//===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass turns explicit null checks of the form // // test %r10, %r10 // je throw_npe // movl (%r10), %esi // ... // // to // // faulting_load_op("movl (%r10), %esi", throw_npe) // ... // // With the help of a runtime that understands the .fault_maps section, // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs // a page fault. // Store and LoadStore are also supported. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/CodeGen/FaultMaps.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/LLVMContext.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include #include #include using namespace llvm; static cl::opt PageSize("imp-null-check-page-size", cl::desc("The page size of the target in bytes"), cl::init(4096), cl::Hidden); static cl::opt MaxInstsToConsider( "imp-null-max-insts-to-consider", cl::desc("The max number of instructions to consider hoisting loads over " "(the algorithm is quadratic over this number)"), cl::Hidden, cl::init(8)); #define DEBUG_TYPE "implicit-null-checks" STATISTIC(NumImplicitNullChecks, "Number of explicit null checks made implicit"); namespace { class ImplicitNullChecks : public MachineFunctionPass { /// Return true if \c computeDependence can process \p MI. static bool canHandle(const MachineInstr *MI); /// Helper function for \c computeDependence. Return true if \p A /// and \p B do not have any dependences between them, and can be /// re-ordered without changing program semantics. bool canReorder(const MachineInstr *A, const MachineInstr *B); /// A data type for representing the result computed by \c /// computeDependence. States whether it is okay to reorder the /// instruction passed to \c computeDependence with at most one /// dependency. struct DependenceResult { /// Can we actually re-order \p MI with \p Insts (see \c /// computeDependence). bool CanReorder; /// If non-None, then an instruction in \p Insts that also must be /// hoisted. Optional::iterator> PotentialDependence; /*implicit*/ DependenceResult( bool CanReorder, Optional::iterator> PotentialDependence) : CanReorder(CanReorder), PotentialDependence(PotentialDependence) { assert((!PotentialDependence || CanReorder) && "!CanReorder && PotentialDependence.hasValue() not allowed!"); } }; /// Compute a result for the following question: can \p MI be /// re-ordered from after \p Insts to before it. /// /// \c canHandle should return true for all instructions in \p /// Insts. DependenceResult computeDependence(const MachineInstr *MI, ArrayRef Block); /// Represents one null check that can be made implicit. class NullCheck { // The memory operation the null check can be folded into. MachineInstr *MemOperation; // The instruction actually doing the null check (Ptr != 0). MachineInstr *CheckOperation; // The block the check resides in. MachineBasicBlock *CheckBlock; // The block branched to if the pointer is non-null. MachineBasicBlock *NotNullSucc; // The block branched to if the pointer is null. MachineBasicBlock *NullSucc; // If this is non-null, then MemOperation has a dependency on this // instruction; and it needs to be hoisted to execute before MemOperation. MachineInstr *OnlyDependency; public: explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation, MachineBasicBlock *checkBlock, MachineBasicBlock *notNullSucc, MachineBasicBlock *nullSucc, MachineInstr *onlyDependency) : MemOperation(memOperation), CheckOperation(checkOperation), CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc), OnlyDependency(onlyDependency) {} MachineInstr *getMemOperation() const { return MemOperation; } MachineInstr *getCheckOperation() const { return CheckOperation; } MachineBasicBlock *getCheckBlock() const { return CheckBlock; } MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; } MachineBasicBlock *getNullSucc() const { return NullSucc; } MachineInstr *getOnlyDependency() const { return OnlyDependency; } }; const TargetInstrInfo *TII = nullptr; const TargetRegisterInfo *TRI = nullptr; AliasAnalysis *AA = nullptr; MachineFrameInfo *MFI = nullptr; bool analyzeBlockForNullChecks(MachineBasicBlock &MBB, SmallVectorImpl &NullCheckList); MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB); void rewriteNullChecks(ArrayRef NullCheckList); enum AliasResult { AR_NoAlias, AR_MayAlias, AR_WillAliasEverything }; /// Returns AR_NoAlias if \p MI memory operation does not alias with /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if /// they may alias and any further memory operation may alias with \p PrevMI. AliasResult areMemoryOpsAliased(const MachineInstr &MI, const MachineInstr *PrevMI) const; enum SuitabilityResult { SR_Suitable, SR_Unsuitable, SR_Impossible }; /// Return SR_Suitable if \p MI a memory operation that can be used to /// implicitly null check the value in \p PointerReg, SR_Unsuitable if /// \p MI cannot be used to null check and SR_Impossible if there is /// no sense to continue lookup due to any other instruction will not be able /// to be used. \p PrevInsts is the set of instruction seen since /// the explicit null check on \p PointerReg. SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI, unsigned PointerReg, ArrayRef PrevInsts); /// Returns true if \p DependenceMI can clobber the liveIns in NullSucc block /// if it was hoisted to the NullCheck block. This is used by caller /// canHoistInst to decide if DependenceMI can be hoisted safely. bool canDependenceHoistingClobberLiveIns(MachineInstr *DependenceMI, MachineBasicBlock *NullSucc); /// Return true if \p FaultingMI can be hoisted from after the /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a /// non-null value if we also need to (and legally can) hoist a dependency. bool canHoistInst(MachineInstr *FaultingMI, ArrayRef InstsSeenSoFar, MachineBasicBlock *NullSucc, MachineInstr *&Dependence); public: static char ID; ImplicitNullChecks() : MachineFunctionPass(ID) { initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } }; } // end anonymous namespace bool ImplicitNullChecks::canHandle(const MachineInstr *MI) { if (MI->isCall() || MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects()) return false; auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); }; (void)IsRegMask; assert(!llvm::any_of(MI->operands(), IsRegMask) && "Calls were filtered out above!"); auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); }; return llvm::all_of(MI->memoperands(), IsUnordered); } ImplicitNullChecks::DependenceResult ImplicitNullChecks::computeDependence(const MachineInstr *MI, ArrayRef Block) { assert(llvm::all_of(Block, canHandle) && "Check this first!"); assert(!is_contained(Block, MI) && "Block must be exclusive of MI!"); Optional::iterator> Dep; for (auto I = Block.begin(), E = Block.end(); I != E; ++I) { if (canReorder(*I, MI)) continue; if (Dep == None) { // Found one possible dependency, keep track of it. Dep = I; } else { // We found two dependencies, so bail out. return {false, None}; } } return {true, Dep}; } bool ImplicitNullChecks::canReorder(const MachineInstr *A, const MachineInstr *B) { assert(canHandle(A) && canHandle(B) && "Precondition!"); // canHandle makes sure that we _can_ correctly analyze the dependencies // between A and B here -- for instance, we should not be dealing with heap // load-store dependencies here. for (const auto &MOA : A->operands()) { if (!(MOA.isReg() && MOA.getReg())) continue; Register RegA = MOA.getReg(); for (const auto &MOB : B->operands()) { if (!(MOB.isReg() && MOB.getReg())) continue; Register RegB = MOB.getReg(); if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef())) return false; } } return true; } bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) { TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getRegInfo().getTargetRegisterInfo(); MFI = &MF.getFrameInfo(); AA = &getAnalysis().getAAResults(); SmallVector NullCheckList; for (auto &MBB : MF) analyzeBlockForNullChecks(MBB, NullCheckList); if (!NullCheckList.empty()) rewriteNullChecks(NullCheckList); return !NullCheckList.empty(); } // Return true if any register aliasing \p Reg is live-in into \p MBB. static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI, MachineBasicBlock *MBB, unsigned Reg) { for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid(); ++AR) if (MBB->isLiveIn(*AR)) return true; return false; } ImplicitNullChecks::AliasResult ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI, const MachineInstr *PrevMI) const { // If it is not memory access, skip the check. if (!(PrevMI->mayStore() || PrevMI->mayLoad())) return AR_NoAlias; // Load-Load may alias if (!(MI.mayStore() || PrevMI->mayStore())) return AR_NoAlias; // We lost info, conservatively alias. If it was store then no sense to // continue because we won't be able to check against it further. if (MI.memoperands_empty()) return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias; if (PrevMI->memoperands_empty()) return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias; for (MachineMemOperand *MMO1 : MI.memoperands()) { // MMO1 should have a value due it comes from operation we'd like to use // as implicit null check. assert(MMO1->getValue() && "MMO1 should have a Value!"); for (MachineMemOperand *MMO2 : PrevMI->memoperands()) { if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) { if (PSV->mayAlias(MFI)) return AR_MayAlias; continue; } llvm::AliasResult AAResult = AA->alias( MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo())); if (AAResult != NoAlias) return AR_MayAlias; } } return AR_NoAlias; } ImplicitNullChecks::SuitabilityResult ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI, unsigned PointerReg, ArrayRef PrevInsts) { // Implementation restriction for faulting_op insertion // TODO: This could be relaxed if we find a test case which warrants it. if (MI.getDesc().getNumDefs() > 1) return SR_Unsuitable; if (!MI.mayLoadOrStore() || MI.isPredicable()) return SR_Unsuitable; auto AM = TII->getAddrModeFromMemoryOp(MI, TRI); if (!AM) return SR_Unsuitable; auto AddrMode = *AM; const Register BaseReg = AddrMode.BaseReg, ScaledReg = AddrMode.ScaledReg; int64_t Displacement = AddrMode.Displacement; // We need the base of the memory instruction to be same as the register // where the null check is performed (i.e. PointerReg). if (BaseReg != PointerReg && ScaledReg != PointerReg) return SR_Unsuitable; const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); unsigned PointerRegSizeInBits = TRI->getRegSizeInBits(PointerReg, MRI); // Bail out of the sizes of BaseReg, ScaledReg and PointerReg are not the // same. if ((BaseReg && TRI->getRegSizeInBits(BaseReg, MRI) != PointerRegSizeInBits) || (ScaledReg && TRI->getRegSizeInBits(ScaledReg, MRI) != PointerRegSizeInBits)) return SR_Unsuitable; // Returns true if RegUsedInAddr is used for calculating the displacement // depending on addressing mode. Also calculates the Displacement. auto CalculateDisplacementFromAddrMode = [&](Register RegUsedInAddr, int64_t Multiplier) { // The register can be NoRegister, which is defined as zero for all targets. // Consider instruction of interest as `movq 8(,%rdi,8), %rax`. Here the // ScaledReg is %rdi, while there is no BaseReg. if (!RegUsedInAddr) return false; assert(Multiplier && "expected to be non-zero!"); MachineInstr *ModifyingMI = nullptr; for (auto It = std::next(MachineBasicBlock::const_reverse_iterator(&MI)); It != MI.getParent()->rend(); It++) { const MachineInstr *CurrMI = &*It; if (CurrMI->modifiesRegister(RegUsedInAddr, TRI)) { ModifyingMI = const_cast(CurrMI); break; } } if (!ModifyingMI) return false; // Check for the const value defined in register by ModifyingMI. This means // all other previous values for that register has been invalidated. int64_t ImmVal; if (!TII->getConstValDefinedInReg(*ModifyingMI, RegUsedInAddr, ImmVal)) return false; // Calculate the reg size in bits, since this is needed for bailing out in // case of overflow. int32_t RegSizeInBits = TRI->getRegSizeInBits(RegUsedInAddr, MRI); APInt ImmValC(RegSizeInBits, ImmVal, true /*IsSigned*/); APInt MultiplierC(RegSizeInBits, Multiplier); assert(MultiplierC.isStrictlyPositive() && "expected to be a positive value!"); bool IsOverflow; // Sign of the product depends on the sign of the ImmVal, since Multiplier // is always positive. APInt Product = ImmValC.smul_ov(MultiplierC, IsOverflow); if (IsOverflow) return false; APInt DisplacementC(64, Displacement, true /*isSigned*/); DisplacementC = Product.sadd_ov(DisplacementC, IsOverflow); if (IsOverflow) return false; // We only handle diplacements upto 64 bits wide. if (DisplacementC.getActiveBits() > 64) return false; Displacement = DisplacementC.getSExtValue(); return true; }; // If a register used in the address is constant, fold it's effect into the // displacement for ease of analysis. bool BaseRegIsConstVal = false, ScaledRegIsConstVal = false; if (CalculateDisplacementFromAddrMode(BaseReg, 1)) BaseRegIsConstVal = true; if (CalculateDisplacementFromAddrMode(ScaledReg, AddrMode.Scale)) ScaledRegIsConstVal = true; // The register which is not null checked should be part of the Displacement // calculation, otherwise we do not know whether the Displacement is made up // by some symbolic values. // This matters because we do not want to incorrectly assume that load from // falls in the zeroth faulting page in the "sane offset check" below. if ((BaseReg && BaseReg != PointerReg && !BaseRegIsConstVal) || (ScaledReg && ScaledReg != PointerReg && !ScaledRegIsConstVal)) return SR_Unsuitable; // We want the mem access to be issued at a sane offset from PointerReg, // so that if PointerReg is null then the access reliably page faults. if (!(-PageSize < Displacement && Displacement < PageSize)) return SR_Unsuitable; // Finally, check whether the current memory access aliases with previous one. for (auto *PrevMI : PrevInsts) { AliasResult AR = areMemoryOpsAliased(MI, PrevMI); if (AR == AR_WillAliasEverything) return SR_Impossible; if (AR == AR_MayAlias) return SR_Unsuitable; } return SR_Suitable; } bool ImplicitNullChecks::canDependenceHoistingClobberLiveIns( MachineInstr *DependenceMI, MachineBasicBlock *NullSucc) { for (const auto &DependenceMO : DependenceMI->operands()) { if (!(DependenceMO.isReg() && DependenceMO.getReg())) continue; // Make sure that we won't clobber any live ins to the sibling block by // hoisting Dependency. For instance, we can't hoist INST to before the // null check (even if it safe, and does not violate any dependencies in // the non_null_block) if %rdx is live in to _null_block. // // test %rcx, %rcx // je _null_block // _non_null_block: // %rdx = INST // ... // // This restriction does not apply to the faulting load inst because in // case the pointer loaded from is in the null page, the load will not // semantically execute, and affect machine state. That is, if the load // was loading into %rax and it faults, the value of %rax should stay the // same as it would have been had the load not have executed and we'd have // branched to NullSucc directly. if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg())) return true; } // The dependence does not clobber live-ins in NullSucc block. return false; } bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI, ArrayRef InstsSeenSoFar, MachineBasicBlock *NullSucc, MachineInstr *&Dependence) { auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar); if (!DepResult.CanReorder) return false; if (!DepResult.PotentialDependence) { Dependence = nullptr; return true; } auto DependenceItr = *DepResult.PotentialDependence; auto *DependenceMI = *DependenceItr; // We don't want to reason about speculating loads. Note -- at this point // we should have already filtered out all of the other non-speculatable // things, like calls and stores. // We also do not want to hoist stores because it might change the memory // while the FaultingMI may result in faulting. assert(canHandle(DependenceMI) && "Should never have reached here!"); if (DependenceMI->mayLoadOrStore()) return false; if (canDependenceHoistingClobberLiveIns(DependenceMI, NullSucc)) return false; auto DepDepResult = computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr}); if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence) return false; Dependence = DependenceMI; return true; } /// Analyze MBB to check if its terminating branch can be turned into an /// implicit null check. If yes, append a description of the said null check to /// NullCheckList and return true, else return false. bool ImplicitNullChecks::analyzeBlockForNullChecks( MachineBasicBlock &MBB, SmallVectorImpl &NullCheckList) { using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; MDNode *BranchMD = nullptr; if (auto *BB = MBB.getBasicBlock()) BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit); if (!BranchMD) return false; MachineBranchPredicate MBP; if (TII->analyzeBranchPredicate(MBB, MBP, true)) return false; // Is the predicate comparing an integer to zero? if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && (MBP.Predicate == MachineBranchPredicate::PRED_NE || MBP.Predicate == MachineBranchPredicate::PRED_EQ))) return false; // If there is a separate condition generation instruction, we chose not to // transform unless we can remove both condition and consuming branch. if (MBP.ConditionDef && !MBP.SingleUseCondition) return false; MachineBasicBlock *NotNullSucc, *NullSucc; if (MBP.Predicate == MachineBranchPredicate::PRED_NE) { NotNullSucc = MBP.TrueDest; NullSucc = MBP.FalseDest; } else { NotNullSucc = MBP.FalseDest; NullSucc = MBP.TrueDest; } // We handle the simplest case for now. We can potentially do better by using // the machine dominator tree. if (NotNullSucc->pred_size() != 1) return false; const Register PointerReg = MBP.LHS.getReg(); if (MBP.ConditionDef) { // To prevent the invalid transformation of the following code: // // mov %rax, %rcx // test %rax, %rax // %rax = ... // je throw_npe // mov(%rcx), %r9 // mov(%rax), %r10 // // into: // // mov %rax, %rcx // %rax = .... // faulting_load_op("movl (%rax), %r10", throw_npe) // mov(%rcx), %r9 // // we must ensure that there are no instructions between the 'test' and // conditional jump that modify %rax. assert(MBP.ConditionDef->getParent() == &MBB && "Should be in basic block"); for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I) if (I->modifiesRegister(PointerReg, TRI)) return false; } // Starting with a code fragment like: // // test %rax, %rax // jne LblNotNull // // LblNull: // callq throw_NullPointerException // // LblNotNull: // Inst0 // Inst1 // ... // Def = Load (%rax + ) // ... // // // we want to end up with // // Def = FaultingLoad (%rax + ), LblNull // jmp LblNotNull ;; explicit or fallthrough // // LblNotNull: // Inst0 // Inst1 // ... // // LblNull: // callq throw_NullPointerException // // // To see why this is legal, consider the two possibilities: // // 1. %rax is null: since we constrain to be less than PageSize, the // load instruction dereferences the null page, causing a segmentation // fault. // // 2. %rax is not null: in this case we know that the load cannot fault, as // otherwise the load would've faulted in the original program too and the // original program would've been undefined. // // This reasoning cannot be extended to justify hoisting through arbitrary // control flow. For instance, in the example below (in pseudo-C) // // if (ptr == null) { throw_npe(); unreachable; } // if (some_cond) { return 42; } // v = ptr->field; // LD // ... // // we cannot (without code duplication) use the load marked "LD" to null check // ptr -- clause (2) above does not apply in this case. In the above program // the safety of ptr->field can be dependent on some_cond; and, for instance, // ptr could be some non-null invalid reference that never gets loaded from // because some_cond is always true. SmallVector InstsSeenSoFar; for (auto &MI : *NotNullSucc) { if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider) return false; MachineInstr *Dependence; SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar); if (SR == SR_Impossible) return false; if (SR == SR_Suitable && canHoistInst(&MI, InstsSeenSoFar, NullSucc, Dependence)) { NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc, NullSucc, Dependence); return true; } // If MI re-defines the PointerReg in a way that changes the value of // PointerReg if it was null, then we cannot move further. if (!TII->preservesZeroValueInReg(&MI, PointerReg, TRI)) return false; InstsSeenSoFar.push_back(&MI); } return false; } /// Wrap a machine instruction, MI, into a FAULTING machine instruction. /// The FAULTING instruction does the same load/store as MI /// (defining the same register), and branches to HandlerMBB if the mem access /// faults. The FAULTING instruction is inserted at the end of MBB. MachineInstr *ImplicitNullChecks::insertFaultingInstr( MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) { const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for // all targets. DebugLoc DL; unsigned NumDefs = MI->getDesc().getNumDefs(); assert(NumDefs <= 1 && "other cases unhandled!"); unsigned DefReg = NoRegister; if (NumDefs != 0) { DefReg = MI->getOperand(0).getReg(); assert(NumDefs == 1 && "expected exactly one def!"); } FaultMaps::FaultKind FK; if (MI->mayLoad()) FK = MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad; else FK = FaultMaps::FaultingStore; auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg) .addImm(FK) .addMBB(HandlerMBB) .addImm(MI->getOpcode()); for (auto &MO : MI->uses()) { if (MO.isReg()) { MachineOperand NewMO = MO; if (MO.isUse()) { NewMO.setIsKill(false); } else { assert(MO.isDef() && "Expected def or use"); NewMO.setIsDead(false); } MIB.add(NewMO); } else { MIB.add(MO); } } MIB.setMemRefs(MI->memoperands()); return MIB; } /// Rewrite the null checks in NullCheckList into implicit null checks. void ImplicitNullChecks::rewriteNullChecks( ArrayRef NullCheckList) { DebugLoc DL; for (auto &NC : NullCheckList) { // Remove the conditional branch dependent on the null check. unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock()); (void)BranchesRemoved; assert(BranchesRemoved > 0 && "expected at least one branch!"); if (auto *DepMI = NC.getOnlyDependency()) { DepMI->removeFromParent(); NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI); } // Insert a faulting instruction where the conditional branch was // originally. We check earlier ensures that this bit of code motion // is legal. We do not touch the successors list for any basic block // since we haven't changed control flow, we've just made it implicit. MachineInstr *FaultingInstr = insertFaultingInstr( NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc()); // Now the values defined by MemOperation, if any, are live-in of // the block of MemOperation. // The original operation may define implicit-defs alongside // the value. MachineBasicBlock *MBB = NC.getMemOperation()->getParent(); for (const MachineOperand &MO : FaultingInstr->operands()) { if (!MO.isReg() || !MO.isDef()) continue; Register Reg = MO.getReg(); if (!Reg || MBB->isLiveIn(Reg)) continue; MBB->addLiveIn(Reg); } if (auto *DepMI = NC.getOnlyDependency()) { for (auto &MO : DepMI->operands()) { if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead()) continue; if (!NC.getNotNullSucc()->isLiveIn(MO.getReg())) NC.getNotNullSucc()->addLiveIn(MO.getReg()); } } NC.getMemOperation()->eraseFromParent(); if (auto *CheckOp = NC.getCheckOperation()) CheckOp->eraseFromParent(); // Insert an *unconditional* branch to not-null successor - we expect // block placement to remove fallthroughs later. TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr, /*Cond=*/None, DL); NumImplicitNullChecks++; } } char ImplicitNullChecks::ID = 0; char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID; INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE, "Implicit null checks", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE, "Implicit null checks", false, false)