//===--------- LoopIterator.h - Iterate over loop blocks --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This file defines iterators to visit the basic blocks within a loop. // // These iterators currently visit blocks within subloops as well. // Unfortunately we have no efficient way of summarizing loop exits which would // allow skipping subloops during traversal. // // If you want to visit all blocks in a loop and don't need an ordered traveral, // use Loop::block_begin() instead. // // This is intentionally designed to work with ill-formed loops in which the // backedge has been deleted. The only prerequisite is that all blocks // contained within the loop according to the most recent LoopInfo analysis are // reachable from the loop header. //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_LOOPITERATOR_H #define LLVM_ANALYSIS_LOOPITERATOR_H #include "llvm/ADT/PostOrderIterator.h" #include "llvm/Analysis/LoopInfo.h" namespace llvm { class LoopBlocksTraversal; // A traits type that is intended to be used in graph algorithms. The graph // traits starts at the loop header, and traverses the BasicBlocks that are in // the loop body, but not the loop header. Since the loop header is skipped, // the back edges are excluded. // // TODO: Explore the possibility to implement LoopBlocksTraversal in terms of // LoopBodyTraits, so that insertEdge doesn't have to be specialized. struct LoopBodyTraits { using NodeRef = std::pair; // This wraps a const Loop * into the iterator, so we know which edges to // filter out. class WrappedSuccIterator : public iterator_adaptor_base< WrappedSuccIterator, succ_iterator, typename std::iterator_traits::iterator_category, NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> { using BaseT = iterator_adaptor_base< WrappedSuccIterator, succ_iterator, typename std::iterator_traits::iterator_category, NodeRef, std::ptrdiff_t, NodeRef *, NodeRef>; const Loop *L; public: WrappedSuccIterator(succ_iterator Begin, const Loop *L) : BaseT(Begin), L(L) {} NodeRef operator*() const { return {L, *I}; } }; struct LoopBodyFilter { bool operator()(NodeRef N) const { const Loop *L = N.first; return N.second != L->getHeader() && L->contains(N.second); } }; using ChildIteratorType = filter_iterator; static NodeRef getEntryNode(const Loop &G) { return {&G, G.getHeader()}; } static ChildIteratorType child_begin(NodeRef Node) { return make_filter_range(make_range( {succ_begin(Node.second), Node.first}, {succ_end(Node.second), Node.first}), LoopBodyFilter{}) .begin(); } static ChildIteratorType child_end(NodeRef Node) { return make_filter_range(make_range( {succ_begin(Node.second), Node.first}, {succ_end(Node.second), Node.first}), LoopBodyFilter{}) .end(); } }; /// Store the result of a depth first search within basic blocks contained by a /// single loop. /// /// TODO: This could be generalized for any CFG region, or the entire CFG. class LoopBlocksDFS { public: /// Postorder list iterators. typedef std::vector::const_iterator POIterator; typedef std::vector::const_reverse_iterator RPOIterator; friend class LoopBlocksTraversal; private: Loop *L; /// Map each block to its postorder number. A block is only mapped after it is /// preorder visited by DFS. It's postorder number is initially zero and set /// to nonzero after it is finished by postorder traversal. DenseMap PostNumbers; std::vector PostBlocks; public: LoopBlocksDFS(Loop *Container) : L(Container), PostNumbers(NextPowerOf2(Container->getNumBlocks())) { PostBlocks.reserve(Container->getNumBlocks()); } Loop *getLoop() const { return L; } /// Traverse the loop blocks and store the DFS result. void perform(LoopInfo *LI); /// Return true if postorder numbers are assigned to all loop blocks. bool isComplete() const { return PostBlocks.size() == L->getNumBlocks(); } /// Iterate over the cached postorder blocks. POIterator beginPostorder() const { assert(isComplete() && "bad loop DFS"); return PostBlocks.begin(); } POIterator endPostorder() const { return PostBlocks.end(); } /// Reverse iterate over the cached postorder blocks. RPOIterator beginRPO() const { assert(isComplete() && "bad loop DFS"); return PostBlocks.rbegin(); } RPOIterator endRPO() const { return PostBlocks.rend(); } /// Return true if this block has been preorder visited. bool hasPreorder(BasicBlock *BB) const { return PostNumbers.count(BB); } /// Return true if this block has a postorder number. bool hasPostorder(BasicBlock *BB) const { DenseMap::const_iterator I = PostNumbers.find(BB); return I != PostNumbers.end() && I->second; } /// Get a block's postorder number. unsigned getPostorder(BasicBlock *BB) const { DenseMap::const_iterator I = PostNumbers.find(BB); assert(I != PostNumbers.end() && "block not visited by DFS"); assert(I->second && "block not finished by DFS"); return I->second; } /// Get a block's reverse postorder number. unsigned getRPO(BasicBlock *BB) const { return 1 + PostBlocks.size() - getPostorder(BB); } void clear() { PostNumbers.clear(); PostBlocks.clear(); } }; /// Wrapper class to LoopBlocksDFS that provides a standard begin()/end() /// interface for the DFS reverse post-order traversal of blocks in a loop body. class LoopBlocksRPO { private: LoopBlocksDFS DFS; public: LoopBlocksRPO(Loop *Container) : DFS(Container) {} /// Traverse the loop blocks and store the DFS result. void perform(LoopInfo *LI) { DFS.perform(LI); } /// Reverse iterate over the cached postorder blocks. LoopBlocksDFS::RPOIterator begin() const { return DFS.beginRPO(); } LoopBlocksDFS::RPOIterator end() const { return DFS.endRPO(); } }; /// Specialize po_iterator_storage to record postorder numbers. template<> class po_iterator_storage { LoopBlocksTraversal &LBT; public: po_iterator_storage(LoopBlocksTraversal &lbs) : LBT(lbs) {} // These functions are defined below. bool insertEdge(Optional From, BasicBlock *To); void finishPostorder(BasicBlock *BB); }; /// Traverse the blocks in a loop using a depth-first search. class LoopBlocksTraversal { public: /// Graph traversal iterator. typedef po_iterator POTIterator; private: LoopBlocksDFS &DFS; LoopInfo *LI; public: LoopBlocksTraversal(LoopBlocksDFS &Storage, LoopInfo *LInfo) : DFS(Storage), LI(LInfo) {} /// Postorder traversal over the graph. This only needs to be done once. /// po_iterator "automatically" calls back to visitPreorder and /// finishPostorder to record the DFS result. POTIterator begin() { assert(DFS.PostBlocks.empty() && "Need clear DFS result before traversing"); assert(DFS.L->getNumBlocks() && "po_iterator cannot handle an empty graph"); return po_ext_begin(DFS.L->getHeader(), *this); } POTIterator end() { // po_ext_end interface requires a basic block, but ignores its value. return po_ext_end(DFS.L->getHeader(), *this); } /// Called by po_iterator upon reaching a block via a CFG edge. If this block /// is contained in the loop and has not been visited, then mark it preorder /// visited and return true. /// /// TODO: If anyone is interested, we could record preorder numbers here. bool visitPreorder(BasicBlock *BB) { if (!DFS.L->contains(LI->getLoopFor(BB))) return false; return DFS.PostNumbers.insert(std::make_pair(BB, 0)).second; } /// Called by po_iterator each time it advances, indicating a block's /// postorder. void finishPostorder(BasicBlock *BB) { assert(DFS.PostNumbers.count(BB) && "Loop DFS skipped preorder"); DFS.PostBlocks.push_back(BB); DFS.PostNumbers[BB] = DFS.PostBlocks.size(); } }; inline bool po_iterator_storage::insertEdge( Optional From, BasicBlock *To) { return LBT.visitPreorder(To); } inline void po_iterator_storage:: finishPostorder(BasicBlock *BB) { LBT.finishPostorder(BB); } } // End namespace llvm #endif