//===- NaryReassociate.h - Reassociate n-ary expressions --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass reassociates n-ary add expressions and eliminates the redundancy // exposed by the reassociation. // // A motivating example: // // void foo(int a, int b) { // bar(a + b); // bar((a + 2) + b); // } // // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify // the above code to // // int t = a + b; // bar(t); // bar(t + 2); // // However, the Reassociate pass is unable to do that because it processes each // instruction individually and believes (a + 2) + b is the best form according // to its rank system. // // To address this limitation, NaryReassociate reassociates an expression in a // form that reuses existing instructions. As a result, NaryReassociate can // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that // (a + b) is computed before. // // NaryReassociate works as follows. For every instruction in the form of (a + // b) + c, it checks whether a + c or b + c is already computed by a dominating // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b + // c) + a and removes the redundancy accordingly. To efficiently look up whether // an expression is computed before, we store each instruction seen and its SCEV // into an SCEV-to-instruction map. // // Although the algorithm pattern-matches only ternary additions, it // automatically handles many >3-ary expressions by walking through the function // in the depth-first order. For example, given // // (a + c) + d // ((a + b) + c) + d // // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites // ((a + c) + b) + d into ((a + c) + d) + b. // // Finally, the above dominator-based algorithm may need to be run multiple // iterations before emitting optimal code. One source of this need is that we // only split an operand when it is used only once. The above algorithm can // eliminate an instruction and decrease the usage count of its operands. As a // result, an instruction that previously had multiple uses may become a // single-use instruction and thus eligible for split consideration. For // example, // // ac = a + c // ab = a + b // abc = ab + c // ab2 = ab + b // ab2c = ab2 + c // // In the first iteration, we cannot reassociate abc to ac+b because ab is used // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a // result, ab2 becomes dead and ab will be used only once in the second // iteration. // // Limitations and TODO items: // // 1) We only considers n-ary adds and muls for now. This should be extended // and generalized. // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H #define LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ValueHandle.h" namespace llvm { class AssumptionCache; class BinaryOperator; class DataLayout; class DominatorTree; class Function; class GetElementPtrInst; class Instruction; class ScalarEvolution; class SCEV; class TargetLibraryInfo; class TargetTransformInfo; class Type; class Value; class NaryReassociatePass : public PassInfoMixin { public: PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); // Glue for old PM. bool runImpl(Function &F, AssumptionCache *AC_, DominatorTree *DT_, ScalarEvolution *SE_, TargetLibraryInfo *TLI_, TargetTransformInfo *TTI_); private: // Runs only one iteration of the dominator-based algorithm. See the header // comments for why we need multiple iterations. bool doOneIteration(Function &F); // Reassociates I for better CSE. Instruction *tryReassociate(Instruction *I, const SCEV *&OrigSCEV); // Reassociate GEP for better CSE. Instruction *tryReassociateGEP(GetElementPtrInst *GEP); // Try splitting GEP at the I-th index and see whether either part can be // CSE'ed. This is a helper function for tryReassociateGEP. // // \p IndexedType The element type indexed by GEP's I-th index. This is // equivalent to // GEP->getIndexedType(GEP->getPointerOperand(), 0-th index, // ..., i-th index). GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I, Type *IndexedType); // Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or // &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly. GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I, Value *LHS, Value *RHS, Type *IndexedType); // Reassociate binary operators for better CSE. Instruction *tryReassociateBinaryOp(BinaryOperator *I); // A helper function for tryReassociateBinaryOp. LHS and RHS are explicitly // passed. Instruction *tryReassociateBinaryOp(Value *LHS, Value *RHS, BinaryOperator *I); // Rewrites I to (LHS op RHS) if LHS is computed already. Instruction *tryReassociatedBinaryOp(const SCEV *LHS, Value *RHS, BinaryOperator *I); // Tries to match Op1 and Op2 by using V. bool matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1, Value *&Op2); // Gets SCEV for (LHS op RHS). const SCEV *getBinarySCEV(BinaryOperator *I, const SCEV *LHS, const SCEV *RHS); // Returns the closest dominator of \c Dominatee that computes // \c CandidateExpr. Returns null if not found. Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr, Instruction *Dominatee); // GetElementPtrInst implicitly sign-extends an index if the index is shorter // than the pointer size. This function returns whether Index is shorter than // GEP's pointer size, i.e., whether Index needs to be sign-extended in order // to be an index of GEP. bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP); AssumptionCache *AC; const DataLayout *DL; DominatorTree *DT; ScalarEvolution *SE; TargetLibraryInfo *TLI; TargetTransformInfo *TTI; // A lookup table quickly telling which instructions compute the given SCEV. // Note that there can be multiple instructions at different locations // computing to the same SCEV, so we map a SCEV to an instruction list. For // example, // // if (p1) // foo(a + b); // if (p2) // bar(a + b); DenseMap> SeenExprs; }; } // end namespace llvm #endif // LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H