSrcReg; Register SOffset; int64_t Offset = 0; if (!selectMUBUFAddr64Impl(Root, VAddr, RSrcReg, SOffset, Offset)) return {}; // FIXME: Use defaulted operands for trailing 0s and remove from the complex // pattern. return {{ [=](MachineInstrBuilder &MIB) { // rsrc MIB.addReg(RSrcReg); }, [=](MachineInstrBuilder &MIB) { // vaddr MIB.addReg(VAddr); }, [=](MachineInstrBuilder &MIB) { // soffset if (SOffset) MIB.addReg(SOffset); else MIB.addImm(0); }, [=](MachineInstrBuilder &MIB) { // offset MIB.addImm(Offset); }, addZeroImm // slc }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectMUBUFOffsetAtomic(MachineOperand &Root) const { Register RSrcReg; Register SOffset; int64_t Offset = 0; if (!selectMUBUFOffsetImpl(Root, RSrcReg, SOffset, Offset)) return {}; return {{ [=](MachineInstrBuilder &MIB) { // rsrc MIB.addReg(RSrcReg); }, [=](MachineInstrBuilder &MIB) { // soffset if (SOffset) MIB.addReg(SOffset); else MIB.addImm(0); }, [=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); }, // offset addZeroImm // slc }}; } /// Get an immediate that must be 32-bits, and treated as zero extended. static Optional getConstantZext32Val(Register Reg, const MachineRegisterInfo &MRI) { // getConstantVRegVal sexts any values, so see if that matters. Optional OffsetVal = getConstantVRegSExtVal(Reg, MRI); if (!OffsetVal || !isInt<32>(*OffsetVal)) return None; return Lo_32(*OffsetVal); } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectSMRDBufferImm(MachineOperand &Root) const { Optional OffsetVal = getConstantZext32Val(Root.getReg(), *MRI); if (!OffsetVal) return {}; Optional EncodedImm = AMDGPU::getSMRDEncodedOffset(STI, *OffsetVal, true); if (!EncodedImm) return {}; return {{ [=](MachineInstrBuilder &MIB) { MIB.addImm(*EncodedImm); } }}; } InstructionSelector::ComplexRendererFns AMDGPUInstructionSelector::selectSMRDBufferImm32(MachineOperand &Root) const { assert(STI.getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); Optional OffsetVal = getConstantZext32Val(Root.getReg(), *MRI); if (!OffsetVal) return {}; Optional EncodedImm = AMDGPU::getSMRDEncodedLiteralOffset32(STI, *OffsetVal); if (!EncodedImm) return {}; return {{ [=](MachineInstrBuilder &MIB) { MIB.addImm(*EncodedImm); } }}; } void AMDGPUInstructionSelector::renderTruncImm32(MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const { assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 && "Expected G_CONSTANT"); MIB.addImm(MI.getOperand(1).getCImm()->getSExtValue()); } void AMDGPUInstructionSelector::renderNegateImm(MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const { assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 && "Expected G_CONSTANT"); MIB.addImm(-MI.getOperand(1).getCImm()->getSExtValue()); } void AMDGPUInstructionSelector::renderBitcastImm(MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const { assert(OpIdx == -1); const MachineOperand &Op = MI.getOperand(1); if (MI.getOpcode() == TargetOpcode::G_FCONSTANT) MIB.addImm(Op.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue()); else { assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && "Expected G_CONSTANT"); MIB.addImm(Op.getCImm()->getSExtValue()); } } void AMDGPUInstructionSelector::renderPopcntImm(MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const { assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 && "Expected G_CONSTANT"); MIB.addImm(MI.getOperand(1).getCImm()->getValue().countPopulation()); } /// This only really exists to satisfy DAG type checking machinery, so is a /// no-op here. void AMDGPUInstructionSelector::renderTruncTImm(MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const { MIB.addImm(MI.getOperand(OpIdx).getImm()); } void AMDGPUInstructionSelector::renderExtractGLC(MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const { assert(OpIdx >= 0 && "expected to match an immediate operand"); MIB.addImm(MI.getOperand(OpIdx).getImm() & 1); } void AMDGPUInstructionSelector::renderExtractSLC(MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const { assert(OpIdx >= 0 && "expected to match an immediate operand"); MIB.addImm((MI.getOperand(OpIdx).getImm() >> 1) & 1); } void AMDGPUInstructionSelector::renderExtractDLC(MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const { assert(OpIdx >= 0 && "expected to match an immediate operand"); MIB.addImm((MI.getOperand(OpIdx).getImm() >> 2) & 1); } void AMDGPUInstructionSelector::renderExtractSWZ(MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const { assert(OpIdx >= 0 && "expected to match an immediate operand"); MIB.addImm((MI.getOperand(OpIdx).getImm() >> 3) & 1); } void AMDGPUInstructionSelector::renderFrameIndex(MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const { MIB.addFrameIndex((MI.getOperand(1).getIndex())); } bool AMDGPUInstructionSelector::isInlineImmediate16(int64_t Imm) const { return AMDGPU::isInlinableLiteral16(Imm, STI.hasInv2PiInlineImm()); } bool AMDGPUInstructionSelector::isInlineImmediate32(int64_t Imm) const { return AMDGPU::isInlinableLiteral32(Imm, STI.hasInv2PiInlineImm()); } bool AMDGPUInstructionSelector::isInlineImmediate64(int64_t Imm) const { return AMDGPU::isInlinableLiteral64(Imm, STI.hasInv2PiInlineImm()); } bool AMDGPUInstructionSelector::isInlineImmediate(const APFloat &Imm) const { return TII.isInlineConstant(Imm); }