//=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// Post-legalization lowering for instructions. /// /// This is used to offload pattern matching from the selector. /// /// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually /// a G_ZIP, G_UZP, etc. /// /// General optimization combines should be handled by either the /// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner. /// //===----------------------------------------------------------------------===// #include "AArch64TargetMachine.h" #include "AArch64GlobalISelUtils.h" #include "MCTargetDesc/AArch64MCTargetDesc.h" #include "llvm/CodeGen/GlobalISel/Combiner.h" #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" #include "llvm/CodeGen/GlobalISel/CombinerInfo.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "aarch64-postlegalizer-lowering" using namespace llvm; using namespace MIPatternMatch; using namespace AArch64GISelUtils; /// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR. /// /// Used for matching target-supported shuffles before codegen. struct ShuffleVectorPseudo { unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1) Register Dst; ///< Destination register. SmallVector SrcOps; ///< Source registers. ShuffleVectorPseudo(unsigned Opc, Register Dst, std::initializer_list SrcOps) : Opc(Opc), Dst(Dst), SrcOps(SrcOps){}; ShuffleVectorPseudo() {} }; /// Check if a vector shuffle corresponds to a REV instruction with the /// specified blocksize. static bool isREVMask(ArrayRef M, unsigned EltSize, unsigned NumElts, unsigned BlockSize) { assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && "Only possible block sizes for REV are: 16, 32, 64"); assert(EltSize != 64 && "EltSize cannot be 64 for REV mask."); unsigned BlockElts = M[0] + 1; // If the first shuffle index is UNDEF, be optimistic. if (M[0] < 0) BlockElts = BlockSize / EltSize; if (BlockSize <= EltSize || BlockSize != BlockElts * EltSize) return false; for (unsigned i = 0; i < NumElts; ++i) { // Ignore undef indices. if (M[i] < 0) continue; if (static_cast(M[i]) != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) return false; } return true; } /// Determines if \p M is a shuffle vector mask for a TRN of \p NumElts. /// Whether or not G_TRN1 or G_TRN2 should be used is stored in \p WhichResult. static bool isTRNMask(ArrayRef M, unsigned NumElts, unsigned &WhichResult) { if (NumElts % 2 != 0) return false; WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i < NumElts; i += 2) { if ((M[i] >= 0 && static_cast(M[i]) != i + WhichResult) || (M[i + 1] >= 0 && static_cast(M[i + 1]) != i + NumElts + WhichResult)) return false; } return true; } /// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector /// sources of the shuffle are different. static Optional> getExtMask(ArrayRef M, unsigned NumElts) { // Look for the first non-undef element. auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; }); if (FirstRealElt == M.end()) return None; // Use APInt to handle overflow when calculating expected element. unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); // The following shuffle indices must be the successive elements after the // first real element. if (any_of( make_range(std::next(FirstRealElt), M.end()), [&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; })) return None; // The index of an EXT is the first element if it is not UNDEF. // Watch out for the beginning UNDEFs. The EXT index should be the expected // value of the first element. E.g. // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. // ExpectedElt is the last mask index plus 1. uint64_t Imm = ExpectedElt.getZExtValue(); bool ReverseExt = false; // There are two difference cases requiring to reverse input vectors. // For example, for vector <4 x i32> we have the following cases, // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) // For both cases, we finally use mask <5, 6, 7, 0>, which requires // to reverse two input vectors. if (Imm < NumElts) ReverseExt = true; else Imm -= NumElts; return std::make_pair(ReverseExt, Imm); } /// Determines if \p M is a shuffle vector mask for a UZP of \p NumElts. /// Whether or not G_UZP1 or G_UZP2 should be used is stored in \p WhichResult. static bool isUZPMask(ArrayRef M, unsigned NumElts, unsigned &WhichResult) { WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i != NumElts; ++i) { // Skip undef indices. if (M[i] < 0) continue; if (static_cast(M[i]) != 2 * i + WhichResult) return false; } return true; } /// \return true if \p M is a zip mask for a shuffle vector of \p NumElts. /// Whether or not G_ZIP1 or G_ZIP2 should be used is stored in \p WhichResult. static bool isZipMask(ArrayRef M, unsigned NumElts, unsigned &WhichResult) { if (NumElts % 2 != 0) return false; // 0 means use ZIP1, 1 means use ZIP2. WhichResult = (M[0] == 0 ? 0 : 1); unsigned Idx = WhichResult * NumElts / 2; for (unsigned i = 0; i != NumElts; i += 2) { if ((M[i] >= 0 && static_cast(M[i]) != Idx) || (M[i + 1] >= 0 && static_cast(M[i + 1]) != Idx + NumElts)) return false; Idx += 1; } return true; } /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a /// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc. static bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); ArrayRef ShuffleMask = MI.getOperand(3).getShuffleMask(); Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(Dst); unsigned EltSize = Ty.getScalarSizeInBits(); // Element size for a rev cannot be 64. if (EltSize == 64) return false; unsigned NumElts = Ty.getNumElements(); // Try to produce G_REV64 if (isREVMask(ShuffleMask, EltSize, NumElts, 64)) { MatchInfo = ShuffleVectorPseudo(AArch64::G_REV64, Dst, {Src}); return true; } // TODO: Produce G_REV32 and G_REV16 once we have proper legalization support. // This should be identical to above, but with a constant 32 and constant // 16. return false; } /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with /// a G_TRN1 or G_TRN2 instruction. static bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); unsigned WhichResult; ArrayRef ShuffleMask = MI.getOperand(3).getShuffleMask(); Register Dst = MI.getOperand(0).getReg(); unsigned NumElts = MRI.getType(Dst).getNumElements(); if (!isTRNMask(ShuffleMask, NumElts, WhichResult)) return false; unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2; Register V1 = MI.getOperand(1).getReg(); Register V2 = MI.getOperand(2).getReg(); MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); return true; } /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with /// a G_UZP1 or G_UZP2 instruction. /// /// \param [in] MI - The shuffle vector instruction. /// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success. static bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); unsigned WhichResult; ArrayRef ShuffleMask = MI.getOperand(3).getShuffleMask(); Register Dst = MI.getOperand(0).getReg(); unsigned NumElts = MRI.getType(Dst).getNumElements(); if (!isUZPMask(ShuffleMask, NumElts, WhichResult)) return false; unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2; Register V1 = MI.getOperand(1).getReg(); Register V2 = MI.getOperand(2).getReg(); MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); return true; } static bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); unsigned WhichResult; ArrayRef ShuffleMask = MI.getOperand(3).getShuffleMask(); Register Dst = MI.getOperand(0).getReg(); unsigned NumElts = MRI.getType(Dst).getNumElements(); if (!isZipMask(ShuffleMask, NumElts, WhichResult)) return false; unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2; Register V1 = MI.getOperand(1).getReg(); Register V2 = MI.getOperand(2).getReg(); MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); return true; } /// Helper function for matchDup. static bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { if (Lane != 0) return false; // Try to match a vector splat operation into a dup instruction. // We're looking for this pattern: // // %scalar:gpr(s64) = COPY $x0 // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF // %cst0:gpr(s32) = G_CONSTANT i32 0 // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32) // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32) // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, %zerovec(<2 x s32>) // // ...into: // %splat = G_DUP %scalar // Begin matching the insert. auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT, MI.getOperand(1).getReg(), MRI); if (!InsMI) return false; // Match the undef vector operand. if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(), MRI)) return false; // Match the index constant 0. if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ZeroInt())) return false; MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {InsMI->getOperand(2).getReg()}); return true; } /// Helper function for matchDup. static bool matchDupFromBuildVector(int Lane, MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(Lane >= 0 && "Expected positive lane?"); // Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the // lane's definition directly. auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, MI.getOperand(1).getReg(), MRI); if (!BuildVecMI) return false; Register Reg = BuildVecMI->getOperand(Lane + 1).getReg(); MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg}); return true; } static bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); auto MaybeLane = getSplatIndex(MI); if (!MaybeLane) return false; int Lane = *MaybeLane; // If this is undef splat, generate it via "just" vdup, if possible. if (Lane < 0) Lane = 0; if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo)) return true; if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo)) return true; return false; } static bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI, ShuffleVectorPseudo &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); Register Dst = MI.getOperand(0).getReg(); auto ExtInfo = getExtMask(MI.getOperand(3).getShuffleMask(), MRI.getType(Dst).getNumElements()); if (!ExtInfo) return false; bool ReverseExt; uint64_t Imm; std::tie(ReverseExt, Imm) = *ExtInfo; Register V1 = MI.getOperand(1).getReg(); Register V2 = MI.getOperand(2).getReg(); if (ReverseExt) std::swap(V1, V2); uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8; Imm *= ExtFactor; MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm}); return true; } /// Replace a G_SHUFFLE_VECTOR instruction with a pseudo. /// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR. static bool applyShuffleVectorPseudo(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) { MachineIRBuilder MIRBuilder(MI); MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps); MI.eraseFromParent(); return true; } /// Replace a G_SHUFFLE_VECTOR instruction with G_EXT. /// Special-cased because the constant operand must be emitted as a G_CONSTANT /// for the imported tablegen patterns to work. static bool applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) { MachineIRBuilder MIRBuilder(MI); // Tablegen patterns expect an i32 G_CONSTANT as the final op. auto Cst = MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm()); MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, {MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst}); MI.eraseFromParent(); return true; } /// isVShiftRImm - Check if this is a valid vector for the immediate /// operand of a vector shift right operation. The value must be in the range: /// 1 <= Value <= ElementBits for a right shift. static bool isVShiftRImm(Register Reg, MachineRegisterInfo &MRI, LLT Ty, int64_t &Cnt) { assert(Ty.isVector() && "vector shift count is not a vector type"); MachineInstr *MI = MRI.getVRegDef(Reg); auto Cst = getBuildVectorConstantSplat(*MI, MRI); if (!Cst) return false; Cnt = *Cst; int64_t ElementBits = Ty.getScalarSizeInBits(); return Cnt >= 1 && Cnt <= ElementBits; } /// Match a vector G_ASHR or G_LSHR with a valid immediate shift. static bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI, int64_t &Imm) { assert(MI.getOpcode() == TargetOpcode::G_ASHR || MI.getOpcode() == TargetOpcode::G_LSHR); LLT Ty = MRI.getType(MI.getOperand(1).getReg()); if (!Ty.isVector()) return false; return isVShiftRImm(MI.getOperand(2).getReg(), MRI, Ty, Imm); } static bool applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI, int64_t &Imm) { unsigned Opc = MI.getOpcode(); assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR); unsigned NewOpc = Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR; MachineIRBuilder MIB(MI); auto ImmDef = MIB.buildConstant(LLT::scalar(32), Imm); MIB.buildInstr(NewOpc, {MI.getOperand(0)}, {MI.getOperand(1), ImmDef}); MI.eraseFromParent(); return true; } /// Determine if it is possible to modify the \p RHS and predicate \p P of a /// G_ICMP instruction such that the right-hand side is an arithmetic immediate. /// /// \returns A pair containing the updated immediate and predicate which may /// be used to optimize the instruction. /// /// \note This assumes that the comparison has been legalized. Optional> tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P, const MachineRegisterInfo &MRI) { const auto &Ty = MRI.getType(RHS); if (Ty.isVector()) return None; unsigned Size = Ty.getSizeInBits(); assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?"); // If the RHS is not a constant, or the RHS is already a valid arithmetic // immediate, then there is nothing to change. auto ValAndVReg = getConstantVRegValWithLookThrough(RHS, MRI); if (!ValAndVReg) return None; uint64_t C = ValAndVReg->Value.getZExtValue(); if (isLegalArithImmed(C)) return None; // We have a non-arithmetic immediate. Check if adjusting the immediate and // adjusting the predicate will result in a legal arithmetic immediate. switch (P) { default: return None; case CmpInst::ICMP_SLT: case CmpInst::ICMP_SGE: // Check for // // x slt c => x sle c - 1 // x sge c => x sgt c - 1 // // When c is not the smallest possible negative number. if ((Size == 64 && static_cast(C) == INT64_MIN) || (Size == 32 && static_cast(C) == INT32_MIN)) return None; P = (P == CmpInst::ICMP_SLT) ? CmpInst::ICMP_SLE : CmpInst::ICMP_SGT; C -= 1; break; case CmpInst::ICMP_ULT: case CmpInst::ICMP_UGE: // Check for // // x ult c => x ule c - 1 // x uge c => x ugt c - 1 // // When c is not zero. if (C == 0) return None; P = (P == CmpInst::ICMP_ULT) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; C -= 1; break; case CmpInst::ICMP_SLE: case CmpInst::ICMP_SGT: // Check for // // x sle c => x slt c + 1 // x sgt c => s sge c + 1 // // When c is not the largest possible signed integer. if ((Size == 32 && static_cast(C) == INT32_MAX) || (Size == 64 && static_cast(C) == INT64_MAX)) return None; P = (P == CmpInst::ICMP_SLE) ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGE; C += 1; break; case CmpInst::ICMP_ULE: case CmpInst::ICMP_UGT: // Check for // // x ule c => x ult c + 1 // x ugt c => s uge c + 1 // // When c is not the largest possible unsigned integer. if ((Size == 32 && static_cast(C) == UINT32_MAX) || (Size == 64 && C == UINT64_MAX)) return None; P = (P == CmpInst::ICMP_ULE) ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; C += 1; break; } // Check if the new constant is valid, and return the updated constant and // predicate if it is. if (Size == 32) C = static_cast(C); if (!isLegalArithImmed(C)) return None; return {{C, P}}; } /// Determine whether or not it is possible to update the RHS and predicate of /// a G_ICMP instruction such that the RHS will be selected as an arithmetic /// immediate. /// /// \p MI - The G_ICMP instruction /// \p MatchInfo - The new RHS immediate and predicate on success /// /// See tryAdjustICmpImmAndPred for valid transformations. bool matchAdjustICmpImmAndPred( MachineInstr &MI, const MachineRegisterInfo &MRI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_ICMP); Register RHS = MI.getOperand(3).getReg(); auto Pred = static_cast(MI.getOperand(1).getPredicate()); if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, Pred, MRI)) { MatchInfo = *MaybeNewImmAndPred; return true; } return false; } bool applyAdjustICmpImmAndPred( MachineInstr &MI, std::pair &MatchInfo, MachineIRBuilder &MIB, GISelChangeObserver &Observer) { MIB.setInstrAndDebugLoc(MI); MachineOperand &RHS = MI.getOperand(3); MachineRegisterInfo &MRI = *MIB.getMRI(); auto Cst = MIB.buildConstant(MRI.cloneVirtualRegister(RHS.getReg()), MatchInfo.first); Observer.changingInstr(MI); RHS.setReg(Cst->getOperand(0).getReg()); MI.getOperand(1).setPredicate(MatchInfo.second); Observer.changedInstr(MI); return true; } bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); Register Src1Reg = MI.getOperand(1).getReg(); const LLT SrcTy = MRI.getType(Src1Reg); const LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); auto LaneIdx = getSplatIndex(MI); if (!LaneIdx) return false; // The lane idx should be within the first source vector. if (*LaneIdx >= SrcTy.getNumElements()) return false; if (DstTy != SrcTy) return false; LLT ScalarTy = SrcTy.getElementType(); unsigned ScalarSize = ScalarTy.getSizeInBits(); unsigned Opc = 0; switch (SrcTy.getNumElements()) { case 2: if (ScalarSize == 64) Opc = AArch64::G_DUPLANE64; break; case 4: if (ScalarSize == 32) Opc = AArch64::G_DUPLANE32; break; case 8: if (ScalarSize == 16) Opc = AArch64::G_DUPLANE16; break; case 16: if (ScalarSize == 8) Opc = AArch64::G_DUPLANE8; break; default: break; } if (!Opc) return false; MatchInfo.first = Opc; MatchInfo.second = *LaneIdx; return true; } bool applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); B.setInstrAndDebugLoc(MI); auto Lane = B.buildConstant(LLT::scalar(64), MatchInfo.second); B.buildInstr(MatchInfo.first, {MI.getOperand(0).getReg()}, {MI.getOperand(1).getReg(), Lane}); MI.eraseFromParent(); return true; } #define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS #include "AArch64GenPostLegalizeGILowering.inc" #undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS namespace { #define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H #include "AArch64GenPostLegalizeGILowering.inc" #undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H class AArch64PostLegalizerLoweringInfo : public CombinerInfo { public: AArch64GenPostLegalizerLoweringHelperRuleConfig GeneratedRuleCfg; AArch64PostLegalizerLoweringInfo(bool OptSize, bool MinSize) : CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false, /*LegalizerInfo*/ nullptr, /*OptEnabled = */ true, OptSize, MinSize) { if (!GeneratedRuleCfg.parseCommandLineOption()) report_fatal_error("Invalid rule identifier"); } virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI, MachineIRBuilder &B) const override; }; bool AArch64PostLegalizerLoweringInfo::combine(GISelChangeObserver &Observer, MachineInstr &MI, MachineIRBuilder &B) const { CombinerHelper Helper(Observer, B); AArch64GenPostLegalizerLoweringHelper Generated(GeneratedRuleCfg); return Generated.tryCombineAll(Observer, MI, B, Helper); } #define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP #include "AArch64GenPostLegalizeGILowering.inc" #undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP class AArch64PostLegalizerLowering : public MachineFunctionPass { public: static char ID; AArch64PostLegalizerLowering(); StringRef getPassName() const override { return "AArch64PostLegalizerLowering"; } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override; }; } // end anonymous namespace void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesCFG(); getSelectionDAGFallbackAnalysisUsage(AU); MachineFunctionPass::getAnalysisUsage(AU); } AArch64PostLegalizerLowering::AArch64PostLegalizerLowering() : MachineFunctionPass(ID) { initializeAArch64PostLegalizerLoweringPass(*PassRegistry::getPassRegistry()); } bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) { if (MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailedISel)) return false; assert(MF.getProperties().hasProperty( MachineFunctionProperties::Property::Legalized) && "Expected a legalized function?"); auto *TPC = &getAnalysis(); const Function &F = MF.getFunction(); AArch64PostLegalizerLoweringInfo PCInfo(F.hasOptSize(), F.hasMinSize()); Combiner C(PCInfo, TPC); return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr); } char AArch64PostLegalizerLowering::ID = 0; INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE, "Lower AArch64 MachineInstrs after legalization", false, false) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE, "Lower AArch64 MachineInstrs after legalization", false, false) namespace llvm { FunctionPass *createAArch64PostLegalizerLowering() { return new AArch64PostLegalizerLowering(); } } // end namespace llvm