//===-- AMDGPUISelLowering.h - AMDGPU Lowering Interface --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Interface definition of the TargetLowering class that is common /// to all AMD GPUs. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_AMDGPU_AMDGPUISELLOWERING_H #define LLVM_LIB_TARGET_AMDGPU_AMDGPUISELLOWERING_H #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/TargetLowering.h" namespace llvm { class AMDGPUMachineFunction; class AMDGPUSubtarget; struct ArgDescriptor; class AMDGPUTargetLowering : public TargetLowering { private: const AMDGPUSubtarget *Subtarget; /// \returns AMDGPUISD::FFBH_U32 node if the incoming \p Op may have been /// legalized from a smaller type VT. Need to match pre-legalized type because /// the generic legalization inserts the add/sub between the select and /// compare. SDValue getFFBX_U32(SelectionDAG &DAG, SDValue Op, const SDLoc &DL, unsigned Opc) const; public: static unsigned numBitsUnsigned(SDValue Op, SelectionDAG &DAG); static unsigned numBitsSigned(SDValue Op, SelectionDAG &DAG); static bool hasDefinedInitializer(const GlobalValue *GV); protected: SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const; /// Split a vector store into multiple scalar stores. /// \returns The resulting chain. SDValue LowerFREM(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFCEIL(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRINT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFROUND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFLOG(SDValue Op, SelectionDAG &DAG, double Log2BaseInverted) const; SDValue lowerFEXP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, bool Signed) const; SDValue LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, bool Signed) const; SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, bool Signed) const; SDValue LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const; protected: bool shouldCombineMemoryType(EVT VT) const; SDValue performLoadCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performStoreCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performAssertSZExtCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performIntrinsicWOChainCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue splitBinaryBitConstantOpImpl(DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS, uint32_t ValLo, uint32_t ValHi) const; SDValue performShlCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performSraCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performSrlCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performTruncateCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performMulCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performMulhsCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performMulhuCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, SDValue LHS, SDValue RHS, DAGCombinerInfo &DCI) const; SDValue performSelectCombine(SDNode *N, DAGCombinerInfo &DCI) const; bool isConstantCostlierToNegate(SDValue N) const; SDValue performFNegCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performFAbsCombine(SDNode *N, DAGCombinerInfo &DCI) const; SDValue performRcpCombine(SDNode *N, DAGCombinerInfo &DCI) const; static EVT getEquivalentMemType(LLVMContext &Context, EVT VT); virtual SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const; /// Return 64-bit value Op as two 32-bit integers. std::pair split64BitValue(SDValue Op, SelectionDAG &DAG) const; SDValue getLoHalf64(SDValue Op, SelectionDAG &DAG) const; SDValue getHiHalf64(SDValue Op, SelectionDAG &DAG) const; /// Split a vector type into two parts. The first part is a power of two /// vector. The second part is whatever is left over, and is a scalar if it /// would otherwise be a 1-vector. std::pair getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const; /// Split a vector value into two parts of types LoVT and HiVT. HiVT could be /// scalar. std::pair splitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HighVT, SelectionDAG &DAG) const; /// Split a vector load into 2 loads of half the vector. SDValue SplitVectorLoad(SDValue Op, SelectionDAG &DAG) const; /// Widen a suitably aligned v3 load. For all other cases, split the input /// vector load. SDValue WidenOrSplitVectorLoad(SDValue Op, SelectionDAG &DAG) const; /// Split a vector store into 2 stores of half the vector. SDValue SplitVectorStore(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSDIVREM(SDValue Op, SelectionDAG &DAG) const; SDValue LowerUDIVREM(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const; void LowerUDIVREM64(SDValue Op, SelectionDAG &DAG, SmallVectorImpl &Results) const; void analyzeFormalArgumentsCompute( CCState &State, const SmallVectorImpl &Ins) const; public: AMDGPUTargetLowering(const TargetMachine &TM, const AMDGPUSubtarget &STI); bool mayIgnoreSignedZero(SDValue Op) const; static inline SDValue stripBitcast(SDValue Val) { return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; } static bool allUsesHaveSourceMods(const SDNode *N, unsigned CostThreshold = 4); bool isFAbsFree(EVT VT) const override; bool isFNegFree(EVT VT) const override; bool isTruncateFree(EVT Src, EVT Dest) const override; bool isTruncateFree(Type *Src, Type *Dest) const override; bool isZExtFree(Type *Src, Type *Dest) const override; bool isZExtFree(EVT Src, EVT Dest) const override; bool isZExtFree(SDValue Val, EVT VT2) const override; SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, NegatibleCost &Cost, unsigned Depth) const override; bool isNarrowingProfitable(EVT VT1, EVT VT2) const override; EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType ExtendKind) const override; MVT getVectorIdxTy(const DataLayout &) const override; bool isSelectSupported(SelectSupportKind) const override; bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override; bool ShouldShrinkFPConstant(EVT VT) const override; bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtType, EVT ExtVT) const override; bool isLoadBitCastBeneficial(EVT, EVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const final; bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem, unsigned AS) const override; bool aggressivelyPreferBuildVectorSources(EVT VecVT) const override; bool isCheapToSpeculateCttz() const override; bool isCheapToSpeculateCtlz() const override; bool isSDNodeAlwaysUniform(const SDNode *N) const override; static CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg); static CCAssignFn *CCAssignFnForReturn(CallingConv::ID CC, bool IsVarArg); SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override; SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo &MFI, int ClobberedFI) const; SDValue lowerUnhandledCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals, StringRef Reason) const; SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const override; SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; void ReplaceNodeResults(SDNode * N, SmallVectorImpl &Results, SelectionDAG &DAG) const override; SDValue combineFMinMaxLegacy(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, SDValue False, SDValue CC, DAGCombinerInfo &DCI) const; const char* getTargetNodeName(unsigned Opcode) const override; // FIXME: Turn off MergeConsecutiveStores() before Instruction Selection for // AMDGPU. Commit r319036, // (https://github.com/llvm/llvm-project/commit/db77e57ea86d941a4262ef60261692f4cb6893e6) // turned on MergeConsecutiveStores() before Instruction Selection for all // targets. Enough AMDGPU compiles go into an infinite loop ( // MergeConsecutiveStores() merges two stores; LegalizeStoreOps() un-merges; // MergeConsecutiveStores() re-merges, etc. ) to warrant turning it off for // now. bool mergeStoresAfterLegalization(EVT) const override { return false; } bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override { return true; } SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const override; SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const override; virtual SDNode *PostISelFolding(MachineSDNode *N, SelectionDAG &DAG) const = 0; /// Determine which of the bits specified in \p Mask are known to be /// either zero or one and return them in the \p KnownZero and \p KnownOne /// bitsets. void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth = 0) const override; unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth = 0) const override; unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth = 0) const override; bool isKnownNeverNaNForTargetNode(SDValue Op, const SelectionDAG &DAG, bool SNaN = false, unsigned Depth = 0) const override; /// Helper function that adds Reg to the LiveIn list of the DAG's /// MachineFunction. /// /// \returns a RegisterSDNode representing Reg if \p RawReg is true, otherwise /// a copy from the register. SDValue CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC, Register Reg, EVT VT, const SDLoc &SL, bool RawReg = false) const; SDValue CreateLiveInRegister(SelectionDAG &DAG, const TargetRegisterClass *RC, Register Reg, EVT VT) const { return CreateLiveInRegister(DAG, RC, Reg, VT, SDLoc(DAG.getEntryNode())); } // Returns the raw live in register rather than a copy from it. SDValue CreateLiveInRegisterRaw(SelectionDAG &DAG, const TargetRegisterClass *RC, Register Reg, EVT VT) const { return CreateLiveInRegister(DAG, RC, Reg, VT, SDLoc(DAG.getEntryNode()), true); } /// Similar to CreateLiveInRegister, except value maybe loaded from a stack /// slot rather than passed in a register. SDValue loadStackInputValue(SelectionDAG &DAG, EVT VT, const SDLoc &SL, int64_t Offset) const; SDValue storeStackInputValue(SelectionDAG &DAG, const SDLoc &SL, SDValue Chain, SDValue ArgVal, int64_t Offset) const; SDValue loadInputValue(SelectionDAG &DAG, const TargetRegisterClass *RC, EVT VT, const SDLoc &SL, const ArgDescriptor &Arg) const; enum ImplicitParameter { FIRST_IMPLICIT, GRID_DIM = FIRST_IMPLICIT, GRID_OFFSET, }; /// Helper function that returns the byte offset of the given /// type of implicit parameter. uint32_t getImplicitParameterOffset(const MachineFunction &MF, const ImplicitParameter Param) const; MVT getFenceOperandTy(const DataLayout &DL) const override { return MVT::i32; } AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const override; }; namespace AMDGPUISD { enum NodeType : unsigned { // AMDIL ISD Opcodes FIRST_NUMBER = ISD::BUILTIN_OP_END, UMUL, // 32bit unsigned multiplication BRANCH_COND, // End AMDIL ISD Opcodes // Function call. CALL, TC_RETURN, TRAP, // Masked control flow nodes. IF, ELSE, LOOP, // A uniform kernel return that terminates the wavefront. ENDPGM, // Return to a shader part's epilog code. RETURN_TO_EPILOG, // Return with values from a non-entry function. RET_FLAG, DWORDADDR, FRACT, /// CLAMP value between 0.0 and 1.0. NaN clamped to 0, following clamp output /// modifier behavior with dx10_enable. CLAMP, // This is SETCC with the full mask result which is used for a compare with a // result bit per item in the wavefront. SETCC, SETREG, DENORM_MODE, // FP ops with input and output chain. FMA_W_CHAIN, FMUL_W_CHAIN, // SIN_HW, COS_HW - f32 for SI, 1 ULP max error, valid from -100 pi to 100 pi. // Denormals handled on some parts. COS_HW, SIN_HW, FMAX_LEGACY, FMIN_LEGACY, FMAX3, SMAX3, UMAX3, FMIN3, SMIN3, UMIN3, FMED3, SMED3, UMED3, FDOT2, URECIP, DIV_SCALE, DIV_FMAS, DIV_FIXUP, // For emitting ISD::FMAD when f32 denormals are enabled because mac/mad is // treated as an illegal operation. FMAD_FTZ, // RCP, RSQ - For f32, 1 ULP max error, no denormal handling. // For f64, max error 2^29 ULP, handles denormals. RCP, RSQ, RCP_LEGACY, RCP_IFLAG, FMUL_LEGACY, RSQ_CLAMP, LDEXP, FP_CLASS, DOT4, CARRY, BORROW, BFE_U32, // Extract range of bits with zero extension to 32-bits. BFE_I32, // Extract range of bits with sign extension to 32-bits. BFI, // (src0 & src1) | (~src0 & src2) BFM, // Insert a range of bits into a 32-bit word. FFBH_U32, // ctlz with -1 if input is zero. FFBH_I32, FFBL_B32, // cttz with -1 if input is zero. MUL_U24, MUL_I24, MULHI_U24, MULHI_I24, MAD_U24, MAD_I24, MAD_U64_U32, MAD_I64_I32, PERM, TEXTURE_FETCH, R600_EXPORT, CONST_ADDRESS, REGISTER_LOAD, REGISTER_STORE, SAMPLE, SAMPLEB, SAMPLED, SAMPLEL, // These cvt_f32_ubyte* nodes need to remain consecutive and in order. CVT_F32_UBYTE0, CVT_F32_UBYTE1, CVT_F32_UBYTE2, CVT_F32_UBYTE3, // Convert two float 32 numbers into a single register holding two packed f16 // with round to zero. CVT_PKRTZ_F16_F32, CVT_PKNORM_I16_F32, CVT_PKNORM_U16_F32, CVT_PK_I16_I32, CVT_PK_U16_U32, // Same as the standard node, except the high bits of the resulting integer // are known 0. FP_TO_FP16, // Wrapper around fp16 results that are known to zero the high bits. FP16_ZEXT, /// This node is for VLIW targets and it is used to represent a vector /// that is stored in consecutive registers with the same channel. /// For example: /// |X |Y|Z|W| /// T0|v.x| | | | /// T1|v.y| | | | /// T2|v.z| | | | /// T3|v.w| | | | BUILD_VERTICAL_VECTOR, /// Pointer to the start of the shader's constant data. CONST_DATA_PTR, PC_ADD_REL_OFFSET, LDS, DUMMY_CHAIN, FIRST_MEM_OPCODE_NUMBER = ISD::FIRST_TARGET_MEMORY_OPCODE, LOAD_D16_HI, LOAD_D16_LO, LOAD_D16_HI_I8, LOAD_D16_HI_U8, LOAD_D16_LO_I8, LOAD_D16_LO_U8, STORE_MSKOR, LOAD_CONSTANT, TBUFFER_STORE_FORMAT, TBUFFER_STORE_FORMAT_D16, TBUFFER_LOAD_FORMAT, TBUFFER_LOAD_FORMAT_D16, DS_ORDERED_COUNT, ATOMIC_CMP_SWAP, ATOMIC_INC, ATOMIC_DEC, ATOMIC_LOAD_FMIN, ATOMIC_LOAD_FMAX, BUFFER_LOAD, BUFFER_LOAD_UBYTE, BUFFER_LOAD_USHORT, BUFFER_LOAD_BYTE, BUFFER_LOAD_SHORT, BUFFER_LOAD_FORMAT, BUFFER_LOAD_FORMAT_D16, SBUFFER_LOAD, BUFFER_STORE, BUFFER_STORE_BYTE, BUFFER_STORE_SHORT, BUFFER_STORE_FORMAT, BUFFER_STORE_FORMAT_D16, BUFFER_ATOMIC_SWAP, BUFFER_ATOMIC_ADD, BUFFER_ATOMIC_SUB, BUFFER_ATOMIC_SMIN, BUFFER_ATOMIC_UMIN, BUFFER_ATOMIC_SMAX, BUFFER_ATOMIC_UMAX, BUFFER_ATOMIC_AND, BUFFER_ATOMIC_OR, BUFFER_ATOMIC_XOR, BUFFER_ATOMIC_INC, BUFFER_ATOMIC_DEC, BUFFER_ATOMIC_CMPSWAP, BUFFER_ATOMIC_CSUB, BUFFER_ATOMIC_FADD, LAST_AMDGPU_ISD_NUMBER }; } // End namespace AMDGPUISD } // End namespace llvm #endif