//===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// Provides analysis for querying information about KnownBits during GISel /// passes. // //===------------------ #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetOpcodes.h" #define DEBUG_TYPE "gisel-known-bits" using namespace llvm; char llvm::GISelKnownBitsAnalysis::ID = 0; INITIALIZE_PASS(GISelKnownBitsAnalysis, DEBUG_TYPE, "Analysis for ComputingKnownBits", false, true) GISelKnownBits::GISelKnownBits(MachineFunction &MF, unsigned MaxDepth) : MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()), DL(MF.getFunction().getParent()->getDataLayout()), MaxDepth(MaxDepth) {} Align GISelKnownBits::computeKnownAlignment(Register R, unsigned Depth) { const MachineInstr *MI = MRI.getVRegDef(R); switch (MI->getOpcode()) { case TargetOpcode::COPY: return computeKnownAlignment(MI->getOperand(1).getReg(), Depth); case TargetOpcode::G_FRAME_INDEX: { int FrameIdx = MI->getOperand(1).getIndex(); return MF.getFrameInfo().getObjectAlign(FrameIdx); } case TargetOpcode::G_INTRINSIC: case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: default: return TL.computeKnownAlignForTargetInstr(*this, R, MRI, Depth + 1); } } KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) { assert(MI.getNumExplicitDefs() == 1 && "expected single return generic instruction"); return getKnownBits(MI.getOperand(0).getReg()); } KnownBits GISelKnownBits::getKnownBits(Register R) { const LLT Ty = MRI.getType(R); APInt DemandedElts = Ty.isVector() ? APInt::getAllOnesValue(Ty.getNumElements()) : APInt(1, 1); return getKnownBits(R, DemandedElts); } KnownBits GISelKnownBits::getKnownBits(Register R, const APInt &DemandedElts, unsigned Depth) { // For now, we only maintain the cache during one request. assert(ComputeKnownBitsCache.empty() && "Cache should have been cleared"); KnownBits Known; computeKnownBitsImpl(R, Known, DemandedElts); ComputeKnownBitsCache.clear(); return Known; } bool GISelKnownBits::signBitIsZero(Register R) { LLT Ty = MRI.getType(R); unsigned BitWidth = Ty.getScalarSizeInBits(); return maskedValueIsZero(R, APInt::getSignMask(BitWidth)); } APInt GISelKnownBits::getKnownZeroes(Register R) { return getKnownBits(R).Zero; } APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; } LLVM_ATTRIBUTE_UNUSED static void dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth) { dbgs() << "[" << Depth << "] Compute known bits: " << MI << "[" << Depth << "] Computed for: " << MI << "[" << Depth << "] Known: 0x" << (Known.Zero | Known.One).toString(16, false) << "\n" << "[" << Depth << "] Zero: 0x" << Known.Zero.toString(16, false) << "\n" << "[" << Depth << "] One: 0x" << Known.One.toString(16, false) << "\n"; } /// Compute known bits for the intersection of \p Src0 and \p Src1 void GISelKnownBits::computeKnownBitsMin(Register Src0, Register Src1, KnownBits &Known, const APInt &DemandedElts, unsigned Depth) { // Test src1 first, since we canonicalize simpler expressions to the RHS. computeKnownBitsImpl(Src1, Known, DemandedElts, Depth); // If we don't know any bits, early out. if (Known.isUnknown()) return; KnownBits Known2; computeKnownBitsImpl(Src0, Known2, DemandedElts, Depth); // Only known if known in both the LHS and RHS. Known = KnownBits::commonBits(Known, Known2); } void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known, const APInt &DemandedElts, unsigned Depth) { MachineInstr &MI = *MRI.getVRegDef(R); unsigned Opcode = MI.getOpcode(); LLT DstTy = MRI.getType(R); // Handle the case where this is called on a register that does not have a // type constraint (i.e. it has a register class constraint instead). This is // unlikely to occur except by looking through copies but it is possible for // the initial register being queried to be in this state. if (!DstTy.isValid()) { Known = KnownBits(); return; } unsigned BitWidth = DstTy.getSizeInBits(); auto CacheEntry = ComputeKnownBitsCache.find(R); if (CacheEntry != ComputeKnownBitsCache.end()) { Known = CacheEntry->second; LLVM_DEBUG(dbgs() << "Cache hit at "); LLVM_DEBUG(dumpResult(MI, Known, Depth)); assert(Known.getBitWidth() == BitWidth && "Cache entry size doesn't match"); return; } Known = KnownBits(BitWidth); // Don't know anything if (DstTy.isVector()) return; // TODO: Handle vectors. // Depth may get bigger than max depth if it gets passed to a different // GISelKnownBits object. // This may happen when say a generic part uses a GISelKnownBits object // with some max depth, but then we hit TL.computeKnownBitsForTargetInstr // which creates a new GISelKnownBits object with a different and smaller // depth. If we just check for equality, we would never exit if the depth // that is passed down to the target specific GISelKnownBits object is // already bigger than its max depth. if (Depth >= getMaxDepth()) return; if (!DemandedElts) return; // No demanded elts, better to assume we don't know anything. KnownBits Known2; switch (Opcode) { default: TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI, Depth); break; case TargetOpcode::COPY: case TargetOpcode::G_PHI: case TargetOpcode::PHI: { Known.One = APInt::getAllOnesValue(BitWidth); Known.Zero = APInt::getAllOnesValue(BitWidth); // Destination registers should not have subregisters at this // point of the pipeline, otherwise the main live-range will be // defined more than once, which is against SSA. assert(MI.getOperand(0).getSubReg() == 0 && "Is this code in SSA?"); // Record in the cache that we know nothing for MI. // This will get updated later and in the meantime, if we reach that // phi again, because of a loop, we will cut the search thanks to this // cache entry. // We could actually build up more information on the phi by not cutting // the search, but that additional information is more a side effect // than an intended choice. // Therefore, for now, save on compile time until we derive a proper way // to derive known bits for PHIs within loops. ComputeKnownBitsCache[R] = KnownBits(BitWidth); // PHI's operand are a mix of registers and basic blocks interleaved. // We only care about the register ones. for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { const MachineOperand &Src = MI.getOperand(Idx); Register SrcReg = Src.getReg(); // Look through trivial copies and phis but don't look through trivial // copies or phis of the form `%1:(s32) = OP %0:gpr32`, known-bits // analysis is currently unable to determine the bit width of a // register class. // // We can't use NoSubRegister by name as it's defined by each target but // it's always defined to be 0 by tablegen. if (SrcReg.isVirtual() && Src.getSubReg() == 0 /*NoSubRegister*/ && MRI.getType(SrcReg).isValid()) { // For COPYs we don't do anything, don't increase the depth. computeKnownBitsImpl(SrcReg, Known2, DemandedElts, Depth + (Opcode != TargetOpcode::COPY)); Known = KnownBits::commonBits(Known, Known2); // If we reach a point where we don't know anything // just stop looking through the operands. if (Known.One == 0 && Known.Zero == 0) break; } else { // We know nothing. Known = KnownBits(BitWidth); break; } } break; } case TargetOpcode::G_CONSTANT: { auto CstVal = getConstantVRegVal(R, MRI); if (!CstVal) break; Known = KnownBits::makeConstant(*CstVal); break; } case TargetOpcode::G_FRAME_INDEX: { int FrameIdx = MI.getOperand(1).getIndex(); TL.computeKnownBitsForFrameIndex(FrameIdx, Known, MF); break; } case TargetOpcode::G_SUB: { computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts, Depth + 1); Known = KnownBits::computeForAddSub(/*Add*/ false, /*NSW*/ false, Known, Known2); break; } case TargetOpcode::G_XOR: { computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, Depth + 1); Known ^= Known2; break; } case TargetOpcode::G_PTR_ADD: { // G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets? LLT Ty = MRI.getType(MI.getOperand(1).getReg()); if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) break; LLVM_FALLTHROUGH; } case TargetOpcode::G_ADD: { computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts, Depth + 1); Known = KnownBits::computeForAddSub(/*Add*/ true, /*NSW*/ false, Known, Known2); break; } case TargetOpcode::G_AND: { // If either the LHS or the RHS are Zero, the result is zero. computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, Depth + 1); Known &= Known2; break; } case TargetOpcode::G_OR: { // If either the LHS or the RHS are Zero, the result is zero. computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, Depth + 1); Known |= Known2; break; } case TargetOpcode::G_MUL: { computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts, Depth + 1); Known = KnownBits::computeForMul(Known, Known2); break; } case TargetOpcode::G_SELECT: { computeKnownBitsMin(MI.getOperand(2).getReg(), MI.getOperand(3).getReg(), Known, DemandedElts, Depth + 1); break; } case TargetOpcode::G_SMIN: { // TODO: Handle clamp pattern with number of sign bits KnownBits KnownRHS; computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts, Depth + 1); Known = KnownBits::smin(Known, KnownRHS); break; } case TargetOpcode::G_SMAX: { // TODO: Handle clamp pattern with number of sign bits KnownBits KnownRHS; computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts, Depth + 1); Known = KnownBits::smax(Known, KnownRHS); break; } case TargetOpcode::G_UMIN: { KnownBits KnownRHS; computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts, Depth + 1); Known = KnownBits::umin(Known, KnownRHS); break; } case TargetOpcode::G_UMAX: { KnownBits KnownRHS; computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts, Depth + 1); Known = KnownBits::umax(Known, KnownRHS); break; } case TargetOpcode::G_FCMP: case TargetOpcode::G_ICMP: { if (TL.getBooleanContents(DstTy.isVector(), Opcode == TargetOpcode::G_FCMP) == TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1) Known.Zero.setBitsFrom(1); break; } case TargetOpcode::G_SEXT: { computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, Depth + 1); // If the sign bit is known to be zero or one, then sext will extend // it to the top bits, else it will just zext. Known = Known.sext(BitWidth); break; } case TargetOpcode::G_SEXT_INREG: { computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, Depth + 1); Known = Known.sextInReg(MI.getOperand(2).getImm()); break; } case TargetOpcode::G_ANYEXT: { computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts, Depth + 1); Known = Known.anyext(BitWidth); break; } case TargetOpcode::G_LOAD: { const MachineMemOperand *MMO = *MI.memoperands_begin(); if (const MDNode *Ranges = MMO->getRanges()) { computeKnownBitsFromRangeMetadata(*Ranges, Known); } break; } case TargetOpcode::G_ZEXTLOAD: { // Everything above the retrieved bits is zero Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits()); break; } case TargetOpcode::G_ASHR: { KnownBits LHSKnown, RHSKnown; computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts, Depth + 1); Known = KnownBits::ashr(LHSKnown, RHSKnown); break; } case TargetOpcode::G_LSHR: { KnownBits LHSKnown, RHSKnown; computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts, Depth + 1); Known = KnownBits::lshr(LHSKnown, RHSKnown); break; } case TargetOpcode::G_SHL: { KnownBits LHSKnown, RHSKnown; computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts, Depth + 1); computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts, Depth + 1); Known = KnownBits::shl(LHSKnown, RHSKnown); break; } case TargetOpcode::G_INTTOPTR: case TargetOpcode::G_PTRTOINT: // Fall through and handle them the same as zext/trunc. LLVM_FALLTHROUGH; case TargetOpcode::G_ZEXT: case TargetOpcode::G_TRUNC: { Register SrcReg = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(SrcReg); unsigned SrcBitWidth = SrcTy.isPointer() ? DL.getIndexSizeInBits(SrcTy.getAddressSpace()) : SrcTy.getSizeInBits(); assert(SrcBitWidth && "SrcBitWidth can't be zero"); Known = Known.zextOrTrunc(SrcBitWidth); computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1); Known = Known.zextOrTrunc(BitWidth); if (BitWidth > SrcBitWidth) Known.Zero.setBitsFrom(SrcBitWidth); break; } case TargetOpcode::G_MERGE_VALUES: { unsigned NumOps = MI.getNumOperands(); unsigned OpSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); for (unsigned I = 0; I != NumOps - 1; ++I) { KnownBits SrcOpKnown; computeKnownBitsImpl(MI.getOperand(I + 1).getReg(), SrcOpKnown, DemandedElts, Depth + 1); Known.insertBits(SrcOpKnown, I * OpSize); } break; } case TargetOpcode::G_UNMERGE_VALUES: { unsigned NumOps = MI.getNumOperands(); Register SrcReg = MI.getOperand(NumOps - 1).getReg(); if (MRI.getType(SrcReg).isVector()) return; // TODO: Handle vectors. KnownBits SrcOpKnown; computeKnownBitsImpl(SrcReg, SrcOpKnown, DemandedElts, Depth + 1); // Figure out the result operand index unsigned DstIdx = 0; for (; DstIdx != NumOps - 1 && MI.getOperand(DstIdx).getReg() != R; ++DstIdx) ; Known = SrcOpKnown.extractBits(BitWidth, BitWidth * DstIdx); break; } case TargetOpcode::G_BSWAP: { Register SrcReg = MI.getOperand(1).getReg(); computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1); Known.byteSwap(); break; } case TargetOpcode::G_BITREVERSE: { Register SrcReg = MI.getOperand(1).getReg(); computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1); Known.reverseBits(); break; } } assert(!Known.hasConflict() && "Bits known to be one AND zero?"); LLVM_DEBUG(dumpResult(MI, Known, Depth)); // Update the cache. ComputeKnownBitsCache[R] = Known; } /// Compute number of sign bits for the intersection of \p Src0 and \p Src1 unsigned GISelKnownBits::computeNumSignBitsMin(Register Src0, Register Src1, const APInt &DemandedElts, unsigned Depth) { // Test src1 first, since we canonicalize simpler expressions to the RHS. unsigned Src1SignBits = computeNumSignBits(Src1, DemandedElts, Depth); if (Src1SignBits == 1) return 1; return std::min(computeNumSignBits(Src0, DemandedElts, Depth), Src1SignBits); } unsigned GISelKnownBits::computeNumSignBits(Register R, const APInt &DemandedElts, unsigned Depth) { MachineInstr &MI = *MRI.getVRegDef(R); unsigned Opcode = MI.getOpcode(); if (Opcode == TargetOpcode::G_CONSTANT) return MI.getOperand(1).getCImm()->getValue().getNumSignBits(); if (Depth == getMaxDepth()) return 1; if (!DemandedElts) return 1; // No demanded elts, better to assume we don't know anything. LLT DstTy = MRI.getType(R); const unsigned TyBits = DstTy.getScalarSizeInBits(); // Handle the case where this is called on a register that does not have a // type constraint. This is unlikely to occur except by looking through copies // but it is possible for the initial register being queried to be in this // state. if (!DstTy.isValid()) return 1; unsigned FirstAnswer = 1; switch (Opcode) { case TargetOpcode::COPY: { MachineOperand &Src = MI.getOperand(1); if (Src.getReg().isVirtual() && Src.getSubReg() == 0 && MRI.getType(Src.getReg()).isValid()) { // Don't increment Depth for this one since we didn't do any work. return computeNumSignBits(Src.getReg(), DemandedElts, Depth); } return 1; } case TargetOpcode::G_SEXT: { Register Src = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(Src); unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits(); return computeNumSignBits(Src, DemandedElts, Depth + 1) + Tmp; } case TargetOpcode::G_SEXT_INREG: { // Max of the input and what this extends. Register Src = MI.getOperand(1).getReg(); unsigned SrcBits = MI.getOperand(2).getImm(); unsigned InRegBits = TyBits - SrcBits + 1; return std::max(computeNumSignBits(Src, DemandedElts, Depth + 1), InRegBits); } case TargetOpcode::G_SEXTLOAD: { // FIXME: We need an in-memory type representation. if (DstTy.isVector()) return 1; // e.g. i16->i32 = '17' bits known. const MachineMemOperand *MMO = *MI.memoperands_begin(); return TyBits - MMO->getSizeInBits() + 1; } case TargetOpcode::G_ZEXTLOAD: { // FIXME: We need an in-memory type representation. if (DstTy.isVector()) return 1; // e.g. i16->i32 = '16' bits known. const MachineMemOperand *MMO = *MI.memoperands_begin(); return TyBits - MMO->getSizeInBits(); } case TargetOpcode::G_TRUNC: { Register Src = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(Src); // Check if the sign bits of source go down as far as the truncated value. unsigned DstTyBits = DstTy.getScalarSizeInBits(); unsigned NumSrcBits = SrcTy.getScalarSizeInBits(); unsigned NumSrcSignBits = computeNumSignBits(Src, DemandedElts, Depth + 1); if (NumSrcSignBits > (NumSrcBits - DstTyBits)) return NumSrcSignBits - (NumSrcBits - DstTyBits); break; } case TargetOpcode::G_SELECT: { return computeNumSignBitsMin(MI.getOperand(2).getReg(), MI.getOperand(3).getReg(), DemandedElts, Depth + 1); } case TargetOpcode::G_INTRINSIC: case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: default: { unsigned NumBits = TL.computeNumSignBitsForTargetInstr(*this, R, DemandedElts, MRI, Depth); if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); break; } } // Finally, if we can prove that the top bits of the result are 0's or 1's, // use this information. KnownBits Known = getKnownBits(R, DemandedElts, Depth); APInt Mask; if (Known.isNonNegative()) { // sign bit is 0 Mask = Known.Zero; } else if (Known.isNegative()) { // sign bit is 1; Mask = Known.One; } else { // Nothing known. return FirstAnswer; } // Okay, we know that the sign bit in Mask is set. Use CLO to determine // the number of identical bits in the top of the input value. Mask <<= Mask.getBitWidth() - TyBits; return std::max(FirstAnswer, Mask.countLeadingOnes()); } unsigned GISelKnownBits::computeNumSignBits(Register R, unsigned Depth) { LLT Ty = MRI.getType(R); APInt DemandedElts = Ty.isVector() ? APInt::getAllOnesValue(Ty.getNumElements()) : APInt(1, 1); return computeNumSignBits(R, DemandedElts, Depth); } void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) { return false; }