//===- CFG.h ----------------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file provides various utilities for inspecting and working with the /// control flow graph in LLVM IR. This includes generic facilities for /// iterating successors and predecessors of basic blocks, the successors of /// specific terminator instructions, etc. It also defines specializations of /// GraphTraits that allow Function and BasicBlock graphs to be treated as /// proper graphs for generic algorithms. /// //===----------------------------------------------------------------------===// #ifndef LLVM_IR_CFG_H #define LLVM_IR_CFG_H #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/Function.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include #include #include namespace llvm { class BasicBlock; class Instruction; class Use; //===----------------------------------------------------------------------===// // BasicBlock pred_iterator definition //===----------------------------------------------------------------------===// template // Predecessor Iterator class PredIterator : public std::iterator { using super = std::iterator; using Self = PredIterator; USE_iterator It; inline void advancePastNonTerminators() { // Loop to ignore non-terminator uses (for example BlockAddresses). while (!It.atEnd()) { if (auto *Inst = dyn_cast(*It)) if (Inst->isTerminator()) break; ++It; } } public: using pointer = typename super::pointer; using reference = typename super::reference; PredIterator() = default; explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) { advancePastNonTerminators(); } inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {} inline bool operator==(const Self& x) const { return It == x.It; } inline bool operator!=(const Self& x) const { return !operator==(x); } inline reference operator*() const { assert(!It.atEnd() && "pred_iterator out of range!"); return cast(*It)->getParent(); } inline pointer *operator->() const { return &operator*(); } inline Self& operator++() { // Preincrement assert(!It.atEnd() && "pred_iterator out of range!"); ++It; advancePastNonTerminators(); return *this; } inline Self operator++(int) { // Postincrement Self tmp = *this; ++*this; return tmp; } /// getOperandNo - Return the operand number in the predecessor's /// terminator of the successor. unsigned getOperandNo() const { return It.getOperandNo(); } /// getUse - Return the operand Use in the predecessor's terminator /// of the successor. Use &getUse() const { return It.getUse(); } }; using pred_iterator = PredIterator; using const_pred_iterator = PredIterator; using pred_range = iterator_range; using const_pred_range = iterator_range; inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); } inline const_pred_iterator pred_begin(const BasicBlock *BB) { return const_pred_iterator(BB); } inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);} inline const_pred_iterator pred_end(const BasicBlock *BB) { return const_pred_iterator(BB, true); } inline bool pred_empty(const BasicBlock *BB) { return pred_begin(BB) == pred_end(BB); } /// Get the number of predecessors of \p BB. This is a linear time operation. /// Use \ref BasicBlock::hasNPredecessors() or hasNPredecessorsOrMore if able. inline unsigned pred_size(const BasicBlock *BB) { return std::distance(pred_begin(BB), pred_end(BB)); } inline pred_range predecessors(BasicBlock *BB) { return pred_range(pred_begin(BB), pred_end(BB)); } inline const_pred_range predecessors(const BasicBlock *BB) { return const_pred_range(pred_begin(BB), pred_end(BB)); } //===----------------------------------------------------------------------===// // Instruction and BasicBlock succ_iterator helpers //===----------------------------------------------------------------------===// template class SuccIterator : public iterator_facade_base, std::random_access_iterator_tag, BlockT, int, BlockT *, BlockT *> { public: using difference_type = int; using pointer = BlockT *; using reference = BlockT *; private: InstructionT *Inst; int Idx; using Self = SuccIterator; inline bool index_is_valid(int Idx) { // Note that we specially support the index of zero being valid even in the // face of a null instruction. return Idx >= 0 && (Idx == 0 || Idx <= (int)Inst->getNumSuccessors()); } /// Proxy object to allow write access in operator[] class SuccessorProxy { Self It; public: explicit SuccessorProxy(const Self &It) : It(It) {} SuccessorProxy(const SuccessorProxy &) = default; SuccessorProxy &operator=(SuccessorProxy RHS) { *this = reference(RHS); return *this; } SuccessorProxy &operator=(reference RHS) { It.Inst->setSuccessor(It.Idx, RHS); return *this; } operator reference() const { return *It; } }; public: // begin iterator explicit inline SuccIterator(InstructionT *Inst) : Inst(Inst), Idx(0) {} // end iterator inline SuccIterator(InstructionT *Inst, bool) : Inst(Inst) { if (Inst) Idx = Inst->getNumSuccessors(); else // Inst == NULL happens, if a basic block is not fully constructed and // consequently getTerminator() returns NULL. In this case we construct // a SuccIterator which describes a basic block that has zero // successors. // Defining SuccIterator for incomplete and malformed CFGs is especially // useful for debugging. Idx = 0; } /// This is used to interface between code that wants to /// operate on terminator instructions directly. int getSuccessorIndex() const { return Idx; } inline bool operator==(const Self &x) const { return Idx == x.Idx; } inline BlockT *operator*() const { return Inst->getSuccessor(Idx); } // We use the basic block pointer directly for operator->. inline BlockT *operator->() const { return operator*(); } inline bool operator<(const Self &RHS) const { assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!"); return Idx < RHS.Idx; } int operator-(const Self &RHS) const { assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!"); return Idx - RHS.Idx; } inline Self &operator+=(int RHS) { int NewIdx = Idx + RHS; assert(index_is_valid(NewIdx) && "Iterator index out of bound"); Idx = NewIdx; return *this; } inline Self &operator-=(int RHS) { return operator+=(-RHS); } // Specially implement the [] operation using a proxy object to support // assignment. inline SuccessorProxy operator[](int Offset) { Self TmpIt = *this; TmpIt += Offset; return SuccessorProxy(TmpIt); } /// Get the source BlockT of this iterator. inline BlockT *getSource() { assert(Inst && "Source not available, if basic block was malformed"); return Inst->getParent(); } }; using succ_iterator = SuccIterator; using const_succ_iterator = SuccIterator; using succ_range = iterator_range; using const_succ_range = iterator_range; inline succ_iterator succ_begin(Instruction *I) { return succ_iterator(I); } inline const_succ_iterator succ_begin(const Instruction *I) { return const_succ_iterator(I); } inline succ_iterator succ_end(Instruction *I) { return succ_iterator(I, true); } inline const_succ_iterator succ_end(const Instruction *I) { return const_succ_iterator(I, true); } inline bool succ_empty(const Instruction *I) { return succ_begin(I) == succ_end(I); } inline unsigned succ_size(const Instruction *I) { return std::distance(succ_begin(I), succ_end(I)); } inline succ_range successors(Instruction *I) { return succ_range(succ_begin(I), succ_end(I)); } inline const_succ_range successors(const Instruction *I) { return const_succ_range(succ_begin(I), succ_end(I)); } inline succ_iterator succ_begin(BasicBlock *BB) { return succ_iterator(BB->getTerminator()); } inline const_succ_iterator succ_begin(const BasicBlock *BB) { return const_succ_iterator(BB->getTerminator()); } inline succ_iterator succ_end(BasicBlock *BB) { return succ_iterator(BB->getTerminator(), true); } inline const_succ_iterator succ_end(const BasicBlock *BB) { return const_succ_iterator(BB->getTerminator(), true); } inline bool succ_empty(const BasicBlock *BB) { return succ_begin(BB) == succ_end(BB); } inline unsigned succ_size(const BasicBlock *BB) { return std::distance(succ_begin(BB), succ_end(BB)); } inline succ_range successors(BasicBlock *BB) { return succ_range(succ_begin(BB), succ_end(BB)); } inline const_succ_range successors(const BasicBlock *BB) { return const_succ_range(succ_begin(BB), succ_end(BB)); } //===--------------------------------------------------------------------===// // GraphTraits specializations for basic block graphs (CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... template <> struct GraphTraits { using NodeRef = BasicBlock *; using ChildIteratorType = succ_iterator; static NodeRef getEntryNode(BasicBlock *BB) { return BB; } static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); } static ChildIteratorType child_end(NodeRef N) { return succ_end(N); } }; template <> struct GraphTraits { using NodeRef = const BasicBlock *; using ChildIteratorType = const_succ_iterator; static NodeRef getEntryNode(const BasicBlock *BB) { return BB; } static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); } static ChildIteratorType child_end(NodeRef N) { return succ_end(N); } }; // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... and to walk it in inverse order. Inverse order for // a function is considered to be when traversing the predecessor edges of a BB // instead of the successor edges. // template <> struct GraphTraits> { using NodeRef = BasicBlock *; using ChildIteratorType = pred_iterator; static NodeRef getEntryNode(Inverse G) { return G.Graph; } static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); } static ChildIteratorType child_end(NodeRef N) { return pred_end(N); } }; template <> struct GraphTraits> { using NodeRef = const BasicBlock *; using ChildIteratorType = const_pred_iterator; static NodeRef getEntryNode(Inverse G) { return G.Graph; } static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); } static ChildIteratorType child_end(NodeRef N) { return pred_end(N); } }; //===--------------------------------------------------------------------===// // GraphTraits specializations for function basic block graphs (CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... these are the same as the basic block iterators, // except that the root node is implicitly the first node of the function. // template <> struct GraphTraits : public GraphTraits { static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph using nodes_iterator = pointer_iterator; static nodes_iterator nodes_begin(Function *F) { return nodes_iterator(F->begin()); } static nodes_iterator nodes_end(Function *F) { return nodes_iterator(F->end()); } static size_t size(Function *F) { return F->size(); } }; template <> struct GraphTraits : public GraphTraits { static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph using nodes_iterator = pointer_iterator; static nodes_iterator nodes_begin(const Function *F) { return nodes_iterator(F->begin()); } static nodes_iterator nodes_end(const Function *F) { return nodes_iterator(F->end()); } static size_t size(const Function *F) { return F->size(); } }; // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... and to walk it in inverse order. Inverse order for // a function is considered to be when traversing the predecessor edges of a BB // instead of the successor edges. // template <> struct GraphTraits> : public GraphTraits> { static NodeRef getEntryNode(Inverse G) { return &G.Graph->getEntryBlock(); } }; template <> struct GraphTraits> : public GraphTraits> { static NodeRef getEntryNode(Inverse G) { return &G.Graph->getEntryBlock(); } }; } // end namespace llvm #endif // LLVM_IR_CFG_H