//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This pass exposes codegen information to IR-level passes. Every /// transformation that uses codegen information is broken into three parts: /// 1. The IR-level analysis pass. /// 2. The IR-level transformation interface which provides the needed /// information. /// 3. Codegen-level implementation which uses target-specific hooks. /// /// This file defines #2, which is the interface that IR-level transformations /// use for querying the codegen. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/InstructionCost.h" #include namespace llvm { namespace Intrinsic { typedef unsigned ID; } class AssumptionCache; class BlockFrequencyInfo; class DominatorTree; class BranchInst; class CallBase; class ExtractElementInst; class Function; class GlobalValue; class InstCombiner; class IntrinsicInst; class LoadInst; class LoopAccessInfo; class Loop; class LoopInfo; class ProfileSummaryInfo; class SCEV; class ScalarEvolution; class StoreInst; class SwitchInst; class TargetLibraryInfo; class Type; class User; class Value; struct KnownBits; template class Optional; /// Information about a load/store intrinsic defined by the target. struct MemIntrinsicInfo { /// This is the pointer that the intrinsic is loading from or storing to. /// If this is non-null, then analysis/optimization passes can assume that /// this intrinsic is functionally equivalent to a load/store from this /// pointer. Value *PtrVal = nullptr; // Ordering for atomic operations. AtomicOrdering Ordering = AtomicOrdering::NotAtomic; // Same Id is set by the target for corresponding load/store intrinsics. unsigned short MatchingId = 0; bool ReadMem = false; bool WriteMem = false; bool IsVolatile = false; bool isUnordered() const { return (Ordering == AtomicOrdering::NotAtomic || Ordering == AtomicOrdering::Unordered) && !IsVolatile; } }; /// Attributes of a target dependent hardware loop. struct HardwareLoopInfo { HardwareLoopInfo() = delete; HardwareLoopInfo(Loop *L) : L(L) {} Loop *L = nullptr; BasicBlock *ExitBlock = nullptr; BranchInst *ExitBranch = nullptr; const SCEV *TripCount = nullptr; IntegerType *CountType = nullptr; Value *LoopDecrement = nullptr; // Decrement the loop counter by this // value in every iteration. bool IsNestingLegal = false; // Can a hardware loop be a parent to // another hardware loop? bool CounterInReg = false; // Should loop counter be updated in // the loop via a phi? bool PerformEntryTest = false; // Generate the intrinsic which also performs // icmp ne zero on the loop counter value and // produces an i1 to guard the loop entry. bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop = false, bool ForceHardwareLoopPHI = false); bool canAnalyze(LoopInfo &LI); }; class IntrinsicCostAttributes { const IntrinsicInst *II = nullptr; Type *RetTy = nullptr; Intrinsic::ID IID; SmallVector ParamTys; SmallVector Arguments; FastMathFlags FMF; ElementCount VF = ElementCount::getFixed(1); // If ScalarizationCost is UINT_MAX, the cost of scalarizing the // arguments and the return value will be computed based on types. unsigned ScalarizationCost = std::numeric_limits::max(); public: IntrinsicCostAttributes(const IntrinsicInst &I); IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI); IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI, ElementCount Factor); IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI, ElementCount Factor, unsigned ScalarCost); IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, ArrayRef Tys, FastMathFlags Flags); IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, ArrayRef Tys, FastMathFlags Flags, unsigned ScalarCost); IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, ArrayRef Tys, FastMathFlags Flags, unsigned ScalarCost, const IntrinsicInst *I); IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, ArrayRef Tys); IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, ArrayRef Args); Intrinsic::ID getID() const { return IID; } const IntrinsicInst *getInst() const { return II; } Type *getReturnType() const { return RetTy; } ElementCount getVectorFactor() const { return VF; } FastMathFlags getFlags() const { return FMF; } unsigned getScalarizationCost() const { return ScalarizationCost; } const SmallVectorImpl &getArgs() const { return Arguments; } const SmallVectorImpl &getArgTypes() const { return ParamTys; } bool isTypeBasedOnly() const { return Arguments.empty(); } bool skipScalarizationCost() const { return ScalarizationCost != std::numeric_limits::max(); } }; class TargetTransformInfo; typedef TargetTransformInfo TTI; /// This pass provides access to the codegen interfaces that are needed /// for IR-level transformations. class TargetTransformInfo { public: /// Construct a TTI object using a type implementing the \c Concept /// API below. /// /// This is used by targets to construct a TTI wrapping their target-specific /// implementation that encodes appropriate costs for their target. template TargetTransformInfo(T Impl); /// Construct a baseline TTI object using a minimal implementation of /// the \c Concept API below. /// /// The TTI implementation will reflect the information in the DataLayout /// provided if non-null. explicit TargetTransformInfo(const DataLayout &DL); // Provide move semantics. TargetTransformInfo(TargetTransformInfo &&Arg); TargetTransformInfo &operator=(TargetTransformInfo &&RHS); // We need to define the destructor out-of-line to define our sub-classes // out-of-line. ~TargetTransformInfo(); /// Handle the invalidation of this information. /// /// When used as a result of \c TargetIRAnalysis this method will be called /// when the function this was computed for changes. When it returns false, /// the information is preserved across those changes. bool invalidate(Function &, const PreservedAnalyses &, FunctionAnalysisManager::Invalidator &) { // FIXME: We should probably in some way ensure that the subtarget // information for a function hasn't changed. return false; } /// \name Generic Target Information /// @{ /// The kind of cost model. /// /// There are several different cost models that can be customized by the /// target. The normalization of each cost model may be target specific. enum TargetCostKind { TCK_RecipThroughput, ///< Reciprocal throughput. TCK_Latency, ///< The latency of instruction. TCK_CodeSize, ///< Instruction code size. TCK_SizeAndLatency ///< The weighted sum of size and latency. }; /// Query the cost of a specified instruction. /// /// Clients should use this interface to query the cost of an existing /// instruction. The instruction must have a valid parent (basic block). /// /// Note, this method does not cache the cost calculation and it /// can be expensive in some cases. InstructionCost getInstructionCost(const Instruction *I, enum TargetCostKind kind) const { InstructionCost Cost; switch (kind) { case TCK_RecipThroughput: Cost = getInstructionThroughput(I); break; case TCK_Latency: Cost = getInstructionLatency(I); break; case TCK_CodeSize: case TCK_SizeAndLatency: Cost = getUserCost(I, kind); break; } if (Cost == -1) Cost.setInvalid(); return Cost; } /// Underlying constants for 'cost' values in this interface. /// /// Many APIs in this interface return a cost. This enum defines the /// fundamental values that should be used to interpret (and produce) those /// costs. The costs are returned as an int rather than a member of this /// enumeration because it is expected that the cost of one IR instruction /// may have a multiplicative factor to it or otherwise won't fit directly /// into the enum. Moreover, it is common to sum or average costs which works /// better as simple integral values. Thus this enum only provides constants. /// Also note that the returned costs are signed integers to make it natural /// to add, subtract, and test with zero (a common boundary condition). It is /// not expected that 2^32 is a realistic cost to be modeling at any point. /// /// Note that these costs should usually reflect the intersection of code-size /// cost and execution cost. A free instruction is typically one that folds /// into another instruction. For example, reg-to-reg moves can often be /// skipped by renaming the registers in the CPU, but they still are encoded /// and thus wouldn't be considered 'free' here. enum TargetCostConstants { TCC_Free = 0, ///< Expected to fold away in lowering. TCC_Basic = 1, ///< The cost of a typical 'add' instruction. TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86. }; /// Estimate the cost of a GEP operation when lowered. int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef Operands, TargetCostKind CostKind = TCK_SizeAndLatency) const; /// \returns A value by which our inlining threshold should be multiplied. /// This is primarily used to bump up the inlining threshold wholesale on /// targets where calls are unusually expensive. /// /// TODO: This is a rather blunt instrument. Perhaps altering the costs of /// individual classes of instructions would be better. unsigned getInliningThresholdMultiplier() const; /// \returns A value to be added to the inlining threshold. unsigned adjustInliningThreshold(const CallBase *CB) const; /// \returns Vector bonus in percent. /// /// Vector bonuses: We want to more aggressively inline vector-dense kernels /// and apply this bonus based on the percentage of vector instructions. A /// bonus is applied if the vector instructions exceed 50% and half that /// amount is applied if it exceeds 10%. Note that these bonuses are some what /// arbitrary and evolved over time by accident as much as because they are /// principled bonuses. /// FIXME: It would be nice to base the bonus values on something more /// scientific. A target may has no bonus on vector instructions. int getInlinerVectorBonusPercent() const; /// \return the expected cost of a memcpy, which could e.g. depend on the /// source/destination type and alignment and the number of bytes copied. int getMemcpyCost(const Instruction *I) const; /// \return The estimated number of case clusters when lowering \p 'SI'. /// \p JTSize Set a jump table size only when \p SI is suitable for a jump /// table. unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const; /// Estimate the cost of a given IR user when lowered. /// /// This can estimate the cost of either a ConstantExpr or Instruction when /// lowered. /// /// \p Operands is a list of operands which can be a result of transformations /// of the current operands. The number of the operands on the list must equal /// to the number of the current operands the IR user has. Their order on the /// list must be the same as the order of the current operands the IR user /// has. /// /// The returned cost is defined in terms of \c TargetCostConstants, see its /// comments for a detailed explanation of the cost values. int getUserCost(const User *U, ArrayRef Operands, TargetCostKind CostKind) const; /// This is a helper function which calls the two-argument getUserCost /// with \p Operands which are the current operands U has. int getUserCost(const User *U, TargetCostKind CostKind) const { SmallVector Operands(U->operand_values()); return getUserCost(U, Operands, CostKind); } /// Return true if branch divergence exists. /// /// Branch divergence has a significantly negative impact on GPU performance /// when threads in the same wavefront take different paths due to conditional /// branches. bool hasBranchDivergence() const; /// Return true if the target prefers to use GPU divergence analysis to /// replace the legacy version. bool useGPUDivergenceAnalysis() const; /// Returns whether V is a source of divergence. /// /// This function provides the target-dependent information for /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis /// first builds the dependency graph, and then runs the reachability /// algorithm starting with the sources of divergence. bool isSourceOfDivergence(const Value *V) const; // Returns true for the target specific // set of operations which produce uniform result // even taking non-uniform arguments bool isAlwaysUniform(const Value *V) const; /// Returns the address space ID for a target's 'flat' address space. Note /// this is not necessarily the same as addrspace(0), which LLVM sometimes /// refers to as the generic address space. The flat address space is a /// generic address space that can be used access multiple segments of memory /// with different address spaces. Access of a memory location through a /// pointer with this address space is expected to be legal but slower /// compared to the same memory location accessed through a pointer with a /// different address space. // /// This is for targets with different pointer representations which can /// be converted with the addrspacecast instruction. If a pointer is converted /// to this address space, optimizations should attempt to replace the access /// with the source address space. /// /// \returns ~0u if the target does not have such a flat address space to /// optimize away. unsigned getFlatAddressSpace() const; /// Return any intrinsic address operand indexes which may be rewritten if /// they use a flat address space pointer. /// /// \returns true if the intrinsic was handled. bool collectFlatAddressOperands(SmallVectorImpl &OpIndexes, Intrinsic::ID IID) const; bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const; unsigned getAssumedAddrSpace(const Value *V) const; /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p /// NewV, which has a different address space. This should happen for every /// operand index that collectFlatAddressOperands returned for the intrinsic. /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the /// new value (which may be the original \p II with modified operands). Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const; /// Test whether calls to a function lower to actual program function /// calls. /// /// The idea is to test whether the program is likely to require a 'call' /// instruction or equivalent in order to call the given function. /// /// FIXME: It's not clear that this is a good or useful query API. Client's /// should probably move to simpler cost metrics using the above. /// Alternatively, we could split the cost interface into distinct code-size /// and execution-speed costs. This would allow modelling the core of this /// query more accurately as a call is a single small instruction, but /// incurs significant execution cost. bool isLoweredToCall(const Function *F) const; struct LSRCost { /// TODO: Some of these could be merged. Also, a lexical ordering /// isn't always optimal. unsigned Insns; unsigned NumRegs; unsigned AddRecCost; unsigned NumIVMuls; unsigned NumBaseAdds; unsigned ImmCost; unsigned SetupCost; unsigned ScaleCost; }; /// Parameters that control the generic loop unrolling transformation. struct UnrollingPreferences { /// The cost threshold for the unrolled loop. Should be relative to the /// getUserCost values returned by this API, and the expectation is that /// the unrolled loop's instructions when run through that interface should /// not exceed this cost. However, this is only an estimate. Also, specific /// loops may be unrolled even with a cost above this threshold if deemed /// profitable. Set this to UINT_MAX to disable the loop body cost /// restriction. unsigned Threshold; /// If complete unrolling will reduce the cost of the loop, we will boost /// the Threshold by a certain percent to allow more aggressive complete /// unrolling. This value provides the maximum boost percentage that we /// can apply to Threshold (The value should be no less than 100). /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost, /// MaxPercentThresholdBoost / 100) /// E.g. if complete unrolling reduces the loop execution time by 50% /// then we boost the threshold by the factor of 2x. If unrolling is not /// expected to reduce the running time, then we do not increase the /// threshold. unsigned MaxPercentThresholdBoost; /// The cost threshold for the unrolled loop when optimizing for size (set /// to UINT_MAX to disable). unsigned OptSizeThreshold; /// The cost threshold for the unrolled loop, like Threshold, but used /// for partial/runtime unrolling (set to UINT_MAX to disable). unsigned PartialThreshold; /// The cost threshold for the unrolled loop when optimizing for size, like /// OptSizeThreshold, but used for partial/runtime unrolling (set to /// UINT_MAX to disable). unsigned PartialOptSizeThreshold; /// A forced unrolling factor (the number of concatenated bodies of the /// original loop in the unrolled loop body). When set to 0, the unrolling /// transformation will select an unrolling factor based on the current cost /// threshold and other factors. unsigned Count; /// Default unroll count for loops with run-time trip count. unsigned DefaultUnrollRuntimeCount; // Set the maximum unrolling factor. The unrolling factor may be selected // using the appropriate cost threshold, but may not exceed this number // (set to UINT_MAX to disable). This does not apply in cases where the // loop is being fully unrolled. unsigned MaxCount; /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but /// applies even if full unrolling is selected. This allows a target to fall /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount. unsigned FullUnrollMaxCount; // Represents number of instructions optimized when "back edge" // becomes "fall through" in unrolled loop. // For now we count a conditional branch on a backedge and a comparison // feeding it. unsigned BEInsns; /// Allow partial unrolling (unrolling of loops to expand the size of the /// loop body, not only to eliminate small constant-trip-count loops). bool Partial; /// Allow runtime unrolling (unrolling of loops to expand the size of the /// loop body even when the number of loop iterations is not known at /// compile time). bool Runtime; /// Allow generation of a loop remainder (extra iterations after unroll). bool AllowRemainder; /// Allow emitting expensive instructions (such as divisions) when computing /// the trip count of a loop for runtime unrolling. bool AllowExpensiveTripCount; /// Apply loop unroll on any kind of loop /// (mainly to loops that fail runtime unrolling). bool Force; /// Allow using trip count upper bound to unroll loops. bool UpperBound; /// Allow unrolling of all the iterations of the runtime loop remainder. bool UnrollRemainder; /// Allow unroll and jam. Used to enable unroll and jam for the target. bool UnrollAndJam; /// Threshold for unroll and jam, for inner loop size. The 'Threshold' /// value above is used during unroll and jam for the outer loop size. /// This value is used in the same manner to limit the size of the inner /// loop. unsigned UnrollAndJamInnerLoopThreshold; /// Don't allow loop unrolling to simulate more than this number of /// iterations when checking full unroll profitability unsigned MaxIterationsCountToAnalyze; }; /// Get target-customized preferences for the generic loop unrolling /// transformation. The caller will initialize UP with the current /// target-independent defaults. void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP) const; /// Query the target whether it would be profitable to convert the given loop /// into a hardware loop. bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const; /// Query the target whether it would be prefered to create a predicated /// vector loop, which can avoid the need to emit a scalar epilogue loop. bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *TLI, DominatorTree *DT, const LoopAccessInfo *LAI) const; /// Query the target whether lowering of the llvm.get.active.lane.mask /// intrinsic is supported. bool emitGetActiveLaneMask() const; // Parameters that control the loop peeling transformation struct PeelingPreferences { /// A forced peeling factor (the number of bodied of the original loop /// that should be peeled off before the loop body). When set to 0, the /// a peeling factor based on profile information and other factors. unsigned PeelCount; /// Allow peeling off loop iterations. bool AllowPeeling; /// Allow peeling off loop iterations for loop nests. bool AllowLoopNestsPeeling; /// Allow peeling basing on profile. Uses to enable peeling off all /// iterations basing on provided profile. /// If the value is true the peeling cost model can decide to peel only /// some iterations and in this case it will set this to false. bool PeelProfiledIterations; }; /// Get target-customized preferences for the generic loop peeling /// transformation. The caller will initialize \p PP with the current /// target-independent defaults with information from \p L and \p SE. void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) const; /// Targets can implement their own combinations for target-specific /// intrinsics. This function will be called from the InstCombine pass every /// time a target-specific intrinsic is encountered. /// /// \returns None to not do anything target specific or a value that will be /// returned from the InstCombiner. It is possible to return null and stop /// further processing of the intrinsic by returning nullptr. Optional instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const; /// Can be used to implement target-specific instruction combining. /// \see instCombineIntrinsic Optional simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const; /// Can be used to implement target-specific instruction combining. /// \see instCombineIntrinsic Optional simplifyDemandedVectorEltsIntrinsic( InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function SimplifyAndSetOp) const; /// @} /// \name Scalar Target Information /// @{ /// Flags indicating the kind of support for population count. /// /// Compared to the SW implementation, HW support is supposed to /// significantly boost the performance when the population is dense, and it /// may or may not degrade performance if the population is sparse. A HW /// support is considered as "Fast" if it can outperform, or is on a par /// with, SW implementation when the population is sparse; otherwise, it is /// considered as "Slow". enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware }; /// Return true if the specified immediate is legal add immediate, that /// is the target has add instructions which can add a register with the /// immediate without having to materialize the immediate into a register. bool isLegalAddImmediate(int64_t Imm) const; /// Return true if the specified immediate is legal icmp immediate, /// that is the target has icmp instructions which can compare a register /// against the immediate without having to materialize the immediate into a /// register. bool isLegalICmpImmediate(int64_t Imm) const; /// Return true if the addressing mode represented by AM is legal for /// this target, for a load/store of the specified type. /// The type may be VoidTy, in which case only return true if the addressing /// mode is legal for a load/store of any legal type. /// If target returns true in LSRWithInstrQueries(), I may be valid. /// TODO: Handle pre/postinc as well. bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace = 0, Instruction *I = nullptr) const; /// Return true if LSR cost of C1 is lower than C1. bool isLSRCostLess(TargetTransformInfo::LSRCost &C1, TargetTransformInfo::LSRCost &C2) const; /// Return true if LSR major cost is number of registers. Targets which /// implement their own isLSRCostLess and unset number of registers as major /// cost should return false, otherwise return true. bool isNumRegsMajorCostOfLSR() const; /// \returns true if LSR should not optimize a chain that includes \p I. bool isProfitableLSRChainElement(Instruction *I) const; /// Return true if the target can fuse a compare and branch. /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost /// calculation for the instructions in a loop. bool canMacroFuseCmp() const; /// Return true if the target can save a compare for loop count, for example /// hardware loop saves a compare. bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) const; /// \return True is LSR should make efforts to create/preserve post-inc /// addressing mode expressions. bool shouldFavorPostInc() const; /// Return true if LSR should make efforts to generate indexed addressing /// modes that operate across loop iterations. bool shouldFavorBackedgeIndex(const Loop *L) const; /// Return true if the target supports masked store. bool isLegalMaskedStore(Type *DataType, Align Alignment) const; /// Return true if the target supports masked load. bool isLegalMaskedLoad(Type *DataType, Align Alignment) const; /// Return true if the target supports nontemporal store. bool isLegalNTStore(Type *DataType, Align Alignment) const; /// Return true if the target supports nontemporal load. bool isLegalNTLoad(Type *DataType, Align Alignment) const; /// Return true if the target supports masked scatter. bool isLegalMaskedScatter(Type *DataType, Align Alignment) const; /// Return true if the target supports masked gather. bool isLegalMaskedGather(Type *DataType, Align Alignment) const; /// Return true if the target supports masked compress store. bool isLegalMaskedCompressStore(Type *DataType) const; /// Return true if the target supports masked expand load. bool isLegalMaskedExpandLoad(Type *DataType) const; /// Return true if the target has a unified operation to calculate division /// and remainder. If so, the additional implicit multiplication and /// subtraction required to calculate a remainder from division are free. This /// can enable more aggressive transformations for division and remainder than /// would typically be allowed using throughput or size cost models. bool hasDivRemOp(Type *DataType, bool IsSigned) const; /// Return true if the given instruction (assumed to be a memory access /// instruction) has a volatile variant. If that's the case then we can avoid /// addrspacecast to generic AS for volatile loads/stores. Default /// implementation returns false, which prevents address space inference for /// volatile loads/stores. bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const; /// Return true if target doesn't mind addresses in vectors. bool prefersVectorizedAddressing() const; /// Return the cost of the scaling factor used in the addressing /// mode represented by AM for this target, for a load/store /// of the specified type. /// If the AM is supported, the return value must be >= 0. /// If the AM is not supported, it returns a negative value. /// TODO: Handle pre/postinc as well. int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace = 0) const; /// Return true if the loop strength reduce pass should make /// Instruction* based TTI queries to isLegalAddressingMode(). This is /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned /// immediate offset and no index register. bool LSRWithInstrQueries() const; /// Return true if it's free to truncate a value of type Ty1 to type /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 /// by referencing its sub-register AX. bool isTruncateFree(Type *Ty1, Type *Ty2) const; /// Return true if it is profitable to hoist instruction in the /// then/else to before if. bool isProfitableToHoist(Instruction *I) const; bool useAA() const; /// Return true if this type is legal. bool isTypeLegal(Type *Ty) const; /// Returns the estimated number of registers required to represent \p Ty. unsigned getRegUsageForType(Type *Ty) const; /// Return true if switches should be turned into lookup tables for the /// target. bool shouldBuildLookupTables() const; /// Return true if switches should be turned into lookup tables /// containing this constant value for the target. bool shouldBuildLookupTablesForConstant(Constant *C) const; /// Return true if the input function which is cold at all call sites, /// should use coldcc calling convention. bool useColdCCForColdCall(Function &F) const; /// Estimate the overhead of scalarizing an instruction. Insert and Extract /// are set if the demanded result elements need to be inserted and/or /// extracted from vectors. unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract) const; /// Estimate the overhead of scalarizing an instructions unique /// non-constant operands. The types of the arguments are ordinarily /// scalar, in which case the costs are multiplied with VF. unsigned getOperandsScalarizationOverhead(ArrayRef Args, unsigned VF) const; /// If target has efficient vector element load/store instructions, it can /// return true here so that insertion/extraction costs are not added to /// the scalarization cost of a load/store. bool supportsEfficientVectorElementLoadStore() const; /// Don't restrict interleaved unrolling to small loops. bool enableAggressiveInterleaving(bool LoopHasReductions) const; /// Returns options for expansion of memcmp. IsZeroCmp is // true if this is the expansion of memcmp(p1, p2, s) == 0. struct MemCmpExpansionOptions { // Return true if memcmp expansion is enabled. operator bool() const { return MaxNumLoads > 0; } // Maximum number of load operations. unsigned MaxNumLoads = 0; // The list of available load sizes (in bytes), sorted in decreasing order. SmallVector LoadSizes; // For memcmp expansion when the memcmp result is only compared equal or // not-equal to 0, allow up to this number of load pairs per block. As an // example, this may allow 'memcmp(a, b, 3) == 0' in a single block: // a0 = load2bytes &a[0] // b0 = load2bytes &b[0] // a2 = load1byte &a[2] // b2 = load1byte &b[2] // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0 unsigned NumLoadsPerBlock = 1; // Set to true to allow overlapping loads. For example, 7-byte compares can // be done with two 4-byte compares instead of 4+2+1-byte compares. This // requires all loads in LoadSizes to be doable in an unaligned way. bool AllowOverlappingLoads = false; }; MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const; /// Enable matching of interleaved access groups. bool enableInterleavedAccessVectorization() const; /// Enable matching of interleaved access groups that contain predicated /// accesses or gaps and therefore vectorized using masked /// vector loads/stores. bool enableMaskedInterleavedAccessVectorization() const; /// Indicate that it is potentially unsafe to automatically vectorize /// floating-point operations because the semantics of vector and scalar /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math /// does not support IEEE-754 denormal numbers, while depending on the /// platform, scalar floating-point math does. /// This applies to floating-point math operations and calls, not memory /// operations, shuffles, or casts. bool isFPVectorizationPotentiallyUnsafe() const; /// Determine if the target supports unaligned memory accesses. bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace = 0, unsigned Alignment = 1, bool *Fast = nullptr) const; /// Return hardware support for population count. PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const; /// Return true if the hardware has a fast square-root instruction. bool haveFastSqrt(Type *Ty) const; /// Return true if it is faster to check if a floating-point value is NaN /// (or not-NaN) versus a comparison against a constant FP zero value. /// Targets should override this if materializing a 0.0 for comparison is /// generally as cheap as checking for ordered/unordered. bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const; /// Return the expected cost of supporting the floating point operation /// of the specified type. int getFPOpCost(Type *Ty) const; /// Return the expected cost of materializing for the given integer /// immediate of the specified type. int getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const; /// Return the expected cost of materialization for the given integer /// immediate of the specified type for a given instruction. The cost can be /// zero if the immediate can be folded into the specified instruction. int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst = nullptr) const; int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) const; /// Return the expected cost for the given integer when optimising /// for size. This is different than the other integer immediate cost /// functions in that it is subtarget agnostic. This is useful when you e.g. /// target one ISA such as Aarch32 but smaller encodings could be possible /// with another such as Thumb. This return value is used as a penalty when /// the total costs for a constant is calculated (the bigger the cost, the /// more beneficial constant hoisting is). int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) const; /// @} /// \name Vector Target Information /// @{ /// The various kinds of shuffle patterns for vector queries. enum ShuffleKind { SK_Broadcast, ///< Broadcast element 0 to all other elements. SK_Reverse, ///< Reverse the order of the vector. SK_Select, ///< Selects elements from the corresponding lane of ///< either source operand. This is equivalent to a ///< vector select with a constant condition operand. SK_Transpose, ///< Transpose two vectors. SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset. SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset. SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one ///< with any shuffle mask. SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any ///< shuffle mask. }; /// Kind of the reduction data. enum ReductionKind { RK_None, /// Not a reduction. RK_Arithmetic, /// Binary reduction data. RK_MinMax, /// Min/max reduction data. RK_UnsignedMinMax, /// Unsigned min/max reduction data. }; /// Contains opcode + LHS/RHS parts of the reduction operations. struct ReductionData { ReductionData() = delete; ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS) : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) { assert(Kind != RK_None && "expected binary or min/max reduction only."); } unsigned Opcode = 0; Value *LHS = nullptr; Value *RHS = nullptr; ReductionKind Kind = RK_None; bool hasSameData(ReductionData &RD) const { return Kind == RD.Kind && Opcode == RD.Opcode; } }; static ReductionKind matchPairwiseReduction( const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty); static ReductionKind matchVectorSplittingReduction( const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty); static ReductionKind matchVectorReduction(const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty, bool &IsPairwise); /// Additional information about an operand's possible values. enum OperandValueKind { OK_AnyValue, // Operand can have any value. OK_UniformValue, // Operand is uniform (splat of a value). OK_UniformConstantValue, // Operand is uniform constant. OK_NonUniformConstantValue // Operand is a non uniform constant value. }; /// Additional properties of an operand's values. enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 }; /// \return the number of registers in the target-provided register class. unsigned getNumberOfRegisters(unsigned ClassID) const; /// \return the target-provided register class ID for the provided type, /// accounting for type promotion and other type-legalization techniques that /// the target might apply. However, it specifically does not account for the /// scalarization or splitting of vector types. Should a vector type require /// scalarization or splitting into multiple underlying vector registers, that /// type should be mapped to a register class containing no registers. /// Specifically, this is designed to provide a simple, high-level view of the /// register allocation later performed by the backend. These register classes /// don't necessarily map onto the register classes used by the backend. /// FIXME: It's not currently possible to determine how many registers /// are used by the provided type. unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const; /// \return the target-provided register class name const char *getRegisterClassName(unsigned ClassID) const; /// \return The width of the largest scalar or vector register type. unsigned getRegisterBitWidth(bool Vector) const; /// \return The width of the smallest vector register type. unsigned getMinVectorRegisterBitWidth() const; /// \return The maximum value of vscale if the target specifies an /// architectural maximum vector length, and None otherwise. Optional getMaxVScale() const; /// \return True if the vectorization factor should be chosen to /// make the vector of the smallest element type match the size of a /// vector register. For wider element types, this could result in /// creating vectors that span multiple vector registers. /// If false, the vectorization factor will be chosen based on the /// size of the widest element type. bool shouldMaximizeVectorBandwidth(bool OptSize) const; /// \return The minimum vectorization factor for types of given element /// bit width, or 0 if there is no minimum VF. The returned value only /// applies when shouldMaximizeVectorBandwidth returns true. unsigned getMinimumVF(unsigned ElemWidth) const; /// \return The maximum vectorization factor for types of given element /// bit width and opcode, or 0 if there is no maximum VF. /// Currently only used by the SLP vectorizer. unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const; /// \return True if it should be considered for address type promotion. /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is /// profitable without finding other extensions fed by the same input. bool shouldConsiderAddressTypePromotion( const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const; /// \return The size of a cache line in bytes. unsigned getCacheLineSize() const; /// The possible cache levels enum class CacheLevel { L1D, // The L1 data cache L2D, // The L2 data cache // We currently do not model L3 caches, as their sizes differ widely between // microarchitectures. Also, we currently do not have a use for L3 cache // size modeling yet. }; /// \return The size of the cache level in bytes, if available. Optional getCacheSize(CacheLevel Level) const; /// \return The associativity of the cache level, if available. Optional getCacheAssociativity(CacheLevel Level) const; /// \return How much before a load we should place the prefetch /// instruction. This is currently measured in number of /// instructions. unsigned getPrefetchDistance() const; /// Some HW prefetchers can handle accesses up to a certain constant stride. /// Sometimes prefetching is beneficial even below the HW prefetcher limit, /// and the arguments provided are meant to serve as a basis for deciding this /// for a particular loop. /// /// \param NumMemAccesses Number of memory accesses in the loop. /// \param NumStridedMemAccesses Number of the memory accesses that /// ScalarEvolution could find a known stride /// for. /// \param NumPrefetches Number of software prefetches that will be /// emitted as determined by the addresses /// involved and the cache line size. /// \param HasCall True if the loop contains a call. /// /// \return This is the minimum stride in bytes where it makes sense to start /// adding SW prefetches. The default is 1, i.e. prefetch with any /// stride. unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const; /// \return The maximum number of iterations to prefetch ahead. If /// the required number of iterations is more than this number, no /// prefetching is performed. unsigned getMaxPrefetchIterationsAhead() const; /// \return True if prefetching should also be done for writes. bool enableWritePrefetching() const; /// \return The maximum interleave factor that any transform should try to /// perform for this target. This number depends on the level of parallelism /// and the number of execution units in the CPU. unsigned getMaxInterleaveFactor(unsigned VF) const; /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2. static OperandValueKind getOperandInfo(const Value *V, OperandValueProperties &OpProps); /// This is an approximation of reciprocal throughput of a math/logic op. /// A higher cost indicates less expected throughput. /// From Agner Fog's guides, reciprocal throughput is "the average number of /// clock cycles per instruction when the instructions are not part of a /// limiting dependency chain." /// Therefore, costs should be scaled to account for multiple execution units /// on the target that can process this type of instruction. For example, if /// there are 5 scalar integer units and 2 vector integer units that can /// calculate an 'add' in a single cycle, this model should indicate that the /// cost of the vector add instruction is 2.5 times the cost of the scalar /// add instruction. /// \p Args is an optional argument which holds the instruction operands /// values so the TTI can analyze those values searching for special /// cases or optimizations based on those values. /// \p CxtI is the optional original context instruction, if one exists, to /// provide even more information. int getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, OperandValueKind Opd1Info = OK_AnyValue, OperandValueKind Opd2Info = OK_AnyValue, OperandValueProperties Opd1PropInfo = OP_None, OperandValueProperties Opd2PropInfo = OP_None, ArrayRef Args = ArrayRef(), const Instruction *CxtI = nullptr) const; /// \return The cost of a shuffle instruction of kind Kind and of type Tp. /// The index and subtype parameters are used by the subvector insertion and /// extraction shuffle kinds to show the insert/extract point and the type of /// the subvector being inserted/extracted. /// NOTE: For subvector extractions Tp represents the source type. int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index = 0, VectorType *SubTp = nullptr) const; /// Represents a hint about the context in which a cast is used. /// /// For zext/sext, the context of the cast is the operand, which must be a /// load of some kind. For trunc, the context is of the cast is the single /// user of the instruction, which must be a store of some kind. /// /// This enum allows the vectorizer to give getCastInstrCost an idea of the /// type of cast it's dealing with, as not every cast is equal. For instance, /// the zext of a load may be free, but the zext of an interleaving load can //// be (very) expensive! /// /// See \c getCastContextHint to compute a CastContextHint from a cast /// Instruction*. Callers can use it if they don't need to override the /// context and just want it to be calculated from the instruction. /// /// FIXME: This handles the types of load/store that the vectorizer can /// produce, which are the cases where the context instruction is most /// likely to be incorrect. There are other situations where that can happen /// too, which might be handled here but in the long run a more general /// solution of costing multiple instructions at the same times may be better. enum class CastContextHint : uint8_t { None, ///< The cast is not used with a load/store of any kind. Normal, ///< The cast is used with a normal load/store. Masked, ///< The cast is used with a masked load/store. GatherScatter, ///< The cast is used with a gather/scatter. Interleave, ///< The cast is used with an interleaved load/store. Reversed, ///< The cast is used with a reversed load/store. }; /// Calculates a CastContextHint from \p I. /// This should be used by callers of getCastInstrCost if they wish to /// determine the context from some instruction. /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr, /// or if it's another type of cast. static CastContextHint getCastContextHint(const Instruction *I); /// \return The expected cost of cast instructions, such as bitcast, trunc, /// zext, etc. If there is an existing instruction that holds Opcode, it /// may be passed in the 'I' parameter. int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency, const Instruction *I = nullptr) const; /// \return The expected cost of a sign- or zero-extended vector extract. Use /// -1 to indicate that there is no information about the index value. int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index = -1) const; /// \return The expected cost of control-flow related instructions such as /// Phi, Ret, Br. int getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const; /// \returns The expected cost of compare and select instructions. If there /// is an existing instruction that holds Opcode, it may be passed in the /// 'I' parameter. The \p VecPred parameter can be used to indicate the select /// is using a compare with the specified predicate as condition. When vector /// types are passed, \p VecPred must be used for all lanes. int getCmpSelInstrCost( unsigned Opcode, Type *ValTy, Type *CondTy = nullptr, CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, const Instruction *I = nullptr) const; /// \return The expected cost of vector Insert and Extract. /// Use -1 to indicate that there is no information on the index value. int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const; /// \return The cost of Load and Store instructions. int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, const Instruction *I = nullptr) const; /// \return The cost of masked Load and Store instructions. int getMaskedMemoryOpCost( unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; /// \return The cost of Gather or Scatter operation /// \p Opcode - is a type of memory access Load or Store /// \p DataTy - a vector type of the data to be loaded or stored /// \p Ptr - pointer [or vector of pointers] - address[es] in memory /// \p VariableMask - true when the memory access is predicated with a mask /// that is not a compile-time constant /// \p Alignment - alignment of single element /// \p I - the optional original context instruction, if one exists, e.g. the /// load/store to transform or the call to the gather/scatter intrinsic int getGatherScatterOpCost( unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, const Instruction *I = nullptr) const; /// \return The cost of the interleaved memory operation. /// \p Opcode is the memory operation code /// \p VecTy is the vector type of the interleaved access. /// \p Factor is the interleave factor /// \p Indices is the indices for interleaved load members (as interleaved /// load allows gaps) /// \p Alignment is the alignment of the memory operation /// \p AddressSpace is address space of the pointer. /// \p UseMaskForCond indicates if the memory access is predicated. /// \p UseMaskForGaps indicates if gaps should be masked. int getInterleavedMemoryOpCost( unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, bool UseMaskForCond = false, bool UseMaskForGaps = false) const; /// Calculate the cost of performing a vector reduction. /// /// This is the cost of reducing the vector value of type \p Ty to a scalar /// value using the operation denoted by \p Opcode. The form of the reduction /// can either be a pairwise reduction or a reduction that splits the vector /// at every reduction level. /// /// Pairwise: /// (v0, v1, v2, v3) /// ((v0+v1), (v2+v3), undef, undef) /// Split: /// (v0, v1, v2, v3) /// ((v0+v2), (v1+v3), undef, undef) int getArithmeticReductionCost( unsigned Opcode, VectorType *Ty, bool IsPairwiseForm, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; int getMinMaxReductionCost( VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; /// Calculate the cost of an extended reduction pattern, similar to /// getArithmeticReductionCost of an Add reduction with an extension and /// optional multiply. This is the cost of as: /// ResTy vecreduce.add(ext(Ty A)), or if IsMLA flag is set then: /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)). The reduction happens /// on a VectorType with ResTy elements and Ty lanes. InstructionCost getExtendedAddReductionCost( bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; /// \returns The cost of Intrinsic instructions. Analyses the real arguments. /// Three cases are handled: 1. scalar instruction 2. vector instruction /// 3. scalar instruction which is to be vectorized. int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const; /// \returns The cost of Call instructions. int getCallInstrCost(Function *F, Type *RetTy, ArrayRef Tys, TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const; /// \returns The number of pieces into which the provided type must be /// split during legalization. Zero is returned when the answer is unknown. unsigned getNumberOfParts(Type *Tp) const; /// \returns The cost of the address computation. For most targets this can be /// merged into the instruction indexing mode. Some targets might want to /// distinguish between address computation for memory operations on vector /// types and scalar types. Such targets should override this function. /// The 'SE' parameter holds pointer for the scalar evolution object which /// is used in order to get the Ptr step value in case of constant stride. /// The 'Ptr' parameter holds SCEV of the access pointer. int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr, const SCEV *Ptr = nullptr) const; /// \returns The cost, if any, of keeping values of the given types alive /// over a callsite. /// /// Some types may require the use of register classes that do not have /// any callee-saved registers, so would require a spill and fill. unsigned getCostOfKeepingLiveOverCall(ArrayRef Tys) const; /// \returns True if the intrinsic is a supported memory intrinsic. Info /// will contain additional information - whether the intrinsic may write /// or read to memory, volatility and the pointer. Info is undefined /// if false is returned. bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const; /// \returns The maximum element size, in bytes, for an element /// unordered-atomic memory intrinsic. unsigned getAtomicMemIntrinsicMaxElementSize() const; /// \returns A value which is the result of the given memory intrinsic. New /// instructions may be created to extract the result from the given intrinsic /// memory operation. Returns nullptr if the target cannot create a result /// from the given intrinsic. Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) const; /// \returns The type to use in a loop expansion of a memcpy call. Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const; /// \param[out] OpsOut The operand types to copy RemainingBytes of memory. /// \param RemainingBytes The number of bytes to copy. /// /// Calculates the operand types to use when copying \p RemainingBytes of /// memory, where source and destination alignments are \p SrcAlign and /// \p DestAlign respectively. void getMemcpyLoopResidualLoweringType( SmallVectorImpl &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const; /// \returns True if the two functions have compatible attributes for inlining /// purposes. bool areInlineCompatible(const Function *Caller, const Function *Callee) const; /// \returns True if the caller and callee agree on how \p Args will be passed /// to the callee. /// \param[out] Args The list of compatible arguments. The implementation may /// filter out any incompatible args from this list. bool areFunctionArgsABICompatible(const Function *Caller, const Function *Callee, SmallPtrSetImpl &Args) const; /// The type of load/store indexing. enum MemIndexedMode { MIM_Unindexed, ///< No indexing. MIM_PreInc, ///< Pre-incrementing. MIM_PreDec, ///< Pre-decrementing. MIM_PostInc, ///< Post-incrementing. MIM_PostDec ///< Post-decrementing. }; /// \returns True if the specified indexed load for the given type is legal. bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const; /// \returns True if the specified indexed store for the given type is legal. bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const; /// \returns The bitwidth of the largest vector type that should be used to /// load/store in the given address space. unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const; /// \returns True if the load instruction is legal to vectorize. bool isLegalToVectorizeLoad(LoadInst *LI) const; /// \returns True if the store instruction is legal to vectorize. bool isLegalToVectorizeStore(StoreInst *SI) const; /// \returns True if it is legal to vectorize the given load chain. bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const; /// \returns True if it is legal to vectorize the given store chain. bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const; /// \returns The new vector factor value if the target doesn't support \p /// SizeInBytes loads or has a better vector factor. unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const; /// \returns The new vector factor value if the target doesn't support \p /// SizeInBytes stores or has a better vector factor. unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const; /// Flags describing the kind of vector reduction. struct ReductionFlags { ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {} bool IsMaxOp; ///< If the op a min/max kind, true if it's a max operation. bool IsSigned; ///< Whether the operation is a signed int reduction. bool NoNaN; ///< If op is an fp min/max, whether NaNs may be present. }; /// \returns True if the target wants to handle the given reduction idiom in /// the intrinsics form instead of the shuffle form. bool useReductionIntrinsic(unsigned Opcode, Type *Ty, ReductionFlags Flags) const; /// \returns True if the target prefers reductions in loop. bool preferInLoopReduction(unsigned Opcode, Type *Ty, ReductionFlags Flags) const; /// \returns True if the target prefers reductions select kept in the loop /// when tail folding. i.e. /// loop: /// p = phi (0, s) /// a = add (p, x) /// s = select (mask, a, p) /// vecreduce.add(s) /// /// As opposed to the normal scheme of p = phi (0, a) which allows the select /// to be pulled out of the loop. If the select(.., add, ..) can be predicated /// by the target, this can lead to cleaner code generation. bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, ReductionFlags Flags) const; /// \returns True if the target wants to expand the given reduction intrinsic /// into a shuffle sequence. bool shouldExpandReduction(const IntrinsicInst *II) const; /// \returns the size cost of rematerializing a GlobalValue address relative /// to a stack reload. unsigned getGISelRematGlobalCost() const; /// \returns True if the target supports scalable vectors. bool supportsScalableVectors() const; /// \name Vector Predication Information /// @{ /// Whether the target supports the %evl parameter of VP intrinsic efficiently /// in hardware. (see LLVM Language Reference - "Vector Predication /// Intrinsics") Use of %evl is discouraged when that is not the case. bool hasActiveVectorLength() const; /// @} /// @} private: /// Estimate the latency of specified instruction. /// Returns 1 as the default value. int getInstructionLatency(const Instruction *I) const; /// Returns the expected throughput cost of the instruction. /// Returns -1 if the cost is unknown. int getInstructionThroughput(const Instruction *I) const; /// The abstract base class used to type erase specific TTI /// implementations. class Concept; /// The template model for the base class which wraps a concrete /// implementation in a type erased interface. template class Model; std::unique_ptr TTIImpl; }; class TargetTransformInfo::Concept { public: virtual ~Concept() = 0; virtual const DataLayout &getDataLayout() const = 0; virtual int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef Operands, TTI::TargetCostKind CostKind) = 0; virtual unsigned getInliningThresholdMultiplier() = 0; virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0; virtual int getInlinerVectorBonusPercent() = 0; virtual int getMemcpyCost(const Instruction *I) = 0; virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) = 0; virtual int getUserCost(const User *U, ArrayRef Operands, TargetCostKind CostKind) = 0; virtual bool hasBranchDivergence() = 0; virtual bool useGPUDivergenceAnalysis() = 0; virtual bool isSourceOfDivergence(const Value *V) = 0; virtual bool isAlwaysUniform(const Value *V) = 0; virtual unsigned getFlatAddressSpace() = 0; virtual bool collectFlatAddressOperands(SmallVectorImpl &OpIndexes, Intrinsic::ID IID) const = 0; virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0; virtual unsigned getAssumedAddrSpace(const Value *V) const = 0; virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const = 0; virtual bool isLoweredToCall(const Function *F) = 0; virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP) = 0; virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) = 0; virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) = 0; virtual bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *TLI, DominatorTree *DT, const LoopAccessInfo *LAI) = 0; virtual bool emitGetActiveLaneMask() = 0; virtual Optional instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) = 0; virtual Optional simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) = 0; virtual Optional simplifyDemandedVectorEltsIntrinsic( InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function SimplifyAndSetOp) = 0; virtual bool isLegalAddImmediate(int64_t Imm) = 0; virtual bool isLegalICmpImmediate(int64_t Imm) = 0; virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I) = 0; virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1, TargetTransformInfo::LSRCost &C2) = 0; virtual bool isNumRegsMajorCostOfLSR() = 0; virtual bool isProfitableLSRChainElement(Instruction *I) = 0; virtual bool canMacroFuseCmp() = 0; virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) = 0; virtual bool shouldFavorPostInc() const = 0; virtual bool shouldFavorBackedgeIndex(const Loop *L) const = 0; virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0; virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0; virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0; virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0; virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0; virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0; virtual bool isLegalMaskedCompressStore(Type *DataType) = 0; virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0; virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0; virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0; virtual bool prefersVectorizedAddressing() = 0; virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) = 0; virtual bool LSRWithInstrQueries() = 0; virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0; virtual bool isProfitableToHoist(Instruction *I) = 0; virtual bool useAA() = 0; virtual bool isTypeLegal(Type *Ty) = 0; virtual unsigned getRegUsageForType(Type *Ty) = 0; virtual bool shouldBuildLookupTables() = 0; virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0; virtual bool useColdCCForColdCall(Function &F) = 0; virtual unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract) = 0; virtual unsigned getOperandsScalarizationOverhead(ArrayRef Args, unsigned VF) = 0; virtual bool supportsEfficientVectorElementLoadStore() = 0; virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0; virtual MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0; virtual bool enableInterleavedAccessVectorization() = 0; virtual bool enableMaskedInterleavedAccessVectorization() = 0; virtual bool isFPVectorizationPotentiallyUnsafe() = 0; virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, unsigned Alignment, bool *Fast) = 0; virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0; virtual bool haveFastSqrt(Type *Ty) = 0; virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0; virtual int getFPOpCost(Type *Ty) = 0; virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) = 0; virtual int getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) = 0; virtual int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst = nullptr) = 0; virtual int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) = 0; virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0; virtual unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const = 0; virtual const char *getRegisterClassName(unsigned ClassID) const = 0; virtual unsigned getRegisterBitWidth(bool Vector) const = 0; virtual unsigned getMinVectorRegisterBitWidth() = 0; virtual Optional getMaxVScale() const = 0; virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0; virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0; virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0; virtual bool shouldConsiderAddressTypePromotion( const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0; virtual unsigned getCacheLineSize() const = 0; virtual Optional getCacheSize(CacheLevel Level) const = 0; virtual Optional getCacheAssociativity(CacheLevel Level) const = 0; /// \return How much before a load we should place the prefetch /// instruction. This is currently measured in number of /// instructions. virtual unsigned getPrefetchDistance() const = 0; /// \return Some HW prefetchers can handle accesses up to a certain /// constant stride. This is the minimum stride in bytes where it /// makes sense to start adding SW prefetches. The default is 1, /// i.e. prefetch with any stride. Sometimes prefetching is beneficial /// even below the HW prefetcher limit, and the arguments provided are /// meant to serve as a basis for deciding this for a particular loop. virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const = 0; /// \return The maximum number of iterations to prefetch ahead. If /// the required number of iterations is more than this number, no /// prefetching is performed. virtual unsigned getMaxPrefetchIterationsAhead() const = 0; /// \return True if prefetching should also be done for writes. virtual bool enableWritePrefetching() const = 0; virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0; virtual unsigned getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, OperandValueKind Opd1Info, OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo, ArrayRef Args, const Instruction *CxtI = nullptr) = 0; virtual int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index, VectorType *SubTp) = 0; virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I) = 0; virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) = 0; virtual int getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) = 0; virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, const Instruction *I) = 0; virtual int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) = 0; virtual int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, const Instruction *I) = 0; virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind) = 0; virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I = nullptr) = 0; virtual int getInterleavedMemoryOpCost( unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0; virtual int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, bool IsPairwiseForm, TTI::TargetCostKind CostKind) = 0; virtual int getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, TTI::TargetCostKind CostKind) = 0; virtual InstructionCost getExtendedAddReductionCost( bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0; virtual int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) = 0; virtual int getCallInstrCost(Function *F, Type *RetTy, ArrayRef Tys, TTI::TargetCostKind CostKind) = 0; virtual unsigned getNumberOfParts(Type *Tp) = 0; virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0; virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef Tys) = 0; virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) = 0; virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0; virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) = 0; virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const = 0; virtual void getMemcpyLoopResidualLoweringType( SmallVectorImpl &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const = 0; virtual bool areInlineCompatible(const Function *Caller, const Function *Callee) const = 0; virtual bool areFunctionArgsABICompatible(const Function *Caller, const Function *Callee, SmallPtrSetImpl &Args) const = 0; virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0; virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0; virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0; virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0; virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0; virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const = 0; virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const = 0; virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const = 0; virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const = 0; virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty, ReductionFlags) const = 0; virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty, ReductionFlags) const = 0; virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, ReductionFlags) const = 0; virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0; virtual unsigned getGISelRematGlobalCost() const = 0; virtual bool supportsScalableVectors() const = 0; virtual bool hasActiveVectorLength() const = 0; virtual int getInstructionLatency(const Instruction *I) = 0; }; template class TargetTransformInfo::Model final : public TargetTransformInfo::Concept { T Impl; public: Model(T Impl) : Impl(std::move(Impl)) {} ~Model() override {} const DataLayout &getDataLayout() const override { return Impl.getDataLayout(); } int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef Operands, enum TargetTransformInfo::TargetCostKind CostKind) override { return Impl.getGEPCost(PointeeType, Ptr, Operands); } unsigned getInliningThresholdMultiplier() override { return Impl.getInliningThresholdMultiplier(); } unsigned adjustInliningThreshold(const CallBase *CB) override { return Impl.adjustInliningThreshold(CB); } int getInlinerVectorBonusPercent() override { return Impl.getInlinerVectorBonusPercent(); } int getMemcpyCost(const Instruction *I) override { return Impl.getMemcpyCost(I); } int getUserCost(const User *U, ArrayRef Operands, TargetCostKind CostKind) override { return Impl.getUserCost(U, Operands, CostKind); } bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); } bool useGPUDivergenceAnalysis() override { return Impl.useGPUDivergenceAnalysis(); } bool isSourceOfDivergence(const Value *V) override { return Impl.isSourceOfDivergence(V); } bool isAlwaysUniform(const Value *V) override { return Impl.isAlwaysUniform(V); } unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); } bool collectFlatAddressOperands(SmallVectorImpl &OpIndexes, Intrinsic::ID IID) const override { return Impl.collectFlatAddressOperands(OpIndexes, IID); } bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override { return Impl.isNoopAddrSpaceCast(FromAS, ToAS); } unsigned getAssumedAddrSpace(const Value *V) const override { return Impl.getAssumedAddrSpace(V); } Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const override { return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV); } bool isLoweredToCall(const Function *F) override { return Impl.isLoweredToCall(F); } void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) override { return Impl.getUnrollingPreferences(L, SE, UP); } void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) override { return Impl.getPeelingPreferences(L, SE, PP); } bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) override { return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); } bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *TLI, DominatorTree *DT, const LoopAccessInfo *LAI) override { return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI); } bool emitGetActiveLaneMask() override { return Impl.emitGetActiveLaneMask(); } Optional instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override { return Impl.instCombineIntrinsic(IC, II); } Optional simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) override { return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, KnownBitsComputed); } Optional simplifyDemandedVectorEltsIntrinsic( InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function SimplifyAndSetOp) override { return Impl.simplifyDemandedVectorEltsIntrinsic( IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, SimplifyAndSetOp); } bool isLegalAddImmediate(int64_t Imm) override { return Impl.isLegalAddImmediate(Imm); } bool isLegalICmpImmediate(int64_t Imm) override { return Impl.isLegalICmpImmediate(Imm); } bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I) override { return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace, I); } bool isLSRCostLess(TargetTransformInfo::LSRCost &C1, TargetTransformInfo::LSRCost &C2) override { return Impl.isLSRCostLess(C1, C2); } bool isNumRegsMajorCostOfLSR() override { return Impl.isNumRegsMajorCostOfLSR(); } bool isProfitableLSRChainElement(Instruction *I) override { return Impl.isProfitableLSRChainElement(I); } bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); } bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) override { return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); } bool shouldFavorPostInc() const override { return Impl.shouldFavorPostInc(); } bool shouldFavorBackedgeIndex(const Loop *L) const override { return Impl.shouldFavorBackedgeIndex(L); } bool isLegalMaskedStore(Type *DataType, Align Alignment) override { return Impl.isLegalMaskedStore(DataType, Alignment); } bool isLegalMaskedLoad(Type *DataType, Align Alignment) override { return Impl.isLegalMaskedLoad(DataType, Alignment); } bool isLegalNTStore(Type *DataType, Align Alignment) override { return Impl.isLegalNTStore(DataType, Alignment); } bool isLegalNTLoad(Type *DataType, Align Alignment) override { return Impl.isLegalNTLoad(DataType, Alignment); } bool isLegalMaskedScatter(Type *DataType, Align Alignment) override { return Impl.isLegalMaskedScatter(DataType, Alignment); } bool isLegalMaskedGather(Type *DataType, Align Alignment) override { return Impl.isLegalMaskedGather(DataType, Alignment); } bool isLegalMaskedCompressStore(Type *DataType) override { return Impl.isLegalMaskedCompressStore(DataType); } bool isLegalMaskedExpandLoad(Type *DataType) override { return Impl.isLegalMaskedExpandLoad(DataType); } bool hasDivRemOp(Type *DataType, bool IsSigned) override { return Impl.hasDivRemOp(DataType, IsSigned); } bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override { return Impl.hasVolatileVariant(I, AddrSpace); } bool prefersVectorizedAddressing() override { return Impl.prefersVectorizedAddressing(); } int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) override { return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace); } bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); } bool isTruncateFree(Type *Ty1, Type *Ty2) override { return Impl.isTruncateFree(Ty1, Ty2); } bool isProfitableToHoist(Instruction *I) override { return Impl.isProfitableToHoist(I); } bool useAA() override { return Impl.useAA(); } bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); } unsigned getRegUsageForType(Type *Ty) override { return Impl.getRegUsageForType(Ty); } bool shouldBuildLookupTables() override { return Impl.shouldBuildLookupTables(); } bool shouldBuildLookupTablesForConstant(Constant *C) override { return Impl.shouldBuildLookupTablesForConstant(C); } bool useColdCCForColdCall(Function &F) override { return Impl.useColdCCForColdCall(F); } unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract) override { return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract); } unsigned getOperandsScalarizationOverhead(ArrayRef Args, unsigned VF) override { return Impl.getOperandsScalarizationOverhead(Args, VF); } bool supportsEfficientVectorElementLoadStore() override { return Impl.supportsEfficientVectorElementLoadStore(); } bool enableAggressiveInterleaving(bool LoopHasReductions) override { return Impl.enableAggressiveInterleaving(LoopHasReductions); } MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override { return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp); } bool enableInterleavedAccessVectorization() override { return Impl.enableInterleavedAccessVectorization(); } bool enableMaskedInterleavedAccessVectorization() override { return Impl.enableMaskedInterleavedAccessVectorization(); } bool isFPVectorizationPotentiallyUnsafe() override { return Impl.isFPVectorizationPotentiallyUnsafe(); } bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, unsigned Alignment, bool *Fast) override { return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, Alignment, Fast); } PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override { return Impl.getPopcntSupport(IntTyWidthInBit); } bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); } bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override { return Impl.isFCmpOrdCheaperThanFCmpZero(Ty); } int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); } int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) override { return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty); } int getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) override { return Impl.getIntImmCost(Imm, Ty, CostKind); } int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst = nullptr) override { return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst); } int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) override { return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); } unsigned getNumberOfRegisters(unsigned ClassID) const override { return Impl.getNumberOfRegisters(ClassID); } unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const override { return Impl.getRegisterClassForType(Vector, Ty); } const char *getRegisterClassName(unsigned ClassID) const override { return Impl.getRegisterClassName(ClassID); } unsigned getRegisterBitWidth(bool Vector) const override { return Impl.getRegisterBitWidth(Vector); } unsigned getMinVectorRegisterBitWidth() override { return Impl.getMinVectorRegisterBitWidth(); } Optional getMaxVScale() const override { return Impl.getMaxVScale(); } bool shouldMaximizeVectorBandwidth(bool OptSize) const override { return Impl.shouldMaximizeVectorBandwidth(OptSize); } unsigned getMinimumVF(unsigned ElemWidth) const override { return Impl.getMinimumVF(ElemWidth); } unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override { return Impl.getMaximumVF(ElemWidth, Opcode); } bool shouldConsiderAddressTypePromotion( const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override { return Impl.shouldConsiderAddressTypePromotion( I, AllowPromotionWithoutCommonHeader); } unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); } Optional getCacheSize(CacheLevel Level) const override { return Impl.getCacheSize(Level); } Optional getCacheAssociativity(CacheLevel Level) const override { return Impl.getCacheAssociativity(Level); } /// Return the preferred prefetch distance in terms of instructions. /// unsigned getPrefetchDistance() const override { return Impl.getPrefetchDistance(); } /// Return the minimum stride necessary to trigger software /// prefetching. /// unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const override { return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, NumPrefetches, HasCall); } /// Return the maximum prefetch distance in terms of loop /// iterations. /// unsigned getMaxPrefetchIterationsAhead() const override { return Impl.getMaxPrefetchIterationsAhead(); } /// \return True if prefetching should also be done for writes. bool enableWritePrefetching() const override { return Impl.enableWritePrefetching(); } unsigned getMaxInterleaveFactor(unsigned VF) override { return Impl.getMaxInterleaveFactor(VF); } unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) override { return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); } unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, OperandValueKind Opd1Info, OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo, ArrayRef Args, const Instruction *CxtI = nullptr) override { return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, Args, CxtI); } int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index, VectorType *SubTp) override { return Impl.getShuffleCost(Kind, Tp, Index, SubTp); } int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I) override { return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); } int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) override { return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index); } int getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) override { return Impl.getCFInstrCost(Opcode, CostKind); } int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, const Instruction *I) override { return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); } int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override { return Impl.getVectorInstrCost(Opcode, Val, Index); } int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, const Instruction *I) override { return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind, I); } int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind) override { return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); } int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I = nullptr) override { return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I); } int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) override { return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps); } int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, bool IsPairwiseForm, TTI::TargetCostKind CostKind) override { return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm, CostKind); } int getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned, TTI::TargetCostKind CostKind) override { return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned, CostKind); } InstructionCost getExtendedAddReductionCost( bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override { return Impl.getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty, CostKind); } int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) override { return Impl.getIntrinsicInstrCost(ICA, CostKind); } int getCallInstrCost(Function *F, Type *RetTy, ArrayRef Tys, TTI::TargetCostKind CostKind) override { return Impl.getCallInstrCost(F, RetTy, Tys, CostKind); } unsigned getNumberOfParts(Type *Tp) override { return Impl.getNumberOfParts(Tp); } int getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) override { return Impl.getAddressComputationCost(Ty, SE, Ptr); } unsigned getCostOfKeepingLiveOverCall(ArrayRef Tys) override { return Impl.getCostOfKeepingLiveOverCall(Tys); } bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) override { return Impl.getTgtMemIntrinsic(Inst, Info); } unsigned getAtomicMemIntrinsicMaxElementSize() const override { return Impl.getAtomicMemIntrinsicMaxElementSize(); } Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) override { return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); } Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const override { return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, DestAddrSpace, SrcAlign, DestAlign); } void getMemcpyLoopResidualLoweringType( SmallVectorImpl &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const override { Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign, DestAlign); } bool areInlineCompatible(const Function *Caller, const Function *Callee) const override { return Impl.areInlineCompatible(Caller, Callee); } bool areFunctionArgsABICompatible( const Function *Caller, const Function *Callee, SmallPtrSetImpl &Args) const override { return Impl.areFunctionArgsABICompatible(Caller, Callee, Args); } bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override { return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout()); } bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override { return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout()); } unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override { return Impl.getLoadStoreVecRegBitWidth(AddrSpace); } bool isLegalToVectorizeLoad(LoadInst *LI) const override { return Impl.isLegalToVectorizeLoad(LI); } bool isLegalToVectorizeStore(StoreInst *SI) const override { return Impl.isLegalToVectorizeStore(SI); } bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const override { return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, AddrSpace); } bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const override { return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, AddrSpace); } unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const override { return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); } unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const override { return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); } bool useReductionIntrinsic(unsigned Opcode, Type *Ty, ReductionFlags Flags) const override { return Impl.useReductionIntrinsic(Opcode, Ty, Flags); } bool preferInLoopReduction(unsigned Opcode, Type *Ty, ReductionFlags Flags) const override { return Impl.preferInLoopReduction(Opcode, Ty, Flags); } bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, ReductionFlags Flags) const override { return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags); } bool shouldExpandReduction(const IntrinsicInst *II) const override { return Impl.shouldExpandReduction(II); } unsigned getGISelRematGlobalCost() const override { return Impl.getGISelRematGlobalCost(); } bool supportsScalableVectors() const override { return Impl.supportsScalableVectors(); } bool hasActiveVectorLength() const override { return Impl.hasActiveVectorLength(); } int getInstructionLatency(const Instruction *I) override { return Impl.getInstructionLatency(I); } }; template TargetTransformInfo::TargetTransformInfo(T Impl) : TTIImpl(new Model(Impl)) {} /// Analysis pass providing the \c TargetTransformInfo. /// /// The core idea of the TargetIRAnalysis is to expose an interface through /// which LLVM targets can analyze and provide information about the middle /// end's target-independent IR. This supports use cases such as target-aware /// cost modeling of IR constructs. /// /// This is a function analysis because much of the cost modeling for targets /// is done in a subtarget specific way and LLVM supports compiling different /// functions targeting different subtargets in order to support runtime /// dispatch according to the observed subtarget. class TargetIRAnalysis : public AnalysisInfoMixin { public: typedef TargetTransformInfo Result; /// Default construct a target IR analysis. /// /// This will use the module's datalayout to construct a baseline /// conservative TTI result. TargetIRAnalysis(); /// Construct an IR analysis pass around a target-provide callback. /// /// The callback will be called with a particular function for which the TTI /// is needed and must return a TTI object for that function. TargetIRAnalysis(std::function TTICallback); // Value semantics. We spell out the constructors for MSVC. TargetIRAnalysis(const TargetIRAnalysis &Arg) : TTICallback(Arg.TTICallback) {} TargetIRAnalysis(TargetIRAnalysis &&Arg) : TTICallback(std::move(Arg.TTICallback)) {} TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) { TTICallback = RHS.TTICallback; return *this; } TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) { TTICallback = std::move(RHS.TTICallback); return *this; } Result run(const Function &F, FunctionAnalysisManager &); private: friend AnalysisInfoMixin; static AnalysisKey Key; /// The callback used to produce a result. /// /// We use a completely opaque callback so that targets can provide whatever /// mechanism they desire for constructing the TTI for a given function. /// /// FIXME: Should we really use std::function? It's relatively inefficient. /// It might be possible to arrange for even stateful callbacks to outlive /// the analysis and thus use a function_ref which would be lighter weight. /// This may also be less error prone as the callback is likely to reference /// the external TargetMachine, and that reference needs to never dangle. std::function TTICallback; /// Helper function used as the callback in the default constructor. static Result getDefaultTTI(const Function &F); }; /// Wrapper pass for TargetTransformInfo. /// /// This pass can be constructed from a TTI object which it stores internally /// and is queried by passes. class TargetTransformInfoWrapperPass : public ImmutablePass { TargetIRAnalysis TIRA; Optional TTI; virtual void anchor(); public: static char ID; /// We must provide a default constructor for the pass but it should /// never be used. /// /// Use the constructor below or call one of the creation routines. TargetTransformInfoWrapperPass(); explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); TargetTransformInfo &getTTI(const Function &F); }; /// Create an analysis pass wrapper around a TTI object. /// /// This analysis pass just holds the TTI instance and makes it available to /// clients. ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); } // namespace llvm #endif