//===- TFUtils.h - utilities for tensorflow C API ---------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // #ifndef LLVM_ANALYSIS_UTILS_TFUTILS_H #define LLVM_ANALYSIS_UTILS_TFUTILS_H #include "llvm/Config/llvm-config.h" #ifdef LLVM_HAVE_TF_API #include "llvm/IR/LLVMContext.h" #include "llvm/Support/JSON.h" #include #include namespace llvm { /// Load a SavedModel, find the given inputs and outputs, and setup storage /// for input tensors. The user is responsible for correctly dimensioning the /// input tensors and setting their values before calling evaluate(). /// To initialize: /// - construct the object /// - initialize the input tensors using initInput. Indices must correspond to /// indices in the InputNames used at construction. /// To use: /// - set input values by using getInput to get each input tensor, and then /// setting internal scalars, for all dimensions (tensors are row-major: /// https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/c/c_api.h#L205) /// - call evaluate. The input tensors' values are not consumed after this, and /// may still be read. /// - use the outputs in the output vector class TFModelEvaluatorImpl; class EvaluationResultImpl; /// TensorSpec encapsulates the specification of a tensor: its dimensions, or /// "shape" (row-major), its type (see TensorSpec::getDataType specializations /// for supported types), its name and port (see "TensorFlow: Large-Scale /// Machine Learning on Heterogeneous Distributed Systems", section 4.2, para 2: /// https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf) /// /// TensorSpec is used to set up a TFModelEvaluator by describing the expected /// inputs and outputs. class TensorSpec final { public: template static TensorSpec createSpec(const std::string &Name, const std::vector &Shape, int Port = 0) { return TensorSpec(Name, Port, getDataType(), Shape); } const std::string &name() const { return Name; } int port() const { return Port; } int typeIndex() const { return TypeIndex; } const std::vector &shape() const { return Shape; } bool operator==(const TensorSpec &Other) const { return Name == Other.Name && Port == Other.Port && TypeIndex == Other.TypeIndex && Shape == Other.Shape; } bool operator!=(const TensorSpec &Other) const { return !(*this == Other); } /// Get the number of elements in a tensor with this shape. size_t getElementCount() const { return ElementCount; } /// Get the size, in bytes, of one element. size_t getElementByteSize() const; template bool isElementType() const { return getDataType() == TypeIndex; } private: TensorSpec(const std::string &Name, int Port, int TypeIndex, const std::vector &Shape); template static int getDataType() { llvm_unreachable("Undefined tensor type"); } std::string Name; int Port = 0; int TypeIndex = 0; std::vector Shape; size_t ElementCount = 0; }; /// Construct a TensorSpec from a JSON dictionary of the form: /// { "name": , /// "port": , /// "type": , /// "shape": } /// For the "type" field, see the C++ primitive types used in /// TFUTILS_SUPPORTED_TYPES. Optional getTensorSpecFromJSON(LLVMContext &Ctx, const json::Value &Value); struct LoggedFeatureSpec { TensorSpec Spec; Optional LoggingName; }; /// Load the output specs. If SpecFileOverride is not empty, that path is used. /// Otherwise, the file is assumed to be called 'output_spec.json' and be found /// under ModelPath (the model directory). /// The first output tensor name must match ExpectedDecisionName. /// In case of error, the return is None and the error is logged. Optional> loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName, StringRef ModelPath, StringRef SpecFileOverride = StringRef()); /// Logging utility - given an ordered specification of features, and assuming /// a scalar reward, allow logging feature values and rewards, and then print /// as tf.train.SequenceExample text protobuf. /// The assumption is that, for an event to be logged (i.e. a set of feature /// values and a reward), the user calls the log* API for each feature exactly /// once, providing the index matching the position in the feature spec list /// provided at construction: /// event 0: /// logTensorValue(0, ...) /// logTensorValue(1, ...) /// ... /// logReward(...) /// event 1: /// logTensorValue(0, ...) /// logTensorValue(1, ...) /// ... /// logReward(...) /// /// At the end, call print to generate the protobuf. class Logger final { public: /// Construct a Logger. If IncludeReward is false, then logReward shouldn't /// be called, and the reward feature won't be printed out. Logger(const std::vector &FeatureSpecs, const TensorSpec &RewardSpec, bool IncludeReward) : FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec), RawLogData(FeatureSpecs.size() + IncludeReward), IncludeReward(IncludeReward) {} template void logReward(T Value) { assert(IncludeReward); logTensorValue(RawLogData.size() - 1, &Value); } template void logFinalReward(T Value) { assert(RawLogData.back().empty()); logReward(Value); } template void logTensorValue(size_t FeatureID, const T *Value, size_t Size = 1) { const char *Start = reinterpret_cast(Value); const char *End = Start + sizeof(T) * Size; RawLogData[FeatureID].insert(RawLogData[FeatureID].end(), Start, End); } void print(raw_ostream &OS); private: std::vector FeatureSpecs; TensorSpec RewardSpec; /// RawData has one entry per feature, plus one more for the reward. /// Each feature's values are then stored in a vector, in succession. /// This means the ith event is stored at [*][i] std::vector> RawLogData; const bool IncludeReward; }; class TFModelEvaluator final { public: /// The result of a model evaluation. Handles the lifetime of the output /// tensors, which means that their values need to be used before /// the EvaluationResult's dtor is called. class EvaluationResult { public: EvaluationResult(const EvaluationResult &) = delete; EvaluationResult &operator=(const EvaluationResult &Other) = delete; EvaluationResult(EvaluationResult &&Other); EvaluationResult &operator=(EvaluationResult &&Other); ~EvaluationResult(); /// Get a (const) pointer to the first element of the tensor at Index. template T *getTensorValue(size_t Index) { return static_cast(getUntypedTensorValue(Index)); } template const T *getTensorValue(size_t Index) const { return static_cast(getUntypedTensorValue(Index)); } /// Get a (const) pointer to the untyped data of the tensor. void *getUntypedTensorValue(size_t Index); const void *getUntypedTensorValue(size_t Index) const; private: friend class TFModelEvaluator; EvaluationResult(std::unique_ptr Impl); std::unique_ptr Impl; }; TFModelEvaluator(StringRef SavedModelPath, const std::vector &InputSpecs, const std::vector &OutputSpecs, const char *Tags = "serve"); TFModelEvaluator(StringRef SavedModelPath, const std::vector &InputSpecs, function_ref GetOutputSpecs, size_t OutputSpecsSize, const char *Tags = "serve"); ~TFModelEvaluator(); TFModelEvaluator(const TFModelEvaluator &) = delete; TFModelEvaluator(TFModelEvaluator &&) = delete; /// Evaluate the model, assuming it is valid. Returns None if the evaluation /// fails or the model is invalid, or an EvaluationResult otherwise. The /// inputs are assumed to have been already provided via getInput(). When /// returning None, it also invalidates this object. Optional evaluate(); /// Provides access to the input vector. template T *getInput(size_t Index) { return static_cast(getUntypedInput(Index)); } /// Returns true if the tensorflow model was loaded successfully, false /// otherwise. bool isValid() const { return !!Impl; } private: void *getUntypedInput(size_t Index); std::unique_ptr Impl; }; /// List of supported types, as a pair: /// - C++ type /// - enum name (implementation-specific) #define TFUTILS_SUPPORTED_TYPES(M) \ M(float, TF_FLOAT) \ M(double, TF_DOUBLE) \ M(int8_t, TF_INT8) \ M(uint8_t, TF_UINT8) \ M(int16_t, TF_INT16) \ M(uint16_t, TF_UINT16) \ M(int32_t, TF_INT32) \ M(uint32_t, TF_UINT32) \ M(int64_t, TF_INT64) \ M(uint64_t, TF_UINT64) #define TFUTILS_GETDATATYPE_DEF(T, E) \ template <> int TensorSpec::getDataType(); TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_DEF) #undef TFUTILS_GETDATATYPE_DEF } // namespace llvm #endif // LLVM_HAVE_TF_API #endif // LLVM_ANALYSIS_UTILS_TFUTILS_H