//===- MCContext.h - Machine Code Context -----------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCCONTEXT_H #define LLVM_MC_MCCONTEXT_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/BinaryFormat/XCOFF.h" #include "llvm/MC/MCAsmMacro.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCPseudoProbe.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/MC/SectionKind.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Error.h" #include "llvm/Support/MD5.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include namespace llvm { class CodeViewContext; class MCAsmInfo; class MCLabel; class MCObjectFileInfo; class MCRegisterInfo; class MCSection; class MCSectionCOFF; class MCSectionELF; class MCSectionMachO; class MCSectionWasm; class MCSectionXCOFF; class MCStreamer; class MCSymbol; class MCSymbolELF; class MCSymbolWasm; class MCSymbolXCOFF; class SMLoc; class SourceMgr; /// Context object for machine code objects. This class owns all of the /// sections that it creates. /// class MCContext { public: using SymbolTable = StringMap; private: /// The SourceMgr for this object, if any. const SourceMgr *SrcMgr; /// The SourceMgr for inline assembly, if any. SourceMgr *InlineSrcMgr; /// The MCAsmInfo for this target. const MCAsmInfo *MAI; /// The MCRegisterInfo for this target. const MCRegisterInfo *MRI; /// The MCObjectFileInfo for this target. const MCObjectFileInfo *MOFI; std::unique_ptr CVContext; /// Allocator object used for creating machine code objects. /// /// We use a bump pointer allocator to avoid the need to track all allocated /// objects. BumpPtrAllocator Allocator; SpecificBumpPtrAllocator COFFAllocator; SpecificBumpPtrAllocator ELFAllocator; SpecificBumpPtrAllocator MachOAllocator; SpecificBumpPtrAllocator WasmAllocator; SpecificBumpPtrAllocator XCOFFAllocator; SpecificBumpPtrAllocator MCInstAllocator; /// Bindings of names to symbols. SymbolTable Symbols; /// A mapping from a local label number and an instance count to a symbol. /// For example, in the assembly /// 1: /// 2: /// 1: /// We have three labels represented by the pairs (1, 0), (2, 0) and (1, 1) DenseMap, MCSymbol *> LocalSymbols; /// Keeps tracks of names that were used both for used declared and /// artificial symbols. The value is "true" if the name has been used for a /// non-section symbol (there can be at most one of those, plus an unlimited /// number of section symbols with the same name). StringMap UsedNames; /// Keeps track of labels that are used in inline assembly. SymbolTable InlineAsmUsedLabelNames; /// The next ID to dole out to an unnamed assembler temporary symbol with /// a given prefix. StringMap NextID; /// Instances of directional local labels. DenseMap Instances; /// NextInstance() creates the next instance of the directional local label /// for the LocalLabelVal and adds it to the map if needed. unsigned NextInstance(unsigned LocalLabelVal); /// GetInstance() gets the current instance of the directional local label /// for the LocalLabelVal and adds it to the map if needed. unsigned GetInstance(unsigned LocalLabelVal); /// The file name of the log file from the environment variable /// AS_SECURE_LOG_FILE. Which must be set before the .secure_log_unique /// directive is used or it is an error. char *SecureLogFile; /// The stream that gets written to for the .secure_log_unique directive. std::unique_ptr SecureLog; /// Boolean toggled when .secure_log_unique / .secure_log_reset is seen to /// catch errors if .secure_log_unique appears twice without /// .secure_log_reset appearing between them. bool SecureLogUsed = false; /// The compilation directory to use for DW_AT_comp_dir. SmallString<128> CompilationDir; /// Prefix replacement map for source file information. std::map DebugPrefixMap; /// The main file name if passed in explicitly. std::string MainFileName; /// The dwarf file and directory tables from the dwarf .file directive. /// We now emit a line table for each compile unit. To reduce the prologue /// size of each line table, the files and directories used by each compile /// unit are separated. std::map MCDwarfLineTablesCUMap; /// The current dwarf line information from the last dwarf .loc directive. MCDwarfLoc CurrentDwarfLoc; bool DwarfLocSeen = false; /// Generate dwarf debugging info for assembly source files. bool GenDwarfForAssembly = false; /// The current dwarf file number when generate dwarf debugging info for /// assembly source files. unsigned GenDwarfFileNumber = 0; /// Sections for generating the .debug_ranges and .debug_aranges sections. SetVector SectionsForRanges; /// The information gathered from labels that will have dwarf label /// entries when generating dwarf assembly source files. std::vector MCGenDwarfLabelEntries; /// The string to embed in the debug information for the compile unit, if /// non-empty. StringRef DwarfDebugFlags; /// The string to embed in as the dwarf AT_producer for the compile unit, if /// non-empty. StringRef DwarfDebugProducer; /// The maximum version of dwarf that we should emit. uint16_t DwarfVersion = 4; /// The format of dwarf that we emit. dwarf::DwarfFormat DwarfFormat = dwarf::DWARF32; /// Honor temporary labels, this is useful for debugging semantic /// differences between temporary and non-temporary labels (primarily on /// Darwin). bool AllowTemporaryLabels = true; bool UseNamesOnTempLabels = false; /// The Compile Unit ID that we are currently processing. unsigned DwarfCompileUnitID = 0; /// A collection of MCPseudoProbe in the current module MCPseudoProbeTable PseudoProbeTable; // Sections are differentiated by the quadruple (section_name, group_name, // unique_id, link_to_symbol_name). Sections sharing the same quadruple are // combined into one section. struct ELFSectionKey { std::string SectionName; StringRef GroupName; StringRef LinkedToName; unsigned UniqueID; ELFSectionKey(StringRef SectionName, StringRef GroupName, StringRef LinkedToName, unsigned UniqueID) : SectionName(SectionName), GroupName(GroupName), LinkedToName(LinkedToName), UniqueID(UniqueID) {} bool operator<(const ELFSectionKey &Other) const { if (SectionName != Other.SectionName) return SectionName < Other.SectionName; if (GroupName != Other.GroupName) return GroupName < Other.GroupName; if (int O = LinkedToName.compare(Other.LinkedToName)) return O < 0; return UniqueID < Other.UniqueID; } }; struct COFFSectionKey { std::string SectionName; StringRef GroupName; int SelectionKey; unsigned UniqueID; COFFSectionKey(StringRef SectionName, StringRef GroupName, int SelectionKey, unsigned UniqueID) : SectionName(SectionName), GroupName(GroupName), SelectionKey(SelectionKey), UniqueID(UniqueID) {} bool operator<(const COFFSectionKey &Other) const { if (SectionName != Other.SectionName) return SectionName < Other.SectionName; if (GroupName != Other.GroupName) return GroupName < Other.GroupName; if (SelectionKey != Other.SelectionKey) return SelectionKey < Other.SelectionKey; return UniqueID < Other.UniqueID; } }; struct WasmSectionKey { std::string SectionName; StringRef GroupName; unsigned UniqueID; WasmSectionKey(StringRef SectionName, StringRef GroupName, unsigned UniqueID) : SectionName(SectionName), GroupName(GroupName), UniqueID(UniqueID) { } bool operator<(const WasmSectionKey &Other) const { if (SectionName != Other.SectionName) return SectionName < Other.SectionName; if (GroupName != Other.GroupName) return GroupName < Other.GroupName; return UniqueID < Other.UniqueID; } }; struct XCOFFSectionKey { std::string SectionName; XCOFF::StorageMappingClass MappingClass; XCOFFSectionKey(StringRef SectionName, XCOFF::StorageMappingClass MappingClass) : SectionName(SectionName), MappingClass(MappingClass) {} bool operator<(const XCOFFSectionKey &Other) const { return std::tie(SectionName, MappingClass) < std::tie(Other.SectionName, Other.MappingClass); } }; StringMap MachOUniquingMap; std::map ELFUniquingMap; std::map COFFUniquingMap; std::map WasmUniquingMap; std::map XCOFFUniquingMap; StringMap RelSecNames; SpecificBumpPtrAllocator MCSubtargetAllocator; /// Do automatic reset in destructor bool AutoReset; MCTargetOptions const *TargetOptions; bool HadError = false; MCSymbol *createSymbolImpl(const StringMapEntry *Name, bool CanBeUnnamed); MCSymbol *createSymbol(StringRef Name, bool AlwaysAddSuffix, bool IsTemporary); MCSymbol *getOrCreateDirectionalLocalSymbol(unsigned LocalLabelVal, unsigned Instance); MCSectionELF *createELFSectionImpl(StringRef Section, unsigned Type, unsigned Flags, SectionKind K, unsigned EntrySize, const MCSymbolELF *Group, unsigned UniqueID, const MCSymbolELF *LinkedToSym); MCSymbolXCOFF *createXCOFFSymbolImpl(const StringMapEntry *Name, bool IsTemporary); /// Map of currently defined macros. StringMap MacroMap; struct ELFEntrySizeKey { std::string SectionName; unsigned Flags; unsigned EntrySize; ELFEntrySizeKey(StringRef SectionName, unsigned Flags, unsigned EntrySize) : SectionName(SectionName), Flags(Flags), EntrySize(EntrySize) {} bool operator<(const ELFEntrySizeKey &Other) const { if (SectionName != Other.SectionName) return SectionName < Other.SectionName; if ((Flags & ELF::SHF_STRINGS) != (Other.Flags & ELF::SHF_STRINGS)) return Other.Flags & ELF::SHF_STRINGS; return EntrySize < Other.EntrySize; } }; // Symbols must be assigned to a section with a compatible entry // size. This map is used to assign unique IDs to sections to // distinguish between sections with identical names but incompatible entry // sizes. This can occur when a symbol is explicitly assigned to a // section, e.g. via __attribute__((section("myname"))). std::map ELFEntrySizeMap; // This set is used to record the generic mergeable section names seen. // These are sections that are created as mergeable e.g. .debug_str. We need // to avoid assigning non-mergeable symbols to these sections. It is used // to prevent non-mergeable symbols being explicitly assigned to mergeable // sections (e.g. via _attribute_((section("myname")))). DenseSet ELFSeenGenericMergeableSections; public: explicit MCContext(const MCAsmInfo *MAI, const MCRegisterInfo *MRI, const MCObjectFileInfo *MOFI, const SourceMgr *Mgr = nullptr, MCTargetOptions const *TargetOpts = nullptr, bool DoAutoReset = true); MCContext(const MCContext &) = delete; MCContext &operator=(const MCContext &) = delete; ~MCContext(); const SourceMgr *getSourceManager() const { return SrcMgr; } void setInlineSourceManager(SourceMgr *SM) { InlineSrcMgr = SM; } const MCAsmInfo *getAsmInfo() const { return MAI; } const MCRegisterInfo *getRegisterInfo() const { return MRI; } const MCObjectFileInfo *getObjectFileInfo() const { return MOFI; } CodeViewContext &getCVContext(); void setAllowTemporaryLabels(bool Value) { AllowTemporaryLabels = Value; } void setUseNamesOnTempLabels(bool Value) { UseNamesOnTempLabels = Value; } /// \name Module Lifetime Management /// @{ /// reset - return object to right after construction state to prepare /// to process a new module void reset(); /// @} /// \name McInst Management /// Create and return a new MC instruction. MCInst *createMCInst(); /// \name Symbol Management /// @{ /// Create and return a new linker temporary symbol with a unique but /// unspecified name. MCSymbol *createLinkerPrivateTempSymbol(); /// Create a temporary symbol with a unique name. The name will be omitted /// in the symbol table if UseNamesOnTempLabels is false (default except /// MCAsmStreamer). The overload without Name uses an unspecified name. MCSymbol *createTempSymbol(); MCSymbol *createTempSymbol(const Twine &Name, bool AlwaysAddSuffix = true); /// Create a temporary symbol with a unique name whose name cannot be /// omitted in the symbol table. This is rarely used. MCSymbol *createNamedTempSymbol(); MCSymbol *createNamedTempSymbol(const Twine &Name); /// Create the definition of a directional local symbol for numbered label /// (used for "1:" definitions). MCSymbol *createDirectionalLocalSymbol(unsigned LocalLabelVal); /// Create and return a directional local symbol for numbered label (used /// for "1b" or 1f" references). MCSymbol *getDirectionalLocalSymbol(unsigned LocalLabelVal, bool Before); /// Lookup the symbol inside with the specified \p Name. If it exists, /// return it. If not, create a forward reference and return it. /// /// \param Name - The symbol name, which must be unique across all symbols. MCSymbol *getOrCreateSymbol(const Twine &Name); /// Gets a symbol that will be defined to the final stack offset of a local /// variable after codegen. /// /// \param Idx - The index of a local variable passed to \@llvm.localescape. MCSymbol *getOrCreateFrameAllocSymbol(StringRef FuncName, unsigned Idx); MCSymbol *getOrCreateParentFrameOffsetSymbol(StringRef FuncName); MCSymbol *getOrCreateLSDASymbol(StringRef FuncName); /// Get the symbol for \p Name, or null. MCSymbol *lookupSymbol(const Twine &Name) const; /// Set value for a symbol. void setSymbolValue(MCStreamer &Streamer, StringRef Sym, uint64_t Val); /// getSymbols - Get a reference for the symbol table for clients that /// want to, for example, iterate over all symbols. 'const' because we /// still want any modifications to the table itself to use the MCContext /// APIs. const SymbolTable &getSymbols() const { return Symbols; } /// isInlineAsmLabel - Return true if the name is a label referenced in /// inline assembly. MCSymbol *getInlineAsmLabel(StringRef Name) const { return InlineAsmUsedLabelNames.lookup(Name); } /// registerInlineAsmLabel - Records that the name is a label referenced in /// inline assembly. void registerInlineAsmLabel(MCSymbol *Sym); /// @} /// \name Section Management /// @{ enum : unsigned { /// Pass this value as the UniqueID during section creation to get the /// generic section with the given name and characteristics. The usual /// sections such as .text use this ID. GenericSectionID = ~0U }; /// Return the MCSection for the specified mach-o section. This requires /// the operands to be valid. MCSectionMachO *getMachOSection(StringRef Segment, StringRef Section, unsigned TypeAndAttributes, unsigned Reserved2, SectionKind K, const char *BeginSymName = nullptr); MCSectionMachO *getMachOSection(StringRef Segment, StringRef Section, unsigned TypeAndAttributes, SectionKind K, const char *BeginSymName = nullptr) { return getMachOSection(Segment, Section, TypeAndAttributes, 0, K, BeginSymName); } MCSectionELF *getELFSection(const Twine &Section, unsigned Type, unsigned Flags) { return getELFSection(Section, Type, Flags, 0, ""); } MCSectionELF *getELFSection(const Twine &Section, unsigned Type, unsigned Flags, unsigned EntrySize, const Twine &Group) { return getELFSection(Section, Type, Flags, EntrySize, Group, MCSection::NonUniqueID, nullptr); } MCSectionELF *getELFSection(const Twine &Section, unsigned Type, unsigned Flags, unsigned EntrySize, const Twine &Group, unsigned UniqueID, const MCSymbolELF *LinkedToSym); MCSectionELF *getELFSection(const Twine &Section, unsigned Type, unsigned Flags, unsigned EntrySize, const MCSymbolELF *Group, unsigned UniqueID, const MCSymbolELF *LinkedToSym); /// Get a section with the provided group identifier. This section is /// named by concatenating \p Prefix with '.' then \p Suffix. The \p Type /// describes the type of the section and \p Flags are used to further /// configure this named section. MCSectionELF *getELFNamedSection(const Twine &Prefix, const Twine &Suffix, unsigned Type, unsigned Flags, unsigned EntrySize = 0); MCSectionELF *createELFRelSection(const Twine &Name, unsigned Type, unsigned Flags, unsigned EntrySize, const MCSymbolELF *Group, const MCSectionELF *RelInfoSection); void renameELFSection(MCSectionELF *Section, StringRef Name); MCSectionELF *createELFGroupSection(const MCSymbolELF *Group); void recordELFMergeableSectionInfo(StringRef SectionName, unsigned Flags, unsigned UniqueID, unsigned EntrySize); bool isELFImplicitMergeableSectionNamePrefix(StringRef Name); bool isELFGenericMergeableSection(StringRef Name); Optional getELFUniqueIDForEntsize(StringRef SectionName, unsigned Flags, unsigned EntrySize); MCSectionCOFF *getCOFFSection(StringRef Section, unsigned Characteristics, SectionKind Kind, StringRef COMDATSymName, int Selection, unsigned UniqueID = GenericSectionID, const char *BeginSymName = nullptr); MCSectionCOFF *getCOFFSection(StringRef Section, unsigned Characteristics, SectionKind Kind, const char *BeginSymName = nullptr); /// Gets or creates a section equivalent to Sec that is associated with the /// section containing KeySym. For example, to create a debug info section /// associated with an inline function, pass the normal debug info section /// as Sec and the function symbol as KeySym. MCSectionCOFF * getAssociativeCOFFSection(MCSectionCOFF *Sec, const MCSymbol *KeySym, unsigned UniqueID = GenericSectionID); MCSectionWasm *getWasmSection(const Twine &Section, SectionKind K) { return getWasmSection(Section, K, nullptr); } MCSectionWasm *getWasmSection(const Twine &Section, SectionKind K, const char *BeginSymName) { return getWasmSection(Section, K, "", ~0, BeginSymName); } MCSectionWasm *getWasmSection(const Twine &Section, SectionKind K, const Twine &Group, unsigned UniqueID) { return getWasmSection(Section, K, Group, UniqueID, nullptr); } MCSectionWasm *getWasmSection(const Twine &Section, SectionKind K, const Twine &Group, unsigned UniqueID, const char *BeginSymName); MCSectionWasm *getWasmSection(const Twine &Section, SectionKind K, const MCSymbolWasm *Group, unsigned UniqueID, const char *BeginSymName); MCSectionXCOFF *getXCOFFSection(StringRef Section, XCOFF::StorageMappingClass MappingClass, XCOFF::SymbolType CSectType, SectionKind K, bool MultiSymbolsAllowed = false, const char *BeginSymName = nullptr); // Create and save a copy of STI and return a reference to the copy. MCSubtargetInfo &getSubtargetCopy(const MCSubtargetInfo &STI); /// @} /// \name Dwarf Management /// @{ /// Get the compilation directory for DW_AT_comp_dir /// The compilation directory should be set with \c setCompilationDir before /// calling this function. If it is unset, an empty string will be returned. StringRef getCompilationDir() const { return CompilationDir; } /// Set the compilation directory for DW_AT_comp_dir void setCompilationDir(StringRef S) { CompilationDir = S.str(); } /// Add an entry to the debug prefix map. void addDebugPrefixMapEntry(const std::string &From, const std::string &To); // Remaps all debug directory paths in-place as per the debug prefix map. void RemapDebugPaths(); /// Get the main file name for use in error messages and debug /// info. This can be set to ensure we've got the correct file name /// after preprocessing or for -save-temps. const std::string &getMainFileName() const { return MainFileName; } /// Set the main file name and override the default. void setMainFileName(StringRef S) { MainFileName = std::string(S); } /// Creates an entry in the dwarf file and directory tables. Expected getDwarfFile(StringRef Directory, StringRef FileName, unsigned FileNumber, Optional Checksum, Optional Source, unsigned CUID); bool isValidDwarfFileNumber(unsigned FileNumber, unsigned CUID = 0); const std::map &getMCDwarfLineTables() const { return MCDwarfLineTablesCUMap; } MCDwarfLineTable &getMCDwarfLineTable(unsigned CUID) { return MCDwarfLineTablesCUMap[CUID]; } const MCDwarfLineTable &getMCDwarfLineTable(unsigned CUID) const { auto I = MCDwarfLineTablesCUMap.find(CUID); assert(I != MCDwarfLineTablesCUMap.end()); return I->second; } const SmallVectorImpl &getMCDwarfFiles(unsigned CUID = 0) { return getMCDwarfLineTable(CUID).getMCDwarfFiles(); } const SmallVectorImpl &getMCDwarfDirs(unsigned CUID = 0) { return getMCDwarfLineTable(CUID).getMCDwarfDirs(); } unsigned getDwarfCompileUnitID() { return DwarfCompileUnitID; } void setDwarfCompileUnitID(unsigned CUIndex) { DwarfCompileUnitID = CUIndex; } /// Specifies the "root" file and directory of the compilation unit. /// These are "file 0" and "directory 0" in DWARF v5. void setMCLineTableRootFile(unsigned CUID, StringRef CompilationDir, StringRef Filename, Optional Checksum, Optional Source) { getMCDwarfLineTable(CUID).setRootFile(CompilationDir, Filename, Checksum, Source); } /// Reports whether MD5 checksum usage is consistent (all-or-none). bool isDwarfMD5UsageConsistent(unsigned CUID) const { return getMCDwarfLineTable(CUID).isMD5UsageConsistent(); } /// Saves the information from the currently parsed dwarf .loc directive /// and sets DwarfLocSeen. When the next instruction is assembled an entry /// in the line number table with this information and the address of the /// instruction will be created. void setCurrentDwarfLoc(unsigned FileNum, unsigned Line, unsigned Column, unsigned Flags, unsigned Isa, unsigned Discriminator) { CurrentDwarfLoc.setFileNum(FileNum); CurrentDwarfLoc.setLine(Line); CurrentDwarfLoc.setColumn(Column); CurrentDwarfLoc.setFlags(Flags); CurrentDwarfLoc.setIsa(Isa); CurrentDwarfLoc.setDiscriminator(Discriminator); DwarfLocSeen = true; } void clearDwarfLocSeen() { DwarfLocSeen = false; } bool getDwarfLocSeen() { return DwarfLocSeen; } const MCDwarfLoc &getCurrentDwarfLoc() { return CurrentDwarfLoc; } bool getGenDwarfForAssembly() { return GenDwarfForAssembly; } void setGenDwarfForAssembly(bool Value) { GenDwarfForAssembly = Value; } unsigned getGenDwarfFileNumber() { return GenDwarfFileNumber; } void setGenDwarfFileNumber(unsigned FileNumber) { GenDwarfFileNumber = FileNumber; } /// Specifies information about the "root file" for assembler clients /// (e.g., llvm-mc). Assumes compilation dir etc. have been set up. void setGenDwarfRootFile(StringRef FileName, StringRef Buffer); const SetVector &getGenDwarfSectionSyms() { return SectionsForRanges; } bool addGenDwarfSection(MCSection *Sec) { return SectionsForRanges.insert(Sec); } void finalizeDwarfSections(MCStreamer &MCOS); const std::vector &getMCGenDwarfLabelEntries() const { return MCGenDwarfLabelEntries; } void addMCGenDwarfLabelEntry(const MCGenDwarfLabelEntry &E) { MCGenDwarfLabelEntries.push_back(E); } void setDwarfDebugFlags(StringRef S) { DwarfDebugFlags = S; } StringRef getDwarfDebugFlags() { return DwarfDebugFlags; } void setDwarfDebugProducer(StringRef S) { DwarfDebugProducer = S; } StringRef getDwarfDebugProducer() { return DwarfDebugProducer; } void setDwarfFormat(dwarf::DwarfFormat f) { DwarfFormat = f; } dwarf::DwarfFormat getDwarfFormat() const { return DwarfFormat; } void setDwarfVersion(uint16_t v) { DwarfVersion = v; } uint16_t getDwarfVersion() const { return DwarfVersion; } /// @} char *getSecureLogFile() { return SecureLogFile; } raw_fd_ostream *getSecureLog() { return SecureLog.get(); } void setSecureLog(std::unique_ptr Value) { SecureLog = std::move(Value); } bool getSecureLogUsed() { return SecureLogUsed; } void setSecureLogUsed(bool Value) { SecureLogUsed = Value; } void *allocate(unsigned Size, unsigned Align = 8) { return Allocator.Allocate(Size, Align); } void deallocate(void *Ptr) {} bool hadError() { return HadError; } void reportError(SMLoc L, const Twine &Msg); void reportWarning(SMLoc L, const Twine &Msg); // Unrecoverable error has occurred. Display the best diagnostic we can // and bail via exit(1). For now, most MC backend errors are unrecoverable. // FIXME: We should really do something about that. LLVM_ATTRIBUTE_NORETURN void reportFatalError(SMLoc L, const Twine &Msg); const MCAsmMacro *lookupMacro(StringRef Name) { StringMap::iterator I = MacroMap.find(Name); return (I == MacroMap.end()) ? nullptr : &I->getValue(); } void defineMacro(StringRef Name, MCAsmMacro Macro) { MacroMap.insert(std::make_pair(Name, std::move(Macro))); } void undefineMacro(StringRef Name) { MacroMap.erase(Name); } MCPseudoProbeTable &getMCPseudoProbeTable() { return PseudoProbeTable; } }; } // end namespace llvm // operator new and delete aren't allowed inside namespaces. // The throw specifications are mandated by the standard. /// Placement new for using the MCContext's allocator. /// /// This placement form of operator new uses the MCContext's allocator for /// obtaining memory. It is a non-throwing new, which means that it returns /// null on error. (If that is what the allocator does. The current does, so if /// this ever changes, this operator will have to be changed, too.) /// Usage looks like this (assuming there's an MCContext 'Context' in scope): /// \code /// // Default alignment (8) /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments); /// // Specific alignment /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments); /// \endcode /// Please note that you cannot use delete on the pointer; it must be /// deallocated using an explicit destructor call followed by /// \c Context.Deallocate(Ptr). /// /// \param Bytes The number of bytes to allocate. Calculated by the compiler. /// \param C The MCContext that provides the allocator. /// \param Alignment The alignment of the allocated memory (if the underlying /// allocator supports it). /// \return The allocated memory. Could be NULL. inline void *operator new(size_t Bytes, llvm::MCContext &C, size_t Alignment = 8) noexcept { return C.allocate(Bytes, Alignment); } /// Placement delete companion to the new above. /// /// This operator is just a companion to the new above. There is no way of /// invoking it directly; see the new operator for more details. This operator /// is called implicitly by the compiler if a placement new expression using /// the MCContext throws in the object constructor. inline void operator delete(void *Ptr, llvm::MCContext &C, size_t) noexcept { C.deallocate(Ptr); } /// This placement form of operator new[] uses the MCContext's allocator for /// obtaining memory. It is a non-throwing new[], which means that it returns /// null on error. /// Usage looks like this (assuming there's an MCContext 'Context' in scope): /// \code /// // Default alignment (8) /// char *data = new (Context) char[10]; /// // Specific alignment /// char *data = new (Context, 4) char[10]; /// \endcode /// Please note that you cannot use delete on the pointer; it must be /// deallocated using an explicit destructor call followed by /// \c Context.Deallocate(Ptr). /// /// \param Bytes The number of bytes to allocate. Calculated by the compiler. /// \param C The MCContext that provides the allocator. /// \param Alignment The alignment of the allocated memory (if the underlying /// allocator supports it). /// \return The allocated memory. Could be NULL. inline void *operator new[](size_t Bytes, llvm::MCContext &C, size_t Alignment = 8) noexcept { return C.allocate(Bytes, Alignment); } /// Placement delete[] companion to the new[] above. /// /// This operator is just a companion to the new[] above. There is no way of /// invoking it directly; see the new[] operator for more details. This operator /// is called implicitly by the compiler if a placement new[] expression using /// the MCContext throws in the object constructor. inline void operator delete[](void *Ptr, llvm::MCContext &C) noexcept { C.deallocate(Ptr); } #endif // LLVM_MC_MCCONTEXT_H