//===- MCFragment.h - Fragment type hierarchy -------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCFRAGMENT_H #define LLVM_MC_MCFRAGMENT_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/ilist_node.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/Casting.h" #include "llvm/Support/SMLoc.h" #include #include namespace llvm { class MCSection; class MCSubtargetInfo; class MCSymbol; class MCFragment : public ilist_node_with_parent { friend class MCAsmLayout; public: enum FragmentType : uint8_t { FT_Align, FT_Data, FT_CompactEncodedInst, FT_Fill, FT_Nops, FT_Relaxable, FT_Org, FT_Dwarf, FT_DwarfFrame, FT_LEB, FT_BoundaryAlign, FT_SymbolId, FT_CVInlineLines, FT_CVDefRange, FT_PseudoProbe, FT_Dummy }; private: /// The data for the section this fragment is in. MCSection *Parent; /// The atom this fragment is in, as represented by its defining symbol. const MCSymbol *Atom; /// The offset of this fragment in its section. This is ~0 until /// initialized. uint64_t Offset; /// The layout order of this fragment. unsigned LayoutOrder; /// The subsection this fragment belongs to. This is 0 if the fragment is not // in any subsection. unsigned SubsectionNumber = 0; FragmentType Kind; /// Whether fragment is being laid out. bool IsBeingLaidOut; protected: bool HasInstructions; MCFragment(FragmentType Kind, bool HasInstructions, MCSection *Parent = nullptr); public: MCFragment() = delete; MCFragment(const MCFragment &) = delete; MCFragment &operator=(const MCFragment &) = delete; /// Destroys the current fragment. /// /// This must be used instead of delete as MCFragment is non-virtual. /// This method will dispatch to the appropriate subclass. void destroy(); FragmentType getKind() const { return Kind; } MCSection *getParent() const { return Parent; } void setParent(MCSection *Value) { Parent = Value; } const MCSymbol *getAtom() const { return Atom; } void setAtom(const MCSymbol *Value) { Atom = Value; } unsigned getLayoutOrder() const { return LayoutOrder; } void setLayoutOrder(unsigned Value) { LayoutOrder = Value; } /// Does this fragment have instructions emitted into it? By default /// this is false, but specific fragment types may set it to true. bool hasInstructions() const { return HasInstructions; } void dump() const; void setSubsectionNumber(unsigned Value) { SubsectionNumber = Value; } unsigned getSubsectionNumber() const { return SubsectionNumber; } }; class MCDummyFragment : public MCFragment { public: explicit MCDummyFragment(MCSection *Sec) : MCFragment(FT_Dummy, false, Sec) {} static bool classof(const MCFragment *F) { return F->getKind() == FT_Dummy; } }; /// Interface implemented by fragments that contain encoded instructions and/or /// data. /// class MCEncodedFragment : public MCFragment { /// Should this fragment be aligned to the end of a bundle? bool AlignToBundleEnd = false; uint8_t BundlePadding = 0; protected: MCEncodedFragment(MCFragment::FragmentType FType, bool HasInstructions, MCSection *Sec) : MCFragment(FType, HasInstructions, Sec) {} /// The MCSubtargetInfo in effect when the instruction was encoded. /// It must be non-null for instructions. const MCSubtargetInfo *STI = nullptr; public: static bool classof(const MCFragment *F) { MCFragment::FragmentType Kind = F->getKind(); switch (Kind) { default: return false; case MCFragment::FT_Relaxable: case MCFragment::FT_CompactEncodedInst: case MCFragment::FT_Data: case MCFragment::FT_Dwarf: case MCFragment::FT_DwarfFrame: case MCFragment::FT_PseudoProbe: return true; } } /// Should this fragment be placed at the end of an aligned bundle? bool alignToBundleEnd() const { return AlignToBundleEnd; } void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; } /// Get the padding size that must be inserted before this fragment. /// Used for bundling. By default, no padding is inserted. /// Note that padding size is restricted to 8 bits. This is an optimization /// to reduce the amount of space used for each fragment. In practice, larger /// padding should never be required. uint8_t getBundlePadding() const { return BundlePadding; } /// Set the padding size for this fragment. By default it's a no-op, /// and only some fragments have a meaningful implementation. void setBundlePadding(uint8_t N) { BundlePadding = N; } /// Retrieve the MCSubTargetInfo in effect when the instruction was encoded. /// Guaranteed to be non-null if hasInstructions() == true const MCSubtargetInfo *getSubtargetInfo() const { return STI; } /// Record that the fragment contains instructions with the MCSubtargetInfo in /// effect when the instruction was encoded. void setHasInstructions(const MCSubtargetInfo &STI) { HasInstructions = true; this->STI = &STI; } }; /// Interface implemented by fragments that contain encoded instructions and/or /// data. /// template class MCEncodedFragmentWithContents : public MCEncodedFragment { SmallVector Contents; protected: MCEncodedFragmentWithContents(MCFragment::FragmentType FType, bool HasInstructions, MCSection *Sec) : MCEncodedFragment(FType, HasInstructions, Sec) {} public: SmallVectorImpl &getContents() { return Contents; } const SmallVectorImpl &getContents() const { return Contents; } }; /// Interface implemented by fragments that contain encoded instructions and/or /// data and also have fixups registered. /// template class MCEncodedFragmentWithFixups : public MCEncodedFragmentWithContents { /// The list of fixups in this fragment. SmallVector Fixups; protected: MCEncodedFragmentWithFixups(MCFragment::FragmentType FType, bool HasInstructions, MCSection *Sec) : MCEncodedFragmentWithContents(FType, HasInstructions, Sec) {} public: using const_fixup_iterator = SmallVectorImpl::const_iterator; using fixup_iterator = SmallVectorImpl::iterator; SmallVectorImpl &getFixups() { return Fixups; } const SmallVectorImpl &getFixups() const { return Fixups; } fixup_iterator fixup_begin() { return Fixups.begin(); } const_fixup_iterator fixup_begin() const { return Fixups.begin(); } fixup_iterator fixup_end() { return Fixups.end(); } const_fixup_iterator fixup_end() const { return Fixups.end(); } static bool classof(const MCFragment *F) { MCFragment::FragmentType Kind = F->getKind(); return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data || Kind == MCFragment::FT_CVDefRange || Kind == MCFragment::FT_Dwarf || Kind == MCFragment::FT_DwarfFrame; } }; /// Fragment for data and encoded instructions. /// class MCDataFragment : public MCEncodedFragmentWithFixups<32, 4> { public: MCDataFragment(MCSection *Sec = nullptr) : MCEncodedFragmentWithFixups<32, 4>(FT_Data, false, Sec) {} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Data; } }; /// This is a compact (memory-size-wise) fragment for holding an encoded /// instruction (non-relaxable) that has no fixups registered. When applicable, /// it can be used instead of MCDataFragment and lead to lower memory /// consumption. /// class MCCompactEncodedInstFragment : public MCEncodedFragmentWithContents<4> { public: MCCompactEncodedInstFragment(MCSection *Sec = nullptr) : MCEncodedFragmentWithContents(FT_CompactEncodedInst, true, Sec) { } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_CompactEncodedInst; } }; /// A relaxable fragment holds on to its MCInst, since it may need to be /// relaxed during the assembler layout and relaxation stage. /// class MCRelaxableFragment : public MCEncodedFragmentWithFixups<8, 1> { /// The instruction this is a fragment for. MCInst Inst; /// Can we auto pad the instruction? bool AllowAutoPadding = false; public: MCRelaxableFragment(const MCInst &Inst, const MCSubtargetInfo &STI, MCSection *Sec = nullptr) : MCEncodedFragmentWithFixups(FT_Relaxable, true, Sec), Inst(Inst) { this->STI = &STI; } const MCInst &getInst() const { return Inst; } void setInst(const MCInst &Value) { Inst = Value; } bool getAllowAutoPadding() const { return AllowAutoPadding; } void setAllowAutoPadding(bool V) { AllowAutoPadding = V; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Relaxable; } }; class MCAlignFragment : public MCFragment { /// The alignment to ensure, in bytes. unsigned Alignment; /// Flag to indicate that (optimal) NOPs should be emitted instead /// of using the provided value. The exact interpretation of this flag is /// target dependent. bool EmitNops : 1; /// Value to use for filling padding bytes. int64_t Value; /// The size of the integer (in bytes) of \p Value. unsigned ValueSize; /// The maximum number of bytes to emit; if the alignment /// cannot be satisfied in this width then this fragment is ignored. unsigned MaxBytesToEmit; public: MCAlignFragment(unsigned Alignment, int64_t Value, unsigned ValueSize, unsigned MaxBytesToEmit, MCSection *Sec = nullptr) : MCFragment(FT_Align, false, Sec), Alignment(Alignment), EmitNops(false), Value(Value), ValueSize(ValueSize), MaxBytesToEmit(MaxBytesToEmit) {} unsigned getAlignment() const { return Alignment; } int64_t getValue() const { return Value; } unsigned getValueSize() const { return ValueSize; } unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; } bool hasEmitNops() const { return EmitNops; } void setEmitNops(bool Value) { EmitNops = Value; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Align; } }; class MCFillFragment : public MCFragment { uint8_t ValueSize; /// Value to use for filling bytes. uint64_t Value; /// The number of bytes to insert. const MCExpr &NumValues; /// Source location of the directive that this fragment was created for. SMLoc Loc; public: MCFillFragment(uint64_t Value, uint8_t VSize, const MCExpr &NumValues, SMLoc Loc, MCSection *Sec = nullptr) : MCFragment(FT_Fill, false, Sec), ValueSize(VSize), Value(Value), NumValues(NumValues), Loc(Loc) {} uint64_t getValue() const { return Value; } uint8_t getValueSize() const { return ValueSize; } const MCExpr &getNumValues() const { return NumValues; } SMLoc getLoc() const { return Loc; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Fill; } }; class MCNopsFragment : public MCFragment { /// The number of bytes to insert. int64_t Size; /// Maximum number of bytes allowed in each NOP instruction. int64_t ControlledNopLength; /// Source location of the directive that this fragment was created for. SMLoc Loc; public: MCNopsFragment(int64_t NumBytes, int64_t ControlledNopLength, SMLoc L, MCSection *Sec = nullptr) : MCFragment(FT_Nops, false, Sec), Size(NumBytes), ControlledNopLength(ControlledNopLength), Loc(L) {} int64_t getNumBytes() const { return Size; } int64_t getControlledNopLength() const { return ControlledNopLength; } SMLoc getLoc() const { return Loc; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Nops; } }; class MCOrgFragment : public MCFragment { /// Value to use for filling bytes. int8_t Value; /// The offset this fragment should start at. const MCExpr *Offset; /// Source location of the directive that this fragment was created for. SMLoc Loc; public: MCOrgFragment(const MCExpr &Offset, int8_t Value, SMLoc Loc, MCSection *Sec = nullptr) : MCFragment(FT_Org, false, Sec), Value(Value), Offset(&Offset), Loc(Loc) {} const MCExpr &getOffset() const { return *Offset; } uint8_t getValue() const { return Value; } SMLoc getLoc() const { return Loc; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Org; } }; class MCLEBFragment : public MCFragment { /// True if this is a sleb128, false if uleb128. bool IsSigned; /// The value this fragment should contain. const MCExpr *Value; SmallString<8> Contents; public: MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSection *Sec = nullptr) : MCFragment(FT_LEB, false, Sec), IsSigned(IsSigned_), Value(&Value_) { Contents.push_back(0); } const MCExpr &getValue() const { return *Value; } bool isSigned() const { return IsSigned; } SmallString<8> &getContents() { return Contents; } const SmallString<8> &getContents() const { return Contents; } /// @} static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_LEB; } }; class MCDwarfLineAddrFragment : public MCEncodedFragmentWithFixups<8, 1> { /// The value of the difference between the two line numbers /// between two .loc dwarf directives. int64_t LineDelta; /// The expression for the difference of the two symbols that /// make up the address delta between two .loc dwarf directives. const MCExpr *AddrDelta; public: MCDwarfLineAddrFragment(int64_t LineDelta, const MCExpr &AddrDelta, MCSection *Sec = nullptr) : MCEncodedFragmentWithFixups<8, 1>(FT_Dwarf, false, Sec), LineDelta(LineDelta), AddrDelta(&AddrDelta) {} int64_t getLineDelta() const { return LineDelta; } const MCExpr &getAddrDelta() const { return *AddrDelta; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_Dwarf; } }; class MCDwarfCallFrameFragment : public MCEncodedFragmentWithFixups<8, 1> { /// The expression for the difference of the two symbols that /// make up the address delta between two .cfi_* dwarf directives. const MCExpr *AddrDelta; public: MCDwarfCallFrameFragment(const MCExpr &AddrDelta, MCSection *Sec = nullptr) : MCEncodedFragmentWithFixups<8, 1>(FT_DwarfFrame, false, Sec), AddrDelta(&AddrDelta) {} const MCExpr &getAddrDelta() const { return *AddrDelta; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_DwarfFrame; } }; /// Represents a symbol table index fragment. class MCSymbolIdFragment : public MCFragment { const MCSymbol *Sym; public: MCSymbolIdFragment(const MCSymbol *Sym, MCSection *Sec = nullptr) : MCFragment(FT_SymbolId, false, Sec), Sym(Sym) {} const MCSymbol *getSymbol() { return Sym; } const MCSymbol *getSymbol() const { return Sym; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_SymbolId; } }; /// Fragment representing the binary annotations produced by the /// .cv_inline_linetable directive. class MCCVInlineLineTableFragment : public MCFragment { unsigned SiteFuncId; unsigned StartFileId; unsigned StartLineNum; const MCSymbol *FnStartSym; const MCSymbol *FnEndSym; SmallString<8> Contents; /// CodeViewContext has the real knowledge about this format, so let it access /// our members. friend class CodeViewContext; public: MCCVInlineLineTableFragment(unsigned SiteFuncId, unsigned StartFileId, unsigned StartLineNum, const MCSymbol *FnStartSym, const MCSymbol *FnEndSym, MCSection *Sec = nullptr) : MCFragment(FT_CVInlineLines, false, Sec), SiteFuncId(SiteFuncId), StartFileId(StartFileId), StartLineNum(StartLineNum), FnStartSym(FnStartSym), FnEndSym(FnEndSym) {} const MCSymbol *getFnStartSym() const { return FnStartSym; } const MCSymbol *getFnEndSym() const { return FnEndSym; } SmallString<8> &getContents() { return Contents; } const SmallString<8> &getContents() const { return Contents; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_CVInlineLines; } }; /// Fragment representing the .cv_def_range directive. class MCCVDefRangeFragment : public MCEncodedFragmentWithFixups<32, 4> { SmallVector, 2> Ranges; SmallString<32> FixedSizePortion; /// CodeViewContext has the real knowledge about this format, so let it access /// our members. friend class CodeViewContext; public: MCCVDefRangeFragment( ArrayRef> Ranges, StringRef FixedSizePortion, MCSection *Sec = nullptr) : MCEncodedFragmentWithFixups<32, 4>(FT_CVDefRange, false, Sec), Ranges(Ranges.begin(), Ranges.end()), FixedSizePortion(FixedSizePortion) {} ArrayRef> getRanges() const { return Ranges; } StringRef getFixedSizePortion() const { return FixedSizePortion; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_CVDefRange; } }; /// Represents required padding such that a particular other set of fragments /// does not cross a particular power-of-two boundary. The other fragments must /// follow this one within the same section. class MCBoundaryAlignFragment : public MCFragment { /// The alignment requirement of the branch to be aligned. Align AlignBoundary; /// The last fragment in the set of fragments to be aligned. const MCFragment *LastFragment = nullptr; /// The size of the fragment. The size is lazily set during relaxation, and /// is not meaningful before that. uint64_t Size = 0; public: MCBoundaryAlignFragment(Align AlignBoundary, MCSection *Sec = nullptr) : MCFragment(FT_BoundaryAlign, false, Sec), AlignBoundary(AlignBoundary) { } uint64_t getSize() const { return Size; } void setSize(uint64_t Value) { Size = Value; } Align getAlignment() const { return AlignBoundary; } void setAlignment(Align Value) { AlignBoundary = Value; } const MCFragment *getLastFragment() const { return LastFragment; } void setLastFragment(const MCFragment *F) { assert(!F || getParent() == F->getParent()); LastFragment = F; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_BoundaryAlign; } }; class MCPseudoProbeAddrFragment : public MCEncodedFragmentWithFixups<8, 1> { /// The expression for the difference of the two symbols that /// make up the address delta between two .pseudoprobe directives. const MCExpr *AddrDelta; public: MCPseudoProbeAddrFragment(const MCExpr *AddrDelta, MCSection *Sec = nullptr) : MCEncodedFragmentWithFixups<8, 1>(FT_PseudoProbe, false, Sec), AddrDelta(AddrDelta) {} const MCExpr &getAddrDelta() const { return *AddrDelta; } static bool classof(const MCFragment *F) { return F->getKind() == MCFragment::FT_PseudoProbe; } }; } // end namespace llvm #endif // LLVM_MC_MCFRAGMENT_H