//===- llvm/InlineAsm.h - Class to represent inline asm strings -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This class represents the inline asm strings, which are Value*'s that are // used as the callee operand of call instructions. InlineAsm's are uniqued // like constants, and created via InlineAsm::get(...). // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_INLINEASM_H #define LLVM_IR_INLINEASM_H #include "llvm/ADT/StringRef.h" #include "llvm/IR/Value.h" #include "llvm/Support/ErrorHandling.h" #include #include #include namespace llvm { class FunctionType; class PointerType; template class ConstantUniqueMap; class InlineAsm final : public Value { public: enum AsmDialect { AD_ATT, AD_Intel }; private: friend struct InlineAsmKeyType; friend class ConstantUniqueMap; std::string AsmString, Constraints; FunctionType *FTy; bool HasSideEffects; bool IsAlignStack; AsmDialect Dialect; InlineAsm(FunctionType *Ty, const std::string &AsmString, const std::string &Constraints, bool hasSideEffects, bool isAlignStack, AsmDialect asmDialect); /// When the ConstantUniqueMap merges two types and makes two InlineAsms /// identical, it destroys one of them with this method. void destroyConstant(); public: InlineAsm(const InlineAsm &) = delete; InlineAsm &operator=(const InlineAsm &) = delete; /// InlineAsm::get - Return the specified uniqued inline asm string. /// static InlineAsm *get(FunctionType *Ty, StringRef AsmString, StringRef Constraints, bool hasSideEffects, bool isAlignStack = false, AsmDialect asmDialect = AD_ATT); bool hasSideEffects() const { return HasSideEffects; } bool isAlignStack() const { return IsAlignStack; } AsmDialect getDialect() const { return Dialect; } /// getType - InlineAsm's are always pointers. /// PointerType *getType() const { return reinterpret_cast(Value::getType()); } /// getFunctionType - InlineAsm's are always pointers to functions. /// FunctionType *getFunctionType() const; const std::string &getAsmString() const { return AsmString; } const std::string &getConstraintString() const { return Constraints; } /// Verify - This static method can be used by the parser to check to see if /// the specified constraint string is legal for the type. This returns true /// if legal, false if not. /// static bool Verify(FunctionType *Ty, StringRef Constraints); // Constraint String Parsing enum ConstraintPrefix { isInput, // 'x' isOutput, // '=x' isClobber // '~x' }; using ConstraintCodeVector = std::vector; struct SubConstraintInfo { /// MatchingInput - If this is not -1, this is an output constraint where an /// input constraint is required to match it (e.g. "0"). The value is the /// constraint number that matches this one (for example, if this is /// constraint #0 and constraint #4 has the value "0", this will be 4). int MatchingInput = -1; /// Code - The constraint code, either the register name (in braces) or the /// constraint letter/number. ConstraintCodeVector Codes; /// Default constructor. SubConstraintInfo() = default; }; using SubConstraintInfoVector = std::vector; struct ConstraintInfo; using ConstraintInfoVector = std::vector; struct ConstraintInfo { /// Type - The basic type of the constraint: input/output/clobber /// ConstraintPrefix Type = isInput; /// isEarlyClobber - "&": output operand writes result before inputs are all /// read. This is only ever set for an output operand. bool isEarlyClobber = false; /// MatchingInput - If this is not -1, this is an output constraint where an /// input constraint is required to match it (e.g. "0"). The value is the /// constraint number that matches this one (for example, if this is /// constraint #0 and constraint #4 has the value "0", this will be 4). int MatchingInput = -1; /// hasMatchingInput - Return true if this is an output constraint that has /// a matching input constraint. bool hasMatchingInput() const { return MatchingInput != -1; } /// isCommutative - This is set to true for a constraint that is commutative /// with the next operand. bool isCommutative = false; /// isIndirect - True if this operand is an indirect operand. This means /// that the address of the source or destination is present in the call /// instruction, instead of it being returned or passed in explicitly. This /// is represented with a '*' in the asm string. bool isIndirect = false; /// Code - The constraint code, either the register name (in braces) or the /// constraint letter/number. ConstraintCodeVector Codes; /// isMultipleAlternative - '|': has multiple-alternative constraints. bool isMultipleAlternative = false; /// multipleAlternatives - If there are multiple alternative constraints, /// this array will contain them. Otherwise it will be empty. SubConstraintInfoVector multipleAlternatives; /// The currently selected alternative constraint index. unsigned currentAlternativeIndex = 0; /// Default constructor. ConstraintInfo() = default; /// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the /// fields in this structure. If the constraint string is not understood, /// return true, otherwise return false. bool Parse(StringRef Str, ConstraintInfoVector &ConstraintsSoFar); /// selectAlternative - Point this constraint to the alternative constraint /// indicated by the index. void selectAlternative(unsigned index); }; /// ParseConstraints - Split up the constraint string into the specific /// constraints and their prefixes. If this returns an empty vector, and if /// the constraint string itself isn't empty, there was an error parsing. static ConstraintInfoVector ParseConstraints(StringRef ConstraintString); /// ParseConstraints - Parse the constraints of this inlineasm object, /// returning them the same way that ParseConstraints(str) does. ConstraintInfoVector ParseConstraints() const { return ParseConstraints(Constraints); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == Value::InlineAsmVal; } // These are helper methods for dealing with flags in the INLINEASM SDNode // in the backend. // // The encoding of the flag word is currently: // Bits 2-0 - A Kind_* value indicating the kind of the operand. // Bits 15-3 - The number of SDNode operands associated with this inline // assembly operand. // If bit 31 is set: // Bit 30-16 - The operand number that this operand must match. // When bits 2-0 are Kind_Mem, the Constraint_* value must be // obtained from the flags for this operand number. // Else if bits 2-0 are Kind_Mem: // Bit 30-16 - A Constraint_* value indicating the original constraint // code. // Else: // Bit 30-16 - The register class ID to use for the operand. enum : uint32_t { // Fixed operands on an INLINEASM SDNode. Op_InputChain = 0, Op_AsmString = 1, Op_MDNode = 2, Op_ExtraInfo = 3, // HasSideEffects, IsAlignStack, AsmDialect. Op_FirstOperand = 4, // Fixed operands on an INLINEASM MachineInstr. MIOp_AsmString = 0, MIOp_ExtraInfo = 1, // HasSideEffects, IsAlignStack, AsmDialect. MIOp_FirstOperand = 2, // Interpretation of the MIOp_ExtraInfo bit field. Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, Extra_AsmDialect = 4, Extra_MayLoad = 8, Extra_MayStore = 16, Extra_IsConvergent = 32, // Inline asm operands map to multiple SDNode / MachineInstr operands. // The first operand is an immediate describing the asm operand, the low // bits is the kind: Kind_RegUse = 1, // Input register, "r". Kind_RegDef = 2, // Output register, "=r". Kind_RegDefEarlyClobber = 3, // Early-clobber output register, "=&r". Kind_Clobber = 4, // Clobbered register, "~r". Kind_Imm = 5, // Immediate. Kind_Mem = 6, // Memory operand, "m". // Memory constraint codes. // These could be tablegenerated but there's little need to do that since // there's plenty of space in the encoding to support the union of all // constraint codes for all targets. Constraint_Unknown = 0, Constraint_es, Constraint_i, Constraint_m, Constraint_o, Constraint_v, Constraint_A, Constraint_Q, Constraint_R, Constraint_S, Constraint_T, Constraint_Um, Constraint_Un, Constraint_Uq, Constraint_Us, Constraint_Ut, Constraint_Uv, Constraint_Uy, Constraint_X, Constraint_Z, Constraint_ZC, Constraint_Zy, Constraints_Max = Constraint_Zy, Constraints_ShiftAmount = 16, Flag_MatchingOperand = 0x80000000 }; static unsigned getFlagWord(unsigned Kind, unsigned NumOps) { assert(((NumOps << 3) & ~0xffff) == 0 && "Too many inline asm operands!"); assert(Kind >= Kind_RegUse && Kind <= Kind_Mem && "Invalid Kind"); return Kind | (NumOps << 3); } static bool isRegDefKind(unsigned Flag){ return getKind(Flag) == Kind_RegDef;} static bool isImmKind(unsigned Flag) { return getKind(Flag) == Kind_Imm; } static bool isMemKind(unsigned Flag) { return getKind(Flag) == Kind_Mem; } static bool isRegDefEarlyClobberKind(unsigned Flag) { return getKind(Flag) == Kind_RegDefEarlyClobber; } static bool isClobberKind(unsigned Flag) { return getKind(Flag) == Kind_Clobber; } /// getFlagWordForMatchingOp - Augment an existing flag word returned by /// getFlagWord with information indicating that this input operand is tied /// to a previous output operand. static unsigned getFlagWordForMatchingOp(unsigned InputFlag, unsigned MatchedOperandNo) { assert(MatchedOperandNo <= 0x7fff && "Too big matched operand"); assert((InputFlag & ~0xffff) == 0 && "High bits already contain data"); return InputFlag | Flag_MatchingOperand | (MatchedOperandNo << 16); } /// getFlagWordForRegClass - Augment an existing flag word returned by /// getFlagWord with the required register class for the following register /// operands. /// A tied use operand cannot have a register class, use the register class /// from the def operand instead. static unsigned getFlagWordForRegClass(unsigned InputFlag, unsigned RC) { // Store RC + 1, reserve the value 0 to mean 'no register class'. ++RC; assert(!isImmKind(InputFlag) && "Immediates cannot have a register class"); assert(!isMemKind(InputFlag) && "Memory operand cannot have a register class"); assert(RC <= 0x7fff && "Too large register class ID"); assert((InputFlag & ~0xffff) == 0 && "High bits already contain data"); return InputFlag | (RC << 16); } /// Augment an existing flag word returned by getFlagWord with the constraint /// code for a memory constraint. static unsigned getFlagWordForMem(unsigned InputFlag, unsigned Constraint) { assert(isMemKind(InputFlag) && "InputFlag is not a memory constraint!"); assert(Constraint <= 0x7fff && "Too large a memory constraint ID"); assert(Constraint <= Constraints_Max && "Unknown constraint ID"); assert((InputFlag & ~0xffff) == 0 && "High bits already contain data"); return InputFlag | (Constraint << Constraints_ShiftAmount); } static unsigned convertMemFlagWordToMatchingFlagWord(unsigned InputFlag) { assert(isMemKind(InputFlag)); return InputFlag & ~(0x7fff << Constraints_ShiftAmount); } static unsigned getKind(unsigned Flags) { return Flags & 7; } static unsigned getMemoryConstraintID(unsigned Flag) { assert(isMemKind(Flag)); return (Flag >> Constraints_ShiftAmount) & 0x7fff; } /// getNumOperandRegisters - Extract the number of registers field from the /// inline asm operand flag. static unsigned getNumOperandRegisters(unsigned Flag) { return (Flag & 0xffff) >> 3; } /// isUseOperandTiedToDef - Return true if the flag of the inline asm /// operand indicates it is an use operand that's matched to a def operand. static bool isUseOperandTiedToDef(unsigned Flag, unsigned &Idx) { if ((Flag & Flag_MatchingOperand) == 0) return false; Idx = (Flag & ~Flag_MatchingOperand) >> 16; return true; } /// hasRegClassConstraint - Returns true if the flag contains a register /// class constraint. Sets RC to the register class ID. static bool hasRegClassConstraint(unsigned Flag, unsigned &RC) { if (Flag & Flag_MatchingOperand) return false; unsigned High = Flag >> 16; // getFlagWordForRegClass() uses 0 to mean no register class, and otherwise // stores RC + 1. if (!High) return false; RC = High - 1; return true; } static std::vector getExtraInfoNames(unsigned ExtraInfo) { std::vector Result; if (ExtraInfo & InlineAsm::Extra_HasSideEffects) Result.push_back("sideeffect"); if (ExtraInfo & InlineAsm::Extra_MayLoad) Result.push_back("mayload"); if (ExtraInfo & InlineAsm::Extra_MayStore) Result.push_back("maystore"); if (ExtraInfo & InlineAsm::Extra_IsConvergent) Result.push_back("isconvergent"); if (ExtraInfo & InlineAsm::Extra_IsAlignStack) Result.push_back("alignstack"); AsmDialect Dialect = InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect)); if (Dialect == InlineAsm::AD_ATT) Result.push_back("attdialect"); if (Dialect == InlineAsm::AD_Intel) Result.push_back("inteldialect"); return Result; } static StringRef getKindName(unsigned Kind) { switch (Kind) { case InlineAsm::Kind_RegUse: return "reguse"; case InlineAsm::Kind_RegDef: return "regdef"; case InlineAsm::Kind_RegDefEarlyClobber: return "regdef-ec"; case InlineAsm::Kind_Clobber: return "clobber"; case InlineAsm::Kind_Imm: return "imm"; case InlineAsm::Kind_Mem: return "mem"; default: llvm_unreachable("Unknown operand kind"); } } static StringRef getMemConstraintName(unsigned Constraint) { switch (Constraint) { case InlineAsm::Constraint_es: return "es"; case InlineAsm::Constraint_i: return "i"; case InlineAsm::Constraint_m: return "m"; case InlineAsm::Constraint_o: return "o"; case InlineAsm::Constraint_v: return "v"; case InlineAsm::Constraint_Q: return "Q"; case InlineAsm::Constraint_R: return "R"; case InlineAsm::Constraint_S: return "S"; case InlineAsm::Constraint_T: return "T"; case InlineAsm::Constraint_Um: return "Um"; case InlineAsm::Constraint_Un: return "Un"; case InlineAsm::Constraint_Uq: return "Uq"; case InlineAsm::Constraint_Us: return "Us"; case InlineAsm::Constraint_Ut: return "Ut"; case InlineAsm::Constraint_Uv: return "Uv"; case InlineAsm::Constraint_Uy: return "Uy"; case InlineAsm::Constraint_X: return "X"; case InlineAsm::Constraint_Z: return "Z"; case InlineAsm::Constraint_ZC: return "ZC"; case InlineAsm::Constraint_Zy: return "Zy"; default: llvm_unreachable("Unknown memory constraint"); } } }; } // end namespace llvm #endif // LLVM_IR_INLINEASM_H