//===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// /// The AMDGPUAsmPrinter is used to print both assembly string and also binary /// code. When passed an MCAsmStreamer it prints assembly and when passed /// an MCObjectStreamer it outputs binary code. // //===----------------------------------------------------------------------===// // #include "AMDGPUAsmPrinter.h" #include "AMDGPU.h" #include "AMDGPUHSAMetadataStreamer.h" #include "AMDKernelCodeT.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUInstPrinter.h" #include "MCTargetDesc/AMDGPUTargetStreamer.h" #include "R600AsmPrinter.h" #include "SIMachineFunctionInfo.h" #include "TargetInfo/AMDGPUTargetInfo.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Support/AMDHSAKernelDescriptor.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; using namespace llvm::AMDGPU; // We need to tell the runtime some amount ahead of time if we don't know the // true stack size. Assume a smaller number if this is only due to dynamic / // non-entry block allocas. static cl::opt AssumedStackSizeForExternalCall( "amdgpu-assume-external-call-stack-size", cl::desc("Assumed stack use of any external call (in bytes)"), cl::Hidden, cl::init(16384)); static cl::opt AssumedStackSizeForDynamicSizeObjects( "amdgpu-assume-dynamic-stack-object-size", cl::desc("Assumed extra stack use if there are any " "variable sized objects (in bytes)"), cl::Hidden, cl::init(4096)); // This should get the default rounding mode from the kernel. We just set the // default here, but this could change if the OpenCL rounding mode pragmas are // used. // // The denormal mode here should match what is reported by the OpenCL runtime // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but // can also be override to flush with the -cl-denorms-are-zero compiler flag. // // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double // precision, and leaves single precision to flush all and does not report // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports // CL_FP_DENORM for both. // // FIXME: It seems some instructions do not support single precision denormals // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, // and sin_f32, cos_f32 on most parts). // We want to use these instructions, and using fp32 denormals also causes // instructions to run at the double precision rate for the device so it's // probably best to just report no single precision denormals. static uint32_t getFPMode(AMDGPU::SIModeRegisterDefaults Mode) { return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | FP_DENORM_MODE_SP(Mode.fpDenormModeSPValue()) | FP_DENORM_MODE_DP(Mode.fpDenormModeDPValue()); } static AsmPrinter * createAMDGPUAsmPrinterPass(TargetMachine &tm, std::unique_ptr &&Streamer) { return new AMDGPUAsmPrinter(tm, std::move(Streamer)); } extern "C" void LLVM_EXTERNAL_VISIBILITY LLVMInitializeAMDGPUAsmPrinter() { TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), llvm::createR600AsmPrinterPass); TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), createAMDGPUAsmPrinterPass); } AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, std::unique_ptr Streamer) : AsmPrinter(TM, std::move(Streamer)) { if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { if (isHsaAbiVersion2(getGlobalSTI())) { HSAMetadataStream.reset(new HSAMD::MetadataStreamerV2()); } else { HSAMetadataStream.reset(new HSAMD::MetadataStreamerV3()); } } } StringRef AMDGPUAsmPrinter::getPassName() const { return "AMDGPU Assembly Printer"; } const MCSubtargetInfo *AMDGPUAsmPrinter::getGlobalSTI() const { return TM.getMCSubtargetInfo(); } AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { if (!OutStreamer) return nullptr; return static_cast(OutStreamer->getTargetStreamer()); } void AMDGPUAsmPrinter::emitStartOfAsmFile(Module &M) { if (isHsaAbiVersion3(getGlobalSTI())) { std::string ExpectedTarget; raw_string_ostream ExpectedTargetOS(ExpectedTarget); IsaInfo::streamIsaVersion(getGlobalSTI(), ExpectedTargetOS); getTargetStreamer()->EmitDirectiveAMDGCNTarget(ExpectedTarget); } if (TM.getTargetTriple().getOS() != Triple::AMDHSA && TM.getTargetTriple().getOS() != Triple::AMDPAL) return; if (TM.getTargetTriple().getOS() == Triple::AMDHSA) HSAMetadataStream->begin(M); if (TM.getTargetTriple().getOS() == Triple::AMDPAL) getTargetStreamer()->getPALMetadata()->readFromIR(M); if (isHsaAbiVersion3(getGlobalSTI())) return; // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2. if (TM.getTargetTriple().getOS() == Triple::AMDHSA) getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1); // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2. IsaVersion Version = getIsaVersion(getGlobalSTI()->getCPU()); getTargetStreamer()->EmitDirectiveHSACodeObjectISA( Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU"); } void AMDGPUAsmPrinter::emitEndOfAsmFile(Module &M) { // Following code requires TargetStreamer to be present. if (!getTargetStreamer()) return; if (TM.getTargetTriple().getOS() != Triple::AMDHSA || isHsaAbiVersion2(getGlobalSTI())) { // Emit ISA Version (NT_AMD_AMDGPU_ISA). std::string ISAVersionString; raw_string_ostream ISAVersionStream(ISAVersionString); IsaInfo::streamIsaVersion(getGlobalSTI(), ISAVersionStream); getTargetStreamer()->EmitISAVersion(ISAVersionStream.str()); } // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { HSAMetadataStream->end(); bool Success = HSAMetadataStream->emitTo(*getTargetStreamer()); (void)Success; assert(Success && "Malformed HSA Metadata"); } } bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( const MachineBasicBlock *MBB) const { if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) return false; if (MBB->empty()) return true; // If this is a block implementing a long branch, an expression relative to // the start of the block is needed. to the start of the block. // XXX - Is there a smarter way to check this? return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); } void AMDGPUAsmPrinter::emitFunctionBodyStart() { const SIMachineFunctionInfo &MFI = *MF->getInfo(); if (!MFI.isEntryFunction()) return; const GCNSubtarget &STM = MF->getSubtarget(); const Function &F = MF->getFunction(); if ((STM.isMesaKernel(F) || isHsaAbiVersion2(getGlobalSTI())) && (F.getCallingConv() == CallingConv::AMDGPU_KERNEL || F.getCallingConv() == CallingConv::SPIR_KERNEL)) { amd_kernel_code_t KernelCode; getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); } if (STM.isAmdHsaOS()) HSAMetadataStream->emitKernel(*MF, CurrentProgramInfo); } void AMDGPUAsmPrinter::emitFunctionBodyEnd() { const SIMachineFunctionInfo &MFI = *MF->getInfo(); if (!MFI.isEntryFunction()) return; if (TM.getTargetTriple().getOS() != Triple::AMDHSA || isHsaAbiVersion2(getGlobalSTI())) return; auto &Streamer = getTargetStreamer()->getStreamer(); auto &Context = Streamer.getContext(); auto &ObjectFileInfo = *Context.getObjectFileInfo(); auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection(); Streamer.PushSection(); Streamer.SwitchSection(&ReadOnlySection); // CP microcode requires the kernel descriptor to be allocated on 64 byte // alignment. Streamer.emitValueToAlignment(64, 0, 1, 0); if (ReadOnlySection.getAlignment() < 64) ReadOnlySection.setAlignment(Align(64)); const MCSubtargetInfo &STI = MF->getSubtarget(); SmallString<128> KernelName; getNameWithPrefix(KernelName, &MF->getFunction()); getTargetStreamer()->EmitAmdhsaKernelDescriptor( STI, KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo), CurrentProgramInfo.NumVGPRsForWavesPerEU, CurrentProgramInfo.NumSGPRsForWavesPerEU - IsaInfo::getNumExtraSGPRs(&STI, CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed), CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed, hasXNACK(STI)); Streamer.PopSection(); } void AMDGPUAsmPrinter::emitFunctionEntryLabel() { if (TM.getTargetTriple().getOS() == Triple::AMDHSA && isHsaAbiVersion3(getGlobalSTI())) { AsmPrinter::emitFunctionEntryLabel(); return; } const SIMachineFunctionInfo *MFI = MF->getInfo(); const GCNSubtarget &STM = MF->getSubtarget(); if (MFI->isEntryFunction() && STM.isAmdHsaOrMesa(MF->getFunction())) { SmallString<128> SymbolName; getNameWithPrefix(SymbolName, &MF->getFunction()), getTargetStreamer()->EmitAMDGPUSymbolType( SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); } if (DumpCodeInstEmitter) { // Disassemble function name label to text. DisasmLines.push_back(MF->getName().str() + ":"); DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); HexLines.push_back(""); } AsmPrinter::emitFunctionEntryLabel(); } void AMDGPUAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { if (DumpCodeInstEmitter && !isBlockOnlyReachableByFallthrough(&MBB)) { // Write a line for the basic block label if it is not only fallthrough. DisasmLines.push_back( (Twine("BB") + Twine(getFunctionNumber()) + "_" + Twine(MBB.getNumber()) + ":").str()); DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); HexLines.push_back(""); } AsmPrinter::emitBasicBlockStart(MBB); } void AMDGPUAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { if (GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { if (GV->hasInitializer() && !isa(GV->getInitializer())) { OutContext.reportError({}, Twine(GV->getName()) + ": unsupported initializer for address space"); return; } // LDS variables aren't emitted in HSA or PAL yet. const Triple::OSType OS = TM.getTargetTriple().getOS(); if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) return; MCSymbol *GVSym = getSymbol(GV); GVSym->redefineIfPossible(); if (GVSym->isDefined() || GVSym->isVariable()) report_fatal_error("symbol '" + Twine(GVSym->getName()) + "' is already defined"); const DataLayout &DL = GV->getParent()->getDataLayout(); uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); Align Alignment = GV->getAlign().getValueOr(Align(4)); emitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); emitLinkage(GV, GVSym); if (auto TS = getTargetStreamer()) TS->emitAMDGPULDS(GVSym, Size, Alignment); return; } AsmPrinter::emitGlobalVariable(GV); } bool AMDGPUAsmPrinter::doFinalization(Module &M) { CallGraphResourceInfo.clear(); // Pad with s_code_end to help tools and guard against instruction prefetch // causing stale data in caches. Arguably this should be done by the linker, // which is why this isn't done for Mesa. const MCSubtargetInfo &STI = *getGlobalSTI(); if (AMDGPU::isGFX10Plus(STI) && (STI.getTargetTriple().getOS() == Triple::AMDHSA || STI.getTargetTriple().getOS() == Triple::AMDPAL)) { OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); getTargetStreamer()->EmitCodeEnd(); } return AsmPrinter::doFinalization(M); } // Print comments that apply to both callable functions and entry points. void AMDGPUAsmPrinter::emitCommonFunctionComments( uint32_t NumVGPR, Optional NumAGPR, uint32_t TotalNumVGPR, uint32_t NumSGPR, uint64_t ScratchSize, uint64_t CodeSize, const AMDGPUMachineFunction *MFI) { OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); if (NumAGPR) { OutStreamer->emitRawComment(" NumAgprs: " + Twine(*NumAGPR), false); OutStreamer->emitRawComment(" TotalNumVgprs: " + Twine(TotalNumVGPR), false); } OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), false); } uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties( const MachineFunction &MF) const { const SIMachineFunctionInfo &MFI = *MF.getInfo(); uint16_t KernelCodeProperties = 0; if (MFI.hasPrivateSegmentBuffer()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; } if (MFI.hasDispatchPtr()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; } if (MFI.hasQueuePtr()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; } if (MFI.hasKernargSegmentPtr()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; } if (MFI.hasDispatchID()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; } if (MFI.hasFlatScratchInit()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; } if (MF.getSubtarget().isWave32()) { KernelCodeProperties |= amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; } return KernelCodeProperties; } amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor( const MachineFunction &MF, const SIProgramInfo &PI) const { amdhsa::kernel_descriptor_t KernelDescriptor; memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor)); assert(isUInt<32>(PI.ScratchSize)); assert(isUInt<32>(PI.getComputePGMRSrc1())); assert(isUInt<32>(PI.ComputePGMRSrc2)); KernelDescriptor.group_segment_fixed_size = PI.LDSSize; KernelDescriptor.private_segment_fixed_size = PI.ScratchSize; KernelDescriptor.compute_pgm_rsrc1 = PI.getComputePGMRSrc1(); KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2; KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF); return KernelDescriptor; } bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { CurrentProgramInfo = SIProgramInfo(); const AMDGPUMachineFunction *MFI = MF.getInfo(); // The starting address of all shader programs must be 256 bytes aligned. // Regular functions just need the basic required instruction alignment. MF.setAlignment(MFI->isEntryFunction() ? Align(256) : Align(4)); SetupMachineFunction(MF); const GCNSubtarget &STM = MF.getSubtarget(); MCContext &Context = getObjFileLowering().getContext(); // FIXME: This should be an explicit check for Mesa. if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) { MCSectionELF *ConfigSection = Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); OutStreamer->SwitchSection(ConfigSection); } if (MFI->isModuleEntryFunction()) { getSIProgramInfo(CurrentProgramInfo, MF); } else { auto I = CallGraphResourceInfo.insert( std::make_pair(&MF.getFunction(), SIFunctionResourceInfo())); SIFunctionResourceInfo &Info = I.first->second; assert(I.second && "should only be called once per function"); Info = analyzeResourceUsage(MF); } if (STM.isAmdPalOS()) { if (MFI->isEntryFunction()) EmitPALMetadata(MF, CurrentProgramInfo); else if (MFI->isModuleEntryFunction()) emitPALFunctionMetadata(MF); } else if (!STM.isAmdHsaOS()) { EmitProgramInfoSI(MF, CurrentProgramInfo); } DumpCodeInstEmitter = nullptr; if (STM.dumpCode()) { // For -dumpcode, get the assembler out of the streamer, even if it does // not really want to let us have it. This only works with -filetype=obj. bool SaveFlag = OutStreamer->getUseAssemblerInfoForParsing(); OutStreamer->setUseAssemblerInfoForParsing(true); MCAssembler *Assembler = OutStreamer->getAssemblerPtr(); OutStreamer->setUseAssemblerInfoForParsing(SaveFlag); if (Assembler) DumpCodeInstEmitter = Assembler->getEmitterPtr(); } DisasmLines.clear(); HexLines.clear(); DisasmLineMaxLen = 0; emitFunctionBody(); if (isVerbose()) { MCSectionELF *CommentSection = Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); OutStreamer->SwitchSection(CommentSection); if (!MFI->isEntryFunction()) { OutStreamer->emitRawComment(" Function info:", false); SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()]; emitCommonFunctionComments( Info.NumVGPR, STM.hasMAIInsts() ? Info.NumAGPR : Optional(), Info.getTotalNumVGPRs(STM), Info.getTotalNumSGPRs(MF.getSubtarget()), Info.PrivateSegmentSize, getFunctionCodeSize(MF), MFI); return false; } OutStreamer->emitRawComment(" Kernel info:", false); emitCommonFunctionComments(CurrentProgramInfo.NumArchVGPR, STM.hasMAIInsts() ? CurrentProgramInfo.NumAccVGPR : Optional(), CurrentProgramInfo.NumVGPR, CurrentProgramInfo.NumSGPR, CurrentProgramInfo.ScratchSize, getFunctionCodeSize(MF), MFI); OutStreamer->emitRawComment( " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); OutStreamer->emitRawComment( " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); OutStreamer->emitRawComment( " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + " bytes/workgroup (compile time only)", false); OutStreamer->emitRawComment( " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false); OutStreamer->emitRawComment( " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false); OutStreamer->emitRawComment( " NumSGPRsForWavesPerEU: " + Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); OutStreamer->emitRawComment( " NumVGPRsForWavesPerEU: " + Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); OutStreamer->emitRawComment( " Occupancy: " + Twine(CurrentProgramInfo.Occupancy), false); OutStreamer->emitRawComment( " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:SCRATCH_EN: " + Twine(G_00B84C_SCRATCH_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:USER_SGPR: " + Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:TGID_X_EN: " + Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:TGID_Y_EN: " + Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:TGID_Z_EN: " + Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment( " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)), false); } if (DumpCodeInstEmitter) { OutStreamer->SwitchSection( Context.getELFSection(".AMDGPU.disasm", ELF::SHT_PROGBITS, 0)); for (size_t i = 0; i < DisasmLines.size(); ++i) { std::string Comment = "\n"; if (!HexLines[i].empty()) { Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); Comment += " ; " + HexLines[i] + "\n"; } OutStreamer->emitBytes(StringRef(DisasmLines[i])); OutStreamer->emitBytes(StringRef(Comment)); } } return false; } uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { const GCNSubtarget &STM = MF.getSubtarget(); const SIInstrInfo *TII = STM.getInstrInfo(); uint64_t CodeSize = 0; for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { // TODO: CodeSize should account for multiple functions. // TODO: Should we count size of debug info? if (MI.isDebugInstr()) continue; CodeSize += TII->getInstSizeInBytes(MI); } } return CodeSize; } static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI, const SIInstrInfo &TII, unsigned Reg) { for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) { if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent())) return true; } return false; } int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs( const GCNSubtarget &ST) const { return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(&ST, UsesVCC, UsesFlatScratch); } int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumVGPRs( const GCNSubtarget &ST) const { return std::max(NumVGPR, NumAGPR); } static const Function *getCalleeFunction(const MachineOperand &Op) { if (Op.isImm()) { assert(Op.getImm() == 0); return nullptr; } return cast(Op.getGlobal()); } AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage( const MachineFunction &MF) const { SIFunctionResourceInfo Info; const SIMachineFunctionInfo *MFI = MF.getInfo(); const GCNSubtarget &ST = MF.getSubtarget(); const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); const MachineRegisterInfo &MRI = MF.getRegInfo(); const SIInstrInfo *TII = ST.getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) || MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI); // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat // instructions aren't used to access the scratch buffer. Inline assembly may // need it though. // // If we only have implicit uses of flat_scr on flat instructions, it is not // really needed. if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() && (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) && !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) && !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) { Info.UsesFlatScratch = false; } Info.PrivateSegmentSize = FrameInfo.getStackSize(); // Assume a big number if there are any unknown sized objects. Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects(); if (Info.HasDynamicallySizedStack) Info.PrivateSegmentSize += AssumedStackSizeForDynamicSizeObjects; if (MFI->isStackRealigned()) Info.PrivateSegmentSize += FrameInfo.getMaxAlign().value(); Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) || MRI.isPhysRegUsed(AMDGPU::VCC_HI); // If there are no calls, MachineRegisterInfo can tell us the used register // count easily. // A tail call isn't considered a call for MachineFrameInfo's purposes. if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) { MCPhysReg HighestVGPRReg = AMDGPU::NoRegister; for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) { if (MRI.isPhysRegUsed(Reg)) { HighestVGPRReg = Reg; break; } } if (ST.hasMAIInsts()) { MCPhysReg HighestAGPRReg = AMDGPU::NoRegister; for (MCPhysReg Reg : reverse(AMDGPU::AGPR_32RegClass.getRegisters())) { if (MRI.isPhysRegUsed(Reg)) { HighestAGPRReg = Reg; break; } } Info.NumAGPR = HighestAGPRReg == AMDGPU::NoRegister ? 0 : TRI.getHWRegIndex(HighestAGPRReg) + 1; } MCPhysReg HighestSGPRReg = AMDGPU::NoRegister; for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) { if (MRI.isPhysRegUsed(Reg)) { HighestSGPRReg = Reg; break; } } // We found the maximum register index. They start at 0, so add one to get the // number of registers. Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 : TRI.getHWRegIndex(HighestVGPRReg) + 1; Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 : TRI.getHWRegIndex(HighestSGPRReg) + 1; return Info; } int32_t MaxVGPR = -1; int32_t MaxAGPR = -1; int32_t MaxSGPR = -1; uint64_t CalleeFrameSize = 0; for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { // TODO: Check regmasks? Do they occur anywhere except calls? for (const MachineOperand &MO : MI.operands()) { unsigned Width = 0; bool IsSGPR = false; bool IsAGPR = false; if (!MO.isReg()) continue; Register Reg = MO.getReg(); switch (Reg) { case AMDGPU::EXEC: case AMDGPU::EXEC_LO: case AMDGPU::EXEC_HI: case AMDGPU::SCC: case AMDGPU::M0: case AMDGPU::SRC_SHARED_BASE: case AMDGPU::SRC_SHARED_LIMIT: case AMDGPU::SRC_PRIVATE_BASE: case AMDGPU::SRC_PRIVATE_LIMIT: case AMDGPU::SGPR_NULL: case AMDGPU::MODE: continue; case AMDGPU::SRC_POPS_EXITING_WAVE_ID: llvm_unreachable("src_pops_exiting_wave_id should not be used"); case AMDGPU::NoRegister: assert(MI.isDebugInstr() && "Instruction uses invalid noreg register"); continue; case AMDGPU::VCC: case AMDGPU::VCC_LO: case AMDGPU::VCC_HI: case AMDGPU::VCC_LO_LO16: case AMDGPU::VCC_LO_HI16: case AMDGPU::VCC_HI_LO16: case AMDGPU::VCC_HI_HI16: Info.UsesVCC = true; continue; case AMDGPU::FLAT_SCR: case AMDGPU::FLAT_SCR_LO: case AMDGPU::FLAT_SCR_HI: continue; case AMDGPU::XNACK_MASK: case AMDGPU::XNACK_MASK_LO: case AMDGPU::XNACK_MASK_HI: llvm_unreachable("xnack_mask registers should not be used"); case AMDGPU::LDS_DIRECT: llvm_unreachable("lds_direct register should not be used"); case AMDGPU::TBA: case AMDGPU::TBA_LO: case AMDGPU::TBA_HI: case AMDGPU::TMA: case AMDGPU::TMA_LO: case AMDGPU::TMA_HI: llvm_unreachable("trap handler registers should not be used"); case AMDGPU::SRC_VCCZ: llvm_unreachable("src_vccz register should not be used"); case AMDGPU::SRC_EXECZ: llvm_unreachable("src_execz register should not be used"); case AMDGPU::SRC_SCC: llvm_unreachable("src_scc register should not be used"); default: break; } if (AMDGPU::SReg_32RegClass.contains(Reg) || AMDGPU::SReg_LO16RegClass.contains(Reg) || AMDGPU::SGPR_HI16RegClass.contains(Reg)) { assert(!AMDGPU::TTMP_32RegClass.contains(Reg) && "trap handler registers should not be used"); IsSGPR = true; Width = 1; } else if (AMDGPU::VGPR_32RegClass.contains(Reg) || AMDGPU::VGPR_LO16RegClass.contains(Reg) || AMDGPU::VGPR_HI16RegClass.contains(Reg)) { IsSGPR = false; Width = 1; } else if (AMDGPU::AGPR_32RegClass.contains(Reg) || AMDGPU::AGPR_LO16RegClass.contains(Reg)) { IsSGPR = false; IsAGPR = true; Width = 1; } else if (AMDGPU::SReg_64RegClass.contains(Reg)) { assert(!AMDGPU::TTMP_64RegClass.contains(Reg) && "trap handler registers should not be used"); IsSGPR = true; Width = 2; } else if (AMDGPU::VReg_64RegClass.contains(Reg)) { IsSGPR = false; Width = 2; } else if (AMDGPU::AReg_64RegClass.contains(Reg)) { IsSGPR = false; IsAGPR = true; Width = 2; } else if (AMDGPU::VReg_96RegClass.contains(Reg)) { IsSGPR = false; Width = 3; } else if (AMDGPU::SReg_96RegClass.contains(Reg)) { IsSGPR = true; Width = 3; } else if (AMDGPU::AReg_96RegClass.contains(Reg)) { IsSGPR = false; IsAGPR = true; Width = 3; } else if (AMDGPU::SReg_128RegClass.contains(Reg)) { assert(!AMDGPU::TTMP_128RegClass.contains(Reg) && "trap handler registers should not be used"); IsSGPR = true; Width = 4; } else if (AMDGPU::VReg_128RegClass.contains(Reg)) { IsSGPR = false; Width = 4; } else if (AMDGPU::AReg_128RegClass.contains(Reg)) { IsSGPR = false; IsAGPR = true; Width = 4; } else if (AMDGPU::VReg_160RegClass.contains(Reg)) { IsSGPR = false; Width = 5; } else if (AMDGPU::SReg_160RegClass.contains(Reg)) { IsSGPR = true; Width = 5; } else if (AMDGPU::AReg_160RegClass.contains(Reg)) { IsSGPR = false; IsAGPR = true; Width = 5; } else if (AMDGPU::VReg_192RegClass.contains(Reg)) { IsSGPR = false; Width = 6; } else if (AMDGPU::SReg_192RegClass.contains(Reg)) { IsSGPR = true; Width = 6; } else if (AMDGPU::AReg_192RegClass.contains(Reg)) { IsSGPR = false; IsAGPR = true; Width = 6; } else if (AMDGPU::SReg_256RegClass.contains(Reg)) { assert(!AMDGPU::TTMP_256RegClass.contains(Reg) && "trap handler registers should not be used"); IsSGPR = true; Width = 8; } else if (AMDGPU::VReg_256RegClass.contains(Reg)) { IsSGPR = false; Width = 8; } else if (AMDGPU::AReg_256RegClass.contains(Reg)) { IsSGPR = false; IsAGPR = true; Width = 8; } else if (AMDGPU::SReg_512RegClass.contains(Reg)) { assert(!AMDGPU::TTMP_512RegClass.contains(Reg) && "trap handler registers should not be used"); IsSGPR = true; Width = 16; } else if (AMDGPU::VReg_512RegClass.contains(Reg)) { IsSGPR = false; Width = 16; } else if (AMDGPU::AReg_512RegClass.contains(Reg)) { IsSGPR = false; IsAGPR = true; Width = 16; } else if (AMDGPU::SReg_1024RegClass.contains(Reg)) { IsSGPR = true; Width = 32; } else if (AMDGPU::VReg_1024RegClass.contains(Reg)) { IsSGPR = false; Width = 32; } else if (AMDGPU::AReg_1024RegClass.contains(Reg)) { IsSGPR = false; IsAGPR = true; Width = 32; } else { llvm_unreachable("Unknown register class"); } unsigned HWReg = TRI.getHWRegIndex(Reg); int MaxUsed = HWReg + Width - 1; if (IsSGPR) { MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR; } else if (IsAGPR) { MaxAGPR = MaxUsed > MaxAGPR ? MaxUsed : MaxAGPR; } else { MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR; } } if (MI.isCall()) { // Pseudo used just to encode the underlying global. Is there a better // way to track this? const MachineOperand *CalleeOp = TII->getNamedOperand(MI, AMDGPU::OpName::callee); const Function *Callee = getCalleeFunction(*CalleeOp); DenseMap::const_iterator I = CallGraphResourceInfo.end(); bool IsExternal = !Callee || Callee->isDeclaration(); if (!IsExternal) I = CallGraphResourceInfo.find(Callee); if (IsExternal || I == CallGraphResourceInfo.end()) { // Avoid crashing on undefined behavior with an illegal call to a // kernel. If a callsite's calling convention doesn't match the // function's, it's undefined behavior. If the callsite calling // convention does match, that would have errored earlier. // FIXME: The verifier shouldn't allow this. if (!IsExternal && AMDGPU::isEntryFunctionCC(Callee->getCallingConv())) report_fatal_error("invalid call to entry function"); // If this is a call to an external function, we can't do much. Make // conservative guesses. // 48 SGPRs - vcc, - flat_scr, -xnack int MaxSGPRGuess = 47 - IsaInfo::getNumExtraSGPRs(&ST, true, ST.hasFlatAddressSpace()); MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess); MaxVGPR = std::max(MaxVGPR, 23); MaxAGPR = std::max(MaxAGPR, 23); CalleeFrameSize = std::max(CalleeFrameSize, static_cast(AssumedStackSizeForExternalCall)); Info.UsesVCC = true; Info.UsesFlatScratch = ST.hasFlatAddressSpace(); Info.HasDynamicallySizedStack = true; } else { // We force CodeGen to run in SCC order, so the callee's register // usage etc. should be the cumulative usage of all callees. MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR); MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR); MaxAGPR = std::max(I->second.NumAGPR - 1, MaxAGPR); CalleeFrameSize = std::max(I->second.PrivateSegmentSize, CalleeFrameSize); Info.UsesVCC |= I->second.UsesVCC; Info.UsesFlatScratch |= I->second.UsesFlatScratch; Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack; Info.HasRecursion |= I->second.HasRecursion; } // FIXME: Call site could have norecurse on it if (!Callee || !Callee->doesNotRecurse()) Info.HasRecursion = true; } } } Info.NumExplicitSGPR = MaxSGPR + 1; Info.NumVGPR = MaxVGPR + 1; Info.NumAGPR = MaxAGPR + 1; Info.PrivateSegmentSize += CalleeFrameSize; return Info; } void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, const MachineFunction &MF) { SIFunctionResourceInfo Info = analyzeResourceUsage(MF); const GCNSubtarget &STM = MF.getSubtarget(); ProgInfo.NumArchVGPR = Info.NumVGPR; ProgInfo.NumAccVGPR = Info.NumAGPR; ProgInfo.NumVGPR = Info.getTotalNumVGPRs(STM); ProgInfo.NumSGPR = Info.NumExplicitSGPR; ProgInfo.ScratchSize = Info.PrivateSegmentSize; ProgInfo.VCCUsed = Info.UsesVCC; ProgInfo.FlatUsed = Info.UsesFlatScratch; ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion; const uint64_t MaxScratchPerWorkitem = GCNSubtarget::MaxWaveScratchSize / STM.getWavefrontSize(); if (ProgInfo.ScratchSize > MaxScratchPerWorkitem) { DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), ProgInfo.ScratchSize, DS_Error); MF.getFunction().getContext().diagnose(DiagStackSize); } const SIMachineFunctionInfo *MFI = MF.getInfo(); // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be // unified. unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs( &STM, ProgInfo.VCCUsed, ProgInfo.FlatUsed); // Check the addressable register limit before we add ExtraSGPRs. if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && !STM.hasSGPRInitBug()) { unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { // This can happen due to a compiler bug or when using inline asm. LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag(MF.getFunction(), "addressable scalar registers", ProgInfo.NumSGPR, DS_Error, DK_ResourceLimit, MaxAddressableNumSGPRs); Ctx.diagnose(Diag); ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1; } } // Account for extra SGPRs and VGPRs reserved for debugger use. ProgInfo.NumSGPR += ExtraSGPRs; const Function &F = MF.getFunction(); // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave // dispatch registers are function args. unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0; if (isShader(F.getCallingConv())) { // FIXME: We should be using the number of registers determined during // calling convention lowering to legalize the types. const DataLayout &DL = F.getParent()->getDataLayout(); for (auto &Arg : F.args()) { unsigned NumRegs = (DL.getTypeSizeInBits(Arg.getType()) + 31) / 32; if (Arg.hasAttribute(Attribute::InReg)) WaveDispatchNumSGPR += NumRegs; else WaveDispatchNumVGPR += NumRegs; } ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR); ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR); } // Adjust number of registers used to meet default/requested minimum/maximum // number of waves per execution unit request. ProgInfo.NumSGPRsForWavesPerEU = std::max( std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU())); ProgInfo.NumVGPRsForWavesPerEU = std::max( std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU())); if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || STM.hasSGPRInitBug()) { unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { // This can happen due to a compiler bug or when using inline asm to use // the registers which are usually reserved for vcc etc. LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag(MF.getFunction(), "scalar registers", ProgInfo.NumSGPR, DS_Error, DK_ResourceLimit, MaxAddressableNumSGPRs); Ctx.diagnose(Diag); ProgInfo.NumSGPR = MaxAddressableNumSGPRs; ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs; } } if (STM.hasSGPRInitBug()) { ProgInfo.NumSGPR = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; ProgInfo.NumSGPRsForWavesPerEU = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; } if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", MFI->getNumUserSGPRs(), DS_Error); Ctx.diagnose(Diag); } if (MFI->getLDSSize() > static_cast(STM.getLocalMemorySize())) { LLVMContext &Ctx = MF.getFunction().getContext(); DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory", MFI->getLDSSize(), DS_Error); Ctx.diagnose(Diag); } ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks( &STM, ProgInfo.NumSGPRsForWavesPerEU); ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks( &STM, ProgInfo.NumVGPRsForWavesPerEU); const SIModeRegisterDefaults Mode = MFI->getMode(); // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode // register. ProgInfo.FloatMode = getFPMode(Mode); ProgInfo.IEEEMode = Mode.IEEE; // Make clamp modifier on NaN input returns 0. ProgInfo.DX10Clamp = Mode.DX10Clamp; unsigned LDSAlignShift; if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { // LDS is allocated in 64 dword blocks. LDSAlignShift = 8; } else { // LDS is allocated in 128 dword blocks. LDSAlignShift = 9; } unsigned LDSSpillSize = MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize(); ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; ProgInfo.LDSBlocks = alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; // Scratch is allocated in 256 dword blocks. unsigned ScratchAlignShift = 10; // We need to program the hardware with the amount of scratch memory that // is used by the entire wave. ProgInfo.ScratchSize is the amount of // scratch memory used per thread. ProgInfo.ScratchBlocks = alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), 1ULL << ScratchAlignShift) >> ScratchAlignShift; if (getIsaVersion(getGlobalSTI()->getCPU()).Major >= 10) { ProgInfo.WgpMode = STM.isCuModeEnabled() ? 0 : 1; ProgInfo.MemOrdered = 1; } // 0 = X, 1 = XY, 2 = XYZ unsigned TIDIGCompCnt = 0; if (MFI->hasWorkItemIDZ()) TIDIGCompCnt = 2; else if (MFI->hasWorkItemIDY()) TIDIGCompCnt = 1; ProgInfo.ComputePGMRSrc2 = S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP. S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) | S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | S_00B84C_EXCP_EN_MSB(0) | // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) | S_00B84C_EXCP_EN(0); ProgInfo.Occupancy = STM.computeOccupancy(MF.getFunction(), ProgInfo.LDSSize, ProgInfo.NumSGPRsForWavesPerEU, ProgInfo.NumVGPRsForWavesPerEU); } static unsigned getRsrcReg(CallingConv::ID CallConv) { switch (CallConv) { default: LLVM_FALLTHROUGH; case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; } } void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, const SIProgramInfo &CurrentProgramInfo) { const SIMachineFunctionInfo *MFI = MF.getInfo(); unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { OutStreamer->emitInt32(R_00B848_COMPUTE_PGM_RSRC1); OutStreamer->emitInt32(CurrentProgramInfo.getComputePGMRSrc1()); OutStreamer->emitInt32(R_00B84C_COMPUTE_PGM_RSRC2); OutStreamer->emitInt32(CurrentProgramInfo.ComputePGMRSrc2); OutStreamer->emitInt32(R_00B860_COMPUTE_TMPRING_SIZE); OutStreamer->emitInt32(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks)); // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = // 0" comment but I don't see a corresponding field in the register spec. } else { OutStreamer->emitInt32(RsrcReg); OutStreamer->emitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4); OutStreamer->emitInt32(R_0286E8_SPI_TMPRING_SIZE); OutStreamer->emitIntValue( S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); } if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { OutStreamer->emitInt32(R_00B02C_SPI_SHADER_PGM_RSRC2_PS); OutStreamer->emitInt32( S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks)); OutStreamer->emitInt32(R_0286CC_SPI_PS_INPUT_ENA); OutStreamer->emitInt32(MFI->getPSInputEnable()); OutStreamer->emitInt32(R_0286D0_SPI_PS_INPUT_ADDR); OutStreamer->emitInt32(MFI->getPSInputAddr()); } OutStreamer->emitInt32(R_SPILLED_SGPRS); OutStreamer->emitInt32(MFI->getNumSpilledSGPRs()); OutStreamer->emitInt32(R_SPILLED_VGPRS); OutStreamer->emitInt32(MFI->getNumSpilledVGPRs()); } // This is the equivalent of EmitProgramInfoSI above, but for when the OS type // is AMDPAL. It stores each compute/SPI register setting and other PAL // metadata items into the PALMD::Metadata, combining with any provided by the // frontend as LLVM metadata. Once all functions are written, the PAL metadata // is then written as a single block in the .note section. void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, const SIProgramInfo &CurrentProgramInfo) { const SIMachineFunctionInfo *MFI = MF.getInfo(); auto CC = MF.getFunction().getCallingConv(); auto MD = getTargetStreamer()->getPALMetadata(); MD->setEntryPoint(CC, MF.getFunction().getName()); MD->setNumUsedVgprs(CC, CurrentProgramInfo.NumVGPRsForWavesPerEU); MD->setNumUsedSgprs(CC, CurrentProgramInfo.NumSGPRsForWavesPerEU); MD->setRsrc1(CC, CurrentProgramInfo.getPGMRSrc1(CC)); if (AMDGPU::isCompute(CC)) { MD->setRsrc2(CC, CurrentProgramInfo.ComputePGMRSrc2); } else { if (CurrentProgramInfo.ScratchBlocks > 0) MD->setRsrc2(CC, S_00B84C_SCRATCH_EN(1)); } // ScratchSize is in bytes, 16 aligned. MD->setScratchSize(CC, alignTo(CurrentProgramInfo.ScratchSize, 16)); if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { MD->setRsrc2(CC, S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks)); MD->setSpiPsInputEna(MFI->getPSInputEnable()); MD->setSpiPsInputAddr(MFI->getPSInputAddr()); } const GCNSubtarget &STM = MF.getSubtarget(); if (STM.isWave32()) MD->setWave32(MF.getFunction().getCallingConv()); } void AMDGPUAsmPrinter::emitPALFunctionMetadata(const MachineFunction &MF) { auto *MD = getTargetStreamer()->getPALMetadata(); const MachineFrameInfo &MFI = MF.getFrameInfo(); MD->setFunctionScratchSize(MF, MFI.getStackSize()); // Set compute registers MD->setRsrc1(CallingConv::AMDGPU_CS, CurrentProgramInfo.getPGMRSrc1(CallingConv::AMDGPU_CS)); MD->setRsrc2(CallingConv::AMDGPU_CS, CurrentProgramInfo.ComputePGMRSrc2); } // This is supposed to be log2(Size) static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { switch (Size) { case 4: return AMD_ELEMENT_4_BYTES; case 8: return AMD_ELEMENT_8_BYTES; case 16: return AMD_ELEMENT_16_BYTES; default: llvm_unreachable("invalid private_element_size"); } } void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out, const SIProgramInfo &CurrentProgramInfo, const MachineFunction &MF) const { const Function &F = MF.getFunction(); assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || F.getCallingConv() == CallingConv::SPIR_KERNEL); const SIMachineFunctionInfo *MFI = MF.getInfo(); const GCNSubtarget &STM = MF.getSubtarget(); AMDGPU::initDefaultAMDKernelCodeT(Out, &STM); Out.compute_pgm_resource_registers = CurrentProgramInfo.getComputePGMRSrc1() | (CurrentProgramInfo.ComputePGMRSrc2 << 32); Out.code_properties |= AMD_CODE_PROPERTY_IS_PTR64; if (CurrentProgramInfo.DynamicCallStack) Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK; AMD_HSA_BITS_SET(Out.code_properties, AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, getElementByteSizeValue(STM.getMaxPrivateElementSize(true))); if (MFI->hasPrivateSegmentBuffer()) { Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; } if (MFI->hasDispatchPtr()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; if (MFI->hasQueuePtr()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; if (MFI->hasKernargSegmentPtr()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; if (MFI->hasDispatchID()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; if (MFI->hasFlatScratchInit()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; if (MFI->hasDispatchPtr()) Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; if (STM.isXNACKEnabled()) Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; Align MaxKernArgAlign; Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign); Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; // kernarg_segment_alignment is specified as log of the alignment. // The minimum alignment is 16. Out.kernarg_segment_alignment = Log2(std::max(Align(16), MaxKernArgAlign)); } bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, const char *ExtraCode, raw_ostream &O) { // First try the generic code, which knows about modifiers like 'c' and 'n'. if (!AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O)) return false; if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { case 'r': break; default: return true; } } // TODO: Should be able to support other operand types like globals. const MachineOperand &MO = MI->getOperand(OpNo); if (MO.isReg()) { AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, *MF->getSubtarget().getRegisterInfo()); return false; } else if (MO.isImm()) { int64_t Val = MO.getImm(); if (AMDGPU::isInlinableIntLiteral(Val)) { O << Val; } else if (isUInt<16>(Val)) { O << format("0x%" PRIx16, static_cast(Val)); } else if (isUInt<32>(Val)) { O << format("0x%" PRIx32, static_cast(Val)); } else { O << format("0x%" PRIx64, static_cast(Val)); } return false; } return true; }